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Abstract: Assigning one (more) shared resource(s) to sewe@lesters is a function of
arbiters (allocators). This class of decision-mgkimodules can be implemented in a number of
ways, from hardware to firmware to software. Thegrapresents a new computer-aided
technique that can produce representations ofeastdtiocators in a form of a Multi-Terminal
Binary Decision Diagram (MTBDD) with close to minimucost and width. This diagram can
then serve as a prototype for a cascade of muliptput look-up tables (LUTSs) that
implements the given function, or for efficientfiware implementation. The technique makes
use of iterative decomposition of integer functioh®oolean variables and a variable-ordering
heuristic to order variables. The LUT cascades [iaectly to the pipelined design, simplify
wiring and testing and can compete with the tradal FPGA design in performance and with
PLA design in chip area.
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1 Introduction

Design of digital systems with a degree of regtyain physical placement of
subsystems and in their interconnection has aleagn a much desired goal and is
even more so today. A regular logic has advantadesh make it more attractive:
short development time, better utilization of clapea, easy testability and easy
modifications all end up in a lower cost. A one-dimsional cascade of look-up tables
(LUT cells) is such a regular structure.

At present, LUTs with up to 6 binary inputs and iagke binary output are
common components of FPGAs. Multiple-output LUTsn che thought of as
composed of single-output LUTs or can be manufectas embedded RAMs. They
may provide support for reconfigurable architecsurasynchronous cascades or
clocked pipelines; speed is competitive with otRBIGA designs [Nakamura, 2005],
layout and wiring are very easy. The multiple-otithWT cascade is a promising
reconfigurable logic device for future 45 nm andm32 VLSI technology [Nakamura,
2005].



Realization of every multiple-output Boolean fupctiby a LUT cascade was
proved possible [Yoeli, 1970]. However, the suggeéstlgebraic method of synthesis
was not practical, as it produced redundant cascaflehe same length for the
simplest functions as well as for the most commers, and therefore necessarily
cascades too long; intuitively, for simple func8oshort non-redundant cascades
should do.

A direct synthesis of non-redundant LUT cascademesoout easily from the
known representation of multiple Boolean functiansa form of Multi-Terminal
Binary Decision Diagrams (MTBDD) [Yanushkevich, B)0Cascaded LUTs are
slices (layers) of this MTBDD. The question is hdovorder the variables in the
diagram, because the ordering influences the sideshape of the MTBDD. Among
all possible orderings of variables we should foime that produces a diagram optimal
in some sense (e.g., cost, width, average pathtHengn optimum ordering of
variables can be treated as a separate probletncanibe solved concurrently with
LUT cascade synthesis by iterative decompositiomofk, 2007a, b]. Sequential
processing of optimized MTBDDs by means of micrgiaes with multi-way
branching can significantly improve firmware perfance [Dvéak, 2007a].

Multiple-output Boolean functions have been moreergly represented by
BDD_for_CF diagrams [Matsuura, 2007]. Here the drdgof variables has to be
optimized first; the top-down iterative decompasitithen starts from the root and
after a removal of a single variable the whole thag has to be reconstructed.
A disadvantage of this approach is a large siz8®@D_for CF diagrams, because
input as well as output variables are used asidecigriables.

In this paper we present a heuristic technique mttom-up iterative
decomposition of integer-valued functions startiftigm the leaves. The main
contribution is that the bottom-up synthesis of aBIDD/LUT cascade need not
know the optimum ordering of variables, because ldmlly optimum order of
variables is generated concurrently. The obtaind®DIDs and LUT cascades can be
used in hardware, firmware and software implem@mabf combinational and
sequential functions.

The paper is structured as follows. Basic defingiand concepts are explained in
Section 2. Our heuristic approach for constructibsub-optimal MTBDDs and LUT
cascades is presented in Section 3. Section 4eappk ideas to four types of arbiters,
their decomposition and implementation, whereagi@e® is similarly devoted to
allocators. Experimental results are summarize8ention 6, and commented on in
the Conclusion.

2 Basic Definitions

A system ofm Boolean functions afi Boolean variables,
£ @Z)" - 2Z,i=1,2,..m (1)

will be simply referred to as a multiple-output Bean functionF,. Instead of a full
function table, we prefer to use a shorthand dgsan of a system (1) in a form of
a PLA matrix, i.e., as a set aff{m)-tuples, called function cubes, in which the finst



components correspond to the inputs and theMagimponents to the outputs see
an example in [Tab. 1].

Symbols in the PLA matrix are interpreted the faflog way: each position in
the input planex; to X, in [Tab. 1]) corresponds to an input variable wheef@implies
the corresponding input literal appears complenteimtéhe product term, a 1 implies
the input literal appears un-complemented in thedpect term, and "-" implies the
input literal does not appear in the product tdmEspresso tool [Brzozowski, 1997],
a command-line optionf,d , r, fd, dr, fr ,fdr selects any combination of the ON -
set (f), the OFF-set (r) or the DC-set (d) in thutpoit format (type f is a default). We
will use logical type fr for each output, so thal aneans this product term belongs to
the ON-set, a 0 means this product term belongse®FF-set, and a “-* means this
product term has no meaning for the value of thigfion.

X1 X2 X3 Xg Y1 Y2
1 oo 0 1] 1
2 1o -To 1|0 0 1 -
3 010/ - 1] - 0 0 |na. | O
4 -1l o] -
5 1100 ol o 1qna. ] 1 1
6 NN -1 -pLoj1y-
7 ol -Jol1 1

Table 1: The example of multiple-outputT
Boolean function specification by cubes
(n=4,m=2)

able 2: Element-wise cube intersection

Thus, the value “-“ is considered uncertain, wher@aand 1 are certain. An
elementc of {0, -, 1}" is called an input cube and elemenof {0, -, 1}" is called
an output cube. FunctioR, is incomplete if it is defined only on s& O (Z,)";
(Z)"\ D = X is then the don't care set (DC-set). The elemani$ are input vectors
that for some reason cannot occur; for example, dfvthe input 4-tuples, 0010 and
1100, have no outputs defined, so these rows artednirom [Tab. 1]. A function
(Espresso "type fr") is completely described byvitimng its ON-set and OFF-set.
Espresso computes the DC-set as the complemehe afrion of the ON-set and the
OFF-set. It is an error for any min-term to bel@éadpoth the ON-set and OFF-set.

Next we will review the basic notions of cube célsBrzozowski, 1997].

Definition 1. Compatibility relationis defined on the set {0, 1, -}:
odo, 101, -0-00-10- -00, -01,

but the pairs (0,1) and (1,0) are not relatedb@€ompatibility relation is extended to
cubes {0, -, 1} denoted ax = (¢, Cp, ..., Cy): two cubesc, ¢{0, -, 1}" are
compatible,

cdc if and only if ¢; C” for alli, 1<i<n;
in other words, two cubes andc” are compatible if and only if they have a non-
empty common sub-cube.
The compatibility relation is reflexive and symnietbut not transitive.



Definition 2. A binary operation intersection (product) is definon the set {0, 1, -}
in [Tab. 2]. It is not defined for pairs (0, 1) afd 0). The intersection can be further
extended to two or more compatible cubes if itppleed element-wise.

A set of f+m)-tuples does not necessarily define a Booleantiimmcbecause it
is possible to assign conflicting output values. fnfunction must satisfy the
consistency condition: if two input cubes are cotilp@ so are the corresponding
output cubes [Brzozowski, 1997]. Thus if a min-taapplied to the input is contained
in two or more input cubes, an intersection of augubes will be seen at the output
and there will be no contradictions.

Cube specifications of general fr functions exefigai by the function in [Table
1] may contain compatible cubes aednary output cubes. In this paper, we will use
only a restricted class of fr functions becausey thee sufficient for the targeted
applications and because their processing is grsatiplified. Our concern will be an
incompletely specified integeR{valued) function ofi Boolean variables

FriD - Za, )

DO(Z)", Zr={0,1,2, ...,R- 1}, R< 2", such that no two input cubes are compatible.
Output cubes are integer values that can be redogigldto outpubinary vectorsb 0
{0,1}™ when desired. A min-term applied to the inputhisst contained in one and
only one input cube. Functidf, is not defined on a don’t care ¥et (Z,)"\ D.

We will use a functiorF,: D — Zs, D/7(Z,)* with a map at [Fig. 1] as a running
example of a class of functions under our consta®sraHere 6 cubes are mapped into
5 integer values. The function is not definedXjH 6 out of 16 points.

Fa lalblc!d lalbcld

cd —» albfc|d]|f
ab 00 01 10 11 0[{0| 0] 0] 0 O
E 1{0{1]0 -|1
2/ o] of 2 of 2
3{1]of -] -] 3
4 1] 1] 1] of 4
el 51 1] 2] 1] o
abcld abcd

Figure 1: The map of integer function &nd the equivalent cube specification

The most of multiple-output Boolean functions ugegractice, including arbiter
and allocator functions, can be expressed in culiation with don’t cares. Cube
notation is also a standard input specification Espresso synthesis tool. We have
generated cube specifications for all consideretttfans automatically from their
definitions for any given size of synthesized astand allocators.

Machine representation of single-output Booleartfioms frequently uses Binary
Decision Diagrams (BDDs), which can have many forfivanushkevich, 2006].
Ordered BDDs (OBDDs) use the same order of varsableng all paths, whereas free
DDs relax this restriction. For a given variablé@rthere exists a unigue OBDD with



a minimum number of decision nodes (i.e. size),cstled reduced OBDD or
ROBDD. The same is true for Multi-Terminal Binarg&sion Diagrams (MTBDDs)
representing binary-input, integer-valued outpubcfions [Yanushkevich, 2006].
Alternatively, we can use a BDD for the charactarifunction (BDD_for_CF). This
kind of BDD can be obtained by existing tools [Udamburg, 2006], but ordering of
variables is a separate problem, [Matsuura, 2007].

The DD size is the important parameter as it diyeicifluences the size of the
data structure needed to store the DD. Howeversiteeof a DD is very sensitive to
variable ordering and finding a good order everBDIDs is an NP-complete problem
[Yanushkevich, 2006]; there ant possible orderings af variables. The size of DDs
for random functions grows exponentially with thember of variables for any
ordering, but functions used in digital system dgesivith few exceptions do have
a reasonable DD size. One exception is the clabgafy multipliers: for all possible
variable orderings, the BDD size is exponential fidvit inputs and 8-bit output
[Bryant, 1991].

We will refer to ROBDD or MTBDD with the best vahbke ordering as to the
optimal BDD. The term a “sub-optimal DD” will der@a DD with a size near to the
optimal BDD. However, in a functional decompositidimee minimization of the BDD
width is more important than the minimization oéttotal number of nodes, because
the BDD width directly influences the cascade wi#thSome heuristic synthesis
techniques take this into consideration [Matsu@@Q7]. The average path length
(APL) of a DD that relates to the average evalumtione can also be optimized
[Nagayama, 2005].

We conclude this Section by three definitions.

Definition 3. An ordered DD is non-redundant, if each test \deidgs used at one and
only one level of the DD.

In what follows only non-redundant ordered DDs Wil considered, even though
redundant testing may sometimes lead to a smallesie.

Definition 4. A generic binary cascade C of the fokm 1 is the system
C = [ka Hly HZ! ey Hna lel

where

e Hi: (Z)“ xZ, - (Z)% 1<i<nis a function implemented by tfi8 logic
device (cell) withk., horizontal inputs, lvertical (side) inpufg and k;
outputs; Z,)°=10.

* TUis a permutation of the set {1,.2, n} that assigns input variablegg, to the
i" cell in the cascadé=1, 2, ...,n,

« k=maxk ]is a cascade width,

* n, the cascade length, is the total number of cells.

Cascade cells have up tohorizontal inputs (rails) carrying Boolean values
between cells and each cell has 1 additional \@rinput. As first cells havk, = 0,
ki=1,k =2,k 0 <1, 3>k, O <1, 4>, ..horizontal inputs, first cells such that
k. = k are typically combined into a single cell [Fig]3bo that the cascade length is



thenn -t +1. Cell functionsH; are described by LUTs and the cascade is then
referred to as the LUT cascade.

Definition 5. A cascade is said to be non-redundant if eachtimptiable used at
a vertical input enters one and only one cell. @tfse the cascade is redundant. If
a reference is made to a cascade, we will assupieitlty a non-redundant cascade.

3 Construction of LUT Cascades and of Sub-Optimal MTEBDs

In this section we present a heuristic technique &osub-optimal LUT cascade
construction. It is a generalization of the BDD swuaction by means of iterative
disjunctive decomposition [Dwak, 2007b]. The classical Ashenhurst-Curtis decom-
position of Boolean functions works with decompiosit tables constructed for
various partitions of input variables= (Xi, Xz). A search for the minimum number of
distinct columns in the decomposition table (solechlcolumn multiplicity) is a
combinatorial problem with computation time and theemory requirements
exponential in the number of inputsThus the straightforward implementation of the
classical method is impractical for functions wittany inputs. In our approach we
use partitionX:| = 1, Xe| =i iteratively { = n-1, n-2,...,1); in each step an input
variable is selected in such away that the widthth® cascade is minimized.
Simultaneously we obtain a MTBDD, which is in faetealing the internal structure
of LUTs in terms of decision nodes.

Before formulation of the algorithm, we prefer tustrate the synthesis
technique on thé&, example [Fig. 1]. The integer functia= F4(a, b, c, 4 of four
binary variables is specified by cubes at the tbfFm. 2]. In the meantime we will
select the order of variables in advancelas, b, a A single variable (highlighted
within tables in [Fig. 2]) will be removed from tHenction in one decomposition
step. Starting with variabld, we inspect the set of input cubes with value @ an
columnd and look for all possible compatible pairs of ihpubese = (g, &, &3, 0)
and e’ = (e';, €', €3 1) hiding their values 0 and 1. One cube0) may be
compatible with several cubes.{) and vice versa. These pairs will be referredso
binary pairs (b-pairs).

Next we will identify input cubes with value "-" ioolumnd. From each such
cubeu = (uy, Uy, Us, -) We can create a compatible pair (ug, Uy, Uz, 0) andu’ = (uy,

Uy, Us, 1) by substitution 0 and 1 for uncertain value These pairs will be referred to
as unary pairs (u-pairs) because of their origomfrone cube. Remaining cubes of
two types,q = (01, U2 Qs 0) orr = (ry, Iy, r3, 1), are not compatible between
themselves and neither with any cube in binaryspaire will call them orphaned
input cubes. This is because the compatible cqbef;, 0., gs, 1) orr = (1, ra, r3, 0)
map to the DC values and therefore are not listethé cube table. We can thus
append each orphaned cube with the identical isleishput cube (denoted "x") with
the DC output value. We will call these pairs apjeghpairs (a-pairs).

In our example in [Fig. 1] we will find

- only one b-pair, cubes 4&5

- two u-pairs, cubes 2&2 and 3&3

- two a-pairs, cubes 0&x, 1&x.



When we do decomposition of functiéy by removal of variablé,
F4=H(G(a, b, ¢), d), 3

we have to intersect ait, u-, anda-pairs of compatible input cubes= (u;, U,, Us)
andv = (vy, V», V3) in order to obtaincubes of functiorG and map them into pairs of
integer output value$’| Q] as shown below:

F4: u= (U]_, U, U3) F4 (Ul, Uy, Uz, 0) =P
F4: V= (Vl’ Vz, V3) Fi‘ (Vl' V2, V3, 1) =O (4)
G U*v=2z=(z, 2, 2) Z:.=[P, Q]

a b ¢ d z comp. cd -
ojJojojojojo cubes LUT4 00 01 10 11
110J]0]110] 2 4&5 0:= [4,0] 00| 0KO) 2L2
210j1]j0})-112 282 1:=[1,1] ab 0 11 1
3110} -1]-1]3 3&3 2:= [3,3//16/ 3 3/'3 3
411]111101| 4 08&x 3:= [0, ml 1 410
szl 1zl 21]o0 18 4= pRF—

c -

comp. 0 1
op1]111 0 cubes LUT3 00| 3] 4
1lo]1]0o 1 384 0:= [3,4] ab o1 | 1] 14
21110} - 2 282 1:=[2,2] 1 101 2] 2
3]0J0]0 3 0&x 2:= [o,wo 0
alololz 4 x&1 3= [1,1]

comp. _
0J]0] 0 0 cubes LUT2 00| 0]
11110 1 0&3 0:=[0,3] ab 01 ] 3|
211 2 1&2 1:= [1,2] vo10[1]
3[o]1 3 11 [2]

comp. -
010 0 cubes LUT1 a 0]0]
1]1 1 0&1 0:=[0,1] o1

Figure 2: Iterative decomposition of an integerction of 4 binary variables

For example, pair of values [4, 0] will be produdsdcubes 4 and 5 in the first table
in Fig.2; without values ofl are these cubes compatible and can be replactgt in
new table of a residual functio®(a, b, c) by asingle input cube 111 - their
intersection. The removed varialés left empty in all cubes of the following tables
A pair of output values [4, 0] from intersection @ibes 4&5 is replaced by a new
integer id (0), as indicated in the assignment [#;9], [Fig. 2].

Unary pairs of cubes 2&2 and 3&3 produce outputgaf the same values [1, 1]
and [3, 3] redefined to new identities 1 and 2.aljninput cubes 0 and 1 are
appended with the same invisible cubes to produgeud pairs [0, DC] and [2, DC].
Now the DC values must be defined so as not toeas® the number of existing
unique pairs. If merging with one already foundqus pair is not possible, like in our
case, we will use pairs of the same values [0,r@d] B, 2] and give them new



identities 3 and 4; arrows in [Fig.2] show replaeainof DC values in the map Bf.
Sometimes it may be useful to replace all DC valmes special default value that
will be interpreted as "no _output" or "error".

Pairs of different output values correspond toua ttecision node, whereas pairs
of the same output values produce degenerate se fdécision nodes, because
variabled in fact does not decide anything. Nodes in the DBare labeled by the
new identities of output pairs. There is one troden(0) and four false nodes (1, 2, 3
and 4 shown as black dots) in the lowest levehefMITBDD in [Fig. 3a].

By now, we have exhausted all possible pairs ofgatible cubes of, with d =
1 andd = 0 and have replaced them by new shorter cub#seafesidual functioi®.

As a result of the removal of varialdérom functionF,, each unique pair of function
values can be assigned an integer id, what beconesow of the LUT4, [Fig.2]. The

number of LUT rows must be augmented by dummy rmnwthe nearest power of 2.
The same procedure is repeated in the followingoagosition steps until all

variables have been removed. We proceed in a badkdieection, from the leaves of
the MTBDD to its root or from LUT4 to LUTL, [Fig.a3 3b]. In the case of LUT
cascades, it is sufficient to go on with iteratdecomposition only until the number
of remaining variables equals the required numbeirary inputs of the LLUT.

The remaining question not addressed as yet isshawrariable should be used in
any given step. We use a heuristic that strivesitomize the LUT cascade width. At
each step, a variable is selected that generagemitimum number of rows in the
sought LUT or equivalently the minimum number otid®n nodesw (includingd
false nodes) in the sought level of the MTBDD. le tase of a tie, the lowest cost
criterion is applied: a variable producing the Istvaumber \ — d) of true decision
nodes in the current level of the MTBDD is takanthe case of a tie again, a variable
is selected randomly.

10,

:LUT::

4 —

F 4
| I
c d
_,O
2

Figure 3: Iterative decomposition of the functioorh Fig. 3:
a) MTBDD, b) a generic LUT cascade, and c) a Udgfll cascade



The generic LUT cascade [Fig. 3b] can be shorteaddo LUTs by combining
first three LUTs as shown. The "1 out of 5" codofgoutputs can be re-coded into a
dense 3-bit code by a decoder built-in into theé 1A$T4, decreasing the cost of this
LUT. Yet another cost-saving measure is a technigoewn as "intermediate
outputs". As it is seen in [Fig. 3a], some termiveues (1 and 3) are generated much
earlier than in the last level of the MTBDD. We dake them out from the first LUT
cell in [Fig. 3c]. The cost in bits of these thiedT cascades (generic, shortened +
decoder, intermediate outputs) is 66 : 50 : 56.

There is another practical reason why we need dooe the cascade length —
overall delay and the resulting speed. We can ceenbéveral consecutive LUT cells
easily into one cell to reduce the delay. The aosits of this single cell is of course
mostly larger than the aggregate cost of combim#id.cCombining two cells with the
same number of inputsand outputy does not increase the overall cost only if the
single cell has one more input as against two aigiells:

2%(y2") = y2*t, (5)

Useful cascades shorter thawill be referred to aseduced cascades

At this point it is appropriate to mention the gbks shapes of MTBDDs. From
the above example, it could be erroneously deduttata profile of a MTBDD (all
node count per level from leaves to the root) vgagk non-increasing. However, the
profile generally may not be monotonic. We will sader three cases:

1. R =|D| = 2" the worst case fully specified function, the MTBIs complete
binary tree with 2-1 true nodes; nodes/level drop away by one haififiloe previous
level.

2.R<|D| = 2 fully specified functions, some function valuesor more times.

3.R<|D| < 2% incomplete functions (with don’t cares).

Class 2 is in the worst case characterized by fil@ocreasing to a certain maximum
and than decreasing towards the root. This is secthe first level of the MTBDD
can contain no more tha® nodes, as there are at most that many pairs ofubutp
values. Similarly the following levels cannot havere tharR®, R%,... nodes. So the
up-down profile will culminate at the point whekreetcomplete tree growing from the
root meets the restriction ascending in the oppasity from leaves.

MTBDDs of incomplete functions (class 3) are limditeimilarly and, moreover,
also by cardinalityD| of the function domainD| points cannot create more thij
compatible pairéncluding appended pairs. This makes the MTBDD lIlikd a "table
mountain” with southern slopes (at leaves) muchpgtethan northern slopes (at the
root). The upper bound on the number of decisiodesowas found in [Dudk,
1997].

To aid LUT cascade synthesis, the program tool HID[Heuristic Iterative
Decomposition Tool) has been developed. It impleséhe algorithm in [Fig. 4]
(lettersS stand for setdyl andL for tablesw for local MTBDD width (the number of
all nodes) and for the number of false nodes. The outer loop-8&) does steps of
iterative decomposition whereas the inner loop—g8 is looking for the best
variable in each decomposition step. The inner leggs all available variables of the
yet-to-be decomposed function: selects a variah, (initializes the local MTBDD



cost measures: width andd (15), creates cube pairs with the actual variahlaed 0
and 1 (b-pairs) or the actual variable uncertaimpairs (17), eliminates redundant
pairs (18) and merges output values of orphane@scubth existing unique output
pairs or with itself (19). Then the cost measwemndd are updated (20 - 21) and the
condition is tested, whether the currently the wasiable should be replaced by the
actual one: if the new local width is smaller than the current one, it is replacéd. |
is the same, then the replacement takes placeibtiyre are more false nodes
among allw nodes than for the best variable so far (22 — 2@hen the loop
terminates, the best variable is known (26).

1. Input:

2. M;,, the given table of function cubes;

3. S, the set if input variables

4, n=|S], number of input variables;

5.

6. Outputi in 1 ton

7. M;, a cube table of th& residual function;

8. L;, i LUT counted from the end of a cascade;

9. v;, the variable removed in stép

10.

11. Initializei < 1, Mg < Mjy;

12. foriin 1tondo

13. /I Determine the best variable //

14. Vhest<— arbitrary variable frong,

15. Whest <= Siz€Mi.1), Opest<— O;

16. for all variables O S, do

17. M, < compatible_paird(i.,, v); [make b- and u- pairs]
18. S < unique_pairs{,); [unique output pairs = LUT rows]
19. S« merge_pairsy); [a-pairs: append one output value ]
20. W« sizeGy); [all naxjdrue and false]
21. d < number of pairs of the same valuesSip [false nodes]
22. if (N < Wbes) or ((W == Wbes) and d > dbes))

23. theWest«— V, Whest<— W, Opes<— d;

24, endif

25. endfor

26. Vi < Vhesi

27. /I Decompose //

28. M, «— compatible_paird{;.,, vi);
29. S, < unique_pairdy{ly);

30. Sn«— merge_ pairs,);

31. L; — enumerate_pairSg);

32. M; < replace pairs iV, by new id numbers fror;
33. S < S\{v}
34. endfor

Fig.4: The symbolic HEDIT algorithm for iterativecbmposition



The decomposition is then repeated with the besabie (28 — 30), the output
pairs are enumerated (31), the function cubes resalual function are created (32)
and the best variable is removed from the set (83)ew iteration of the outer loop
then starts with the residual function short ot trexiable.

We have done designs with up to several hundreds;uhe largest LRS8 arbiter
with 36 inputs and 8 outputs needed 1025 cube® sElquential processing time on
the Pentium-based PC has been for all presentéginddsetween 10 ms (RRA3) and
1s (LRS6). We could not test the program on a stahdenchmark set, because most
of the benchmark circuits are specified by gendrafunctions with possible
compatible input cubes and with non-empty DC sed. yi&t, the first version of
HIDET can accept only a restricted class of fr tiows as mentioned above; it is not
difficult to show that the same restriction holds &ll residual functions and the use
of HIDET is thus correct. The next version of HIDEMould address a general case
of fr functions, too.

4  Arbiter Circuits

LUT cascades have been applied to many usefuladliigihction modules [Sasao,
2005a], [Sasao, 2005b], [Sasao, 2006], [Sasao, |2q@in, 2006] and their
effectiveness and performance has been comparkdnichmark circuits [Matsuura,
2007]. One area not addressed as yet in the coofdXtY T cascades is arbiter and
allocator circuits. A traditional design of arb&es discussed in [Dally, 2003]. Here
we are going to apply LUT cascades to various arfit

We will synthesize four representative types oftarb, namely:

1  Priority encoders with fixed priority
2 Programmable priority arbiters PPAan arbiter with, e.g., random priority or
Round Robin arbiter (RRA) with rotating priority.
Last Granted Lowest Priority scheme arbiter LGLP.
Matrix arbiter (Least Recently Served scheme, LRS).
A key property of an arbiter is its fairness. ltitély, it is ability to provide equal
service to the different requesters. For the pwemour case study, we will use two
concepts of fairness.

Hw

Definition 6. A weak fairness means that every requestvisntuallyserved. The
maximum amount of time that a requester will waitlimited by the number of
requesters.

Definition 7. Strong fairness guarantees, that requesters wiebeed equally often.
This means that the number of times requesterseaxed will differ by less than %
when averaged over a sufficient number of arbarei

4.1  Priority encoders

The n-input priority encoders (R} can serve as the simplest arbiters with fixed
priority: the input request,; has the highest fixed priority and then the ptjori
decreases to the lowest priority level for inpytOutput of the Piis the address of
the active request with the highest priority the winning request. There are



[log, (n+1)] address bits since the case of no request mustaicide with any
requester address. Optionally, explicit grant outputsyy, gi,..., g1 Can be used
instead ("1-out-ofi" or one-hot coding). The cube specification of B consists of
n+1cubes, see the example of PE4 in [Fig.5], the murobcubes is reduced by 1 in
each decomposition step.

The MTBDD of priority encoders are very simple; theonsist of a straight line
of true decision nodes, one per each input variéhk minimum possible), and each
node has another outgoing edge to a terminal Ndd@&DDs of PEs with address
outputs have been constructed by HIDET and thearpaters are listed in [Table 4].
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Fig. 5: Cube specification of Priority Encoder PE4

Priority encoders can be designed effectively usiimdermediate outputs
mentioned before. To build a LUT cascade, we caaterslices of the MTBDD, each
slice corresponding to a single LUT. The LUT caechas #LUT cells inter-
connected by a single wire, each cell has additio# UT side inputs and
n/#LUT intermediate outputs, [Fig. 6].
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Fig. 6: The LUT cascade for PE8; n=8, #LUT=3

We can compare the LUT cascade cost (when #LUTdéam) with intermediate
outputs and a cost of the PLA with address outplite latter is measured by the
number of programmable cross-points and equalseubégs*(2+m); n inputs are fed
into an AND array in the direct as well as in tlegated formm outputs come out of
an OR array. We have:

PLA cost =#cubest2n+m) = (n+1)(2n+m)
LUT cascade cost = #LUT*T " (n/#LUT + 1)-2"VT (nf#LUT + 1)- 2VAUT+1



The LUT cascade cost contains two negative terkisdanto account one missing
input in the first cell and one missing output imet last cell. Even
though asymptotically PLA cost << LUT cascade ctmtdesigns useful in practice
the relation is opposite:

1.n=8,#LUT =4: PLA cost= 9*%(16 + 4) = 180, scade cost =96 20 =76
2.n =16, #LUT = 4: PLA cost = 17*(32 + 5) = 629, cadeaost = 646-112= 528.

Larger designs would be composed of PEs of snsilteranyway, e.g. PE32 would
be designed more efficiently as a hierarchy of 868 and one PE4, [Tab. 5].

For PEs it holds true that according to a subsetctiffe requests, only a single
grant output corresponding to the highest prioréguest in this subset is asserted.
The usefulness of PEs as arbiters is in practiciédd because PE is not fair, not even
in the weak sense. If one request is continuousterded, none of other requests will
ever be served. There is no limit to how long o priority request may need to
wait until it receives a grant.

4.2 A Programmable Priority Arbiter (PPA)

To improve a degree of fairness, priority of inpeguests must be updated
dynamically. The n-bit pointer or priority registisr maintained which points to the
requester who is next. A single 1 in this ring ségji (one-hot encoding) points to the
requester, currently with the highest priority; the prioritf the other inputs

jmodn, j=i-1,i-2,...,i—(n-1)

decreases and is at the lowest level for the inputl = (i+1) modn. By updating the
position of 1 in the pointer register, we obtaiRragrammable Priority Arbiter, PPA.
Taking into account bitg,—ps of the pointer register, we have the following
conditions for asserting grant signéhs= 4):

O3 = Palz + PAralralrora+ palralrors + polrors
02 = Par2 + Po!ralrolrara + polrolrary + pslrars
01 = P1r1 + Polrolralrory + Palralrory + polrary
Qo = Pofo + Pa!ralralrarg+ Polralrarg + palraro.

For example, if the requester 3 pointed to is acfiy= 1), it gets the grang{ = psrs
= 1). If not, the next active requester 2 getsgirant @, = ps!rar, = 1); if requester 2
is not active either, requester 1 gets the grguat §s!r3!ror,) or the last requester O if
it is the only active requestegy(= ps'rs!r,lrirg). The MTBDD for this arbiter
obtained by HIDET is shown in [Fig. 7a], and the T\dascades in [Fig. 7b, 7c].
HIDET also generated decompositions of similar tarki with 6, 8 and 12 inputs,
[Tab. 4].

There are several strategies how to program (updagepriority register of the
PPA. Beside random generation of a one-hot pyioréictor there are three other
basic methods for updating the priority vector:



1. After asserting a grant, rotate the priority vecioe bit in the direction of
decreasing priority (rotating Round Robin ArbitBRA).

2. After asserting a grant, move the 1 to the requedter the one that just
received the grant (Last Granted Lowest Priorityesge, LGLP).

3. After asserting a grant, move the 1 to the firsiveaequester after the
one that just received the grant.

While a random generation of a one-hot priority teecoffers only a small
improvement in fairness with respect to the fixeobity arbiter, the first method is
slightly better; it is considered weakly fair thdydecause if only a subset of inputs
is active, some requests get satisfied more often bthers. For example, if only
requesters 3 and 0 in our 4-input RRA are acting, the pointer register points at
requester 3, requester 3 will be allowed accgss (par; = 1) and then requester 0
will receive three grants in a rowgo(= po!rolrilro = 1, go = p1!ri ro = 1, 9o = Pofo =1).
(Two requesters, andr, did not use their turn with the highest priority vimig in a
cycle3- 215 05 3).
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Figure 7: A MTBDD and LUT cascades for the 4-inpragrammable priority
arbiter: a) MTBDD, b) 4- and 5- input LUTs, ¢) $yiut LUTSs, a pipelined version.

This problem is fixed in the second method. The BPGlrhiter is almost strongly
fair. Here the priority vector gets modified on thsis of the just produced grant: the
Last Granted requester gets the Lowest Priority. F8M implementation of the
LGLP, that responds in one clock cycle and enabtes of a resource for arbitrary
number of clock cycles, will be presented below.

Finally, method three provides a strongly fair tebiby considering only active
requesters. Continuing with the above example @#tfinput RRA, when the grant is



given to requester 3, method three will updatepthiater register to point at the next
active requester 2. After servicing requester Antpo register will point back at
requester 3, if it remains active, etc. The kindudtfiter operating according to method
three can be implemented with two RRAs workingangtlel [Weber, 2001].

LUT cascades can be used for pipelined implememaif RR arbiters and for
non-pipelined implementation of other types. Fauigelined implementation of the
RRA, it is sufficient to complete the LUT cascadéhwpipeline registers between
LUTs. Variables used at vertical cell inputs mulgoabe pipelined as shown at
[Fig. 7c]. The performance of the pipeline undee #tontinuous stream of input
vectors is then determined by a single LUT delaye @rbitration decision comes out
every clock cycle.

4.3 The LGLP Arbiter

We will design the LGLP arbiter as a Moore type usadial state machine that
responds to a request in one clock cycle and asshgnresource to a requester for
one or more cycles. It hasinputs that each represents a request linst&ess,, S,
..., Sn1 andn grant outputs. Even-numbered states monitor reéqopsts and odd-
numbered states generate grant outputs (one gearstgte). The pointer register that
determines priorities of inputs is updated aftewviseng a request by cyclic shift in
such a way that the request just satisfied gettotliest priority. It may, but need not,
stay active for the next arbitration.

Let us consider a 4-input LGLP arbiter with 8 stat@riorities of request inputs
in various even-numbered states (the highest prioequests are in bold) and grant
signals generated in the odd-numbered states are:

S rz ra rporo S 03
S 1, rp rg I3 S0
Siorp rg rz onp S 0
S rp I3 r2on S G

For example, in stat®, requester 3 has the highest priority and requéstiee lowest
one. If the requester 3 is active, the state ot tBeP moves frong, into S; and grant
0z is asserted. If requester 3 is not active, trst fictive requester from 2, 1 or 0 (in
this order) will produce the state change i80S or S; and will get the grand,, g;

or go only once, unlike to the RRA behavior. State titmss for even-numbered
states are thus easy to specify; e.g. for Satee have:

old states,s;s rg ry 1 TIo new states,s;
000 &) 1 x x X 001§%)
000 &) 0 1 x x 011%)
000 &) 0O 0 1 x 101%)
000 &) 0O 0 0 1 111%)
An odd-numbered stat8,.1, i = 0-3, issuing the grant, transits to the next even-

numbered stat8,i.2)mod 2n@S SOON as the request terminates (goes low).
Function tables of LGLP arbiters have been genératt#omatically for 3, 4, 6, 8
and 12 request inputs and decomposed as befogeB@fFishows for example the LUT



cascade implementation with 4 LUTs obtained by HIDEhe state register clock
cycle is dominantly determined by the delay of 4Tdélls. If we combine two
adjacent cells together [Fig. 8b], we can almostbi the speed, provided that the
delay of 4-input and 5-input cells is the same. Td& cell in both cascades only
transforms the state codegqs) of odd-numbered states into grant sigr@lo gs.
For comparison, VHDL synthesis tool for Xilinx FPGenerates this arbiter with 17
4-input LUTs in 4 logic levels.

4.4  The Matrix Arbiter with the Least Recently Serviced (LRS) Strategy

The LRS strategy cannot be implemented by a dyralimichanging Eriority vector
only; it has to use priority matri®, wherepy = 1 means that th2" request has
priority over thek™ request. The just asserted grant outpuesets th¢" row of P to
all zeros and sets th8 column ofP to all ones. Thus the requestvill have priority
over no other requests and all requests will haigity overr;.
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Figure 8: LUT cascade implementation of the 4-inpGLP arbiter.
a) 4-input LUTs b) 5-input LUTs

The priority matrixP initialized and updated according to above rukesiiti-
symmetric: elementgy under the main diagonal are complements of elesngnt
above it. It is therefore sufficient to store orlgments of above the main diagonal.
For n requests we will thus neea?(— n)/2 state variables (one half of all non-
diagonal elements).

As an example, we will use arbiter LRS4 that is lenpented in matrix form in
[Dally, 2003]. It has 6 state variables s, 3, S, S, S and 4 request inputs, rp, ry,
ro. We will let the LUT cascade generate 4 grant otstgs, g,, 01, 0o, Which will be
then used to reset and set selectively 6 statdldigs. This time we will implement



the LRS4 arbiter in firmware. We have used agam HHDET tool to decompose
function LRS4: Z,)'° ~ Z,. The result is shown as the MTBDD at [Fig. 9].

Evaluation of Boolean functions at the firmwaredegan use the MTBDD split
into 3 blocks [Fig. 9]. By making use of a hardwamn&ro-engine with a support for
multi-way branching, we can speed up evaluatioBablean functions with respect
to a general purpose CPU core. A suitable architeaif a micro-engine, a modified
version of the one in [Dwak, 2007a], is depicted in [Fig. 10]. The microtinstion
format (UIF) determines the way of selecting the addreseehext microinstruction.

Out of all microinstructions formats supported bg tmicro-engine architecture,
two formats are essential for fast evaluation oftiple-output Boolean functions:

Y

P
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r
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Figure 9: MTBDD of the 4-input LRS arbiter.

1. the jump to an address specified in micro-instarctnodified by BCU;
Ln: exit Lmaxl...xk;

2. a conditional output (on state transition) andjtimap to an address specified in
micro-instruction (no modification),

Ln: c_output exit Lm



The first format provides support for multi-way hching. It is the jump to the
target address obtained from the address spedifiethe micro-instruction and
modified by up to 4 external variables at a timacluding O variable (no
modification), by means of 16-way Branch ControlitBCU). Input variables are
selected by multiplexers, so that a microinstructiontains MXs control field and a
BCU mask.

The task of the BCU (such as Am 29803A) is to shifive inputs, selected by a
4-bit mask, to the lowest positions of the 4-bitUBGutput vector. The BCU output
vector is then wire-ORed with the address obtaifnech the microinstruction. This
way we can store dispatch tables in compact foroomrol memory. Replacement of
up to 4 bits in the address is denoted by opera@t. If wired-OR is used for
replacement, the bits being replaced must be teset

H Decoder/ [*
I +1 ¢ Segencer
P Wire
MuIF
' M O_QR 5 rRom H | >
address ——| X | ]
sources " R 9
4
| }
~n
16-way ML
Branch | X [ "5
CtriUnit| 4 | ¢ [

Figure 10: Micro-programmed controller architectuvdth multi-way branching

LRS: exit L1@®5s1
L1@0: exit L2@4s0s3r2
L1@1: exit L2@4s0s3r2
L1@0: exit L3@4s0s3r2
L1@1: exit LA@®0s3r2
L2@000: exit L5@2r0
L2@001: exit L5@2r0
L2@010: exit L6@2r0

L8@110: g0 exit Next
L8@L111: g0 exit Next
Next :

Figure 11: A symbolic micro-program for the LRSbisar



If there are more than 4 external variables, weetigse a MTBDD in several steps
testing up to 4 variables at a time. We will ilkade rewriting a MTBDD at [Fig. 9]
into the micro-program with multi-way branching. efltsymbolic micro-program
targeted for the micro-engine in [Fig. 10] is showrFig. 11]. The micro-program is
composed of 8 dispatch tables starting at symlamiresses L1 to L8, [Fig. 9]. The
size of dispatch tables varies according to falsdes on the path from the block
inputs down to the block outputs. There will beethdispatch table of size 4 (L1, L5,
L6), two of size 8 (L4, L7) and 3 of size 16 (LZ3,LL8). The total number of micro-
instructions is thus

3x4 + 2x8 + 3x16 = 76

and an arbitration decision is produced after ett@cof four microinstructions. The
state of the arbiter is kept in 6 R-S flip-flopsdathese flip-flops are selectively set
and reset by signats according to the rules for updating mateix

Ri=Ri=Ry;=0n, Re=Ry=01, Rs =0y,
$=0L S=S=0 $S=5=5=0s

Out of 6 state variables and 4 input requests up signal lines are selected by 4
multiplexers, fed into BCU and used in the leagin#icant positions for address
modification, as shown in [Fig. 10].

Had we used only single variable tests (a binaogram with 2-way branching),
we would need 16 dispatch tables of size 2, i.e.n#2roinstructions in total.
However, the performance would be almost 3-tim@getodue to serial execution of
11 microinstructions, one in each level of the MTBD

5 Allocators

An m x n allocator is a unit that accepts requests on its inputs for distinct
resources and generates grants on its outputs. therefore more general than an
arbiter that makes decision regarding only a simgiource. Any particular problem
and its solution can be represented in terms ofliimary-valuedm x n matrices, a
request matribR and a grant matri&. One requester may ask one or more resources,
but

1. at most one grant for each input (requester) magsierted,;

2. also, at most one grant for each output (resowae)pe asserted.

By means of a bipartite graph representation, leeation can be formulated as
bipartite matching problem and solved exactly, diled the maximum possible
number of assignmentméximummatching).Maximal matchings are those where no
additional requests can be serviced without rengpweime of the existing grants.

As the exact solution of the allocation problenois time consuming, we usually
put up with approximate solution in hardware. Stledarequesters-first separable
allocators use a set of priority encoders to sedeet resource per requester and then
priority encoders in the second set to solve siamglbus requests for the same
resource. Resources-first separable allocatorbeketdecisions in the opposite order.
Some allocators (PIM, iSLIP) reach a decision wesal iterations.



Separable allocators can easily be constructed #&#s or other arbiters. The
example of 4x 3 resources-first allocator is in [Fig. 12]. Thare four requesters and
3 resources. The first index denotes a requester,second index is the id of
a resource. For simplicity, priority inputs are ¢ in [Fig. 12].
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Figure 12: 4 x 3 resources-first allocator

Next we will design am x n wavefront allocator (WFA) that arbitrates among
requests for inputs and outputs simultaneously. [EB].
* It works by granting row and column tokens to agdiaal group of cells, in
effect giving this group priority.
* Adiagonal grourk contains cells xsuch that

(i +j) modn =k.

« Example [Fig. 13]: Let the priority be given at thrt to a diagonal group
(i+j) mod 4 = 3. This is done by asserting sigmalElement 21 gets the
grant, remaining elements send tokens down arketoght.

« An element will get a grant if it received both ramd column tokens. If
only one token comes or if the element has no Eguekens will pass
through it. In the example, highlighted grags, goo, s> Will be issued in
response to 8 active requests shown.

« In the next round, the following diagonal groupsislected. This ensures
fairness of allocations.

For example grardy, is asserted under the following conditions:

Qoo = (Eo'Pa!p2!paroo) +
+ (o !Pa!PaPsroolros!rag) +
+ (Po! P1P2! Paroo Fo2! Foa! F20!r30) +
+ (PoP1! P2 Paroo! Foa! Fo2! Fog! 10! 20! 30);



similar equations can be written for remaining t&ng signals, 16 Boolean functions
of 20 variables in total. Let us note that typigdlinctions ¢ do not depend on 2-3
input variables.

To simplify the problem, the iterative decompositibas been done on four
groups of outputgl, — gsx. Output grouping has been used already in [Massuur
2007], where the problem of optimum grouping hasnbanalyzed and a solution
suggested. In our case grants related to one requae defined by incompatible
cubes and, due to restrictions in the present mersf HIDET, have been naturally
included in a single group.
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Figure 13: 4 x 4 wavefront allocator

The PLA-matrix description of four grantgy is shown in [Tab. 3]. From the
number of uncertain values in 16 cubes we candiguit that the function has 67% of
don’t care values. The generic iterative decompmsiising HIDET tool gave us the
following optimal (in terms of our heuristics) oriteg of variables:

pO, r00, pl, p2, p3, r01, r02, r11, r12, r13, r10, r20, rO03,
r21, r22, r23, r30, r31, r33, r32.

In each decomposition step we obtained the numbtue and false decision nodes
in the current level of the MTBDD and the size lod associated LUT. By combining
adjacent generic LUTs together one can createrlatd&s as shown in [Fig. 14].

6 Experimental results

We have generated function tables of many instaotésur types of arbiters and two
WF allocators automatically by means of small noesiin C which enable scaling to
the desired size. The example of the resulting Pha#trix description is shown at
[Tab. 3]. The number of inputs, outputs and geeeraubes in selected designs and



processed later by the HIDET tool are given intfitsree columns of [Tab. 4].

Iterative decomposition of this class of functiomas a matter of seconds on the
Pentium-powered PC. The sample results for RRELP and LRS arbiters and
WFA allocators are summarized in [Tab. 4], namelyBWDD nodes, PLA cost and

cost of LUTs in generic cascades.

.i 20

.0 4

.ilb pO p1 p2 p3 r00 r01 r02 r03 r10 r11 r12 r13 r20 r21 r22 r23
r30 r31 r32 r33

.ob g00 g01 g02 g03

.type fr

.p 16
10001--------------- 1000
00011--0-------- 0--- 1000

00101-00----0---0--- 1000
010010000---0---0--- 1000

0100-1--=--=---=---- 0100
100001+ - - -=--=--- 0-- 0100
000101-0- - - - - 0---0-- 0100
00100100- 0- - - 0- - - 0-- 0100
0010--1--------=---- 0010
0100-01-----=----- 0- 0010
1000001- - - - - - - 0---0- 0010
00010010- - 0-- - 0---0- 0010
0001---1----cmmmmnmn- 0001
0010--01----=------ 0 0001
0100- 001~ - - - - - 0---0 0001

10000001---0---0---0 0001
. e

Table 3: Sample cube specification of the 4 wavefront allocator, groupog— gos
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Fig. 14. The wavefront allocator - shortened @atas for group g with 6-, 7-,
and 8-input cells (p=0, ..., B3 =19)



The last column of [Tab. 4] shows how PLA costl dinsspoints) compares to
the generic cascade cost2 (in bits). If we take cnesspoint in a PLA (1 gate) as
expensive as 1 bit in a LUT (one storage cell) finme that cost of generic cascades is
always less than that of PLA, including PEs wittermediate outputdt seems that
the only expensive designs are allocators, becd®isd costl< LUT cascade
cost2. To get better results for allocators, we dacompose the problem in a better
way than how it was done with partitioning outpinso groups. The wavefront
allocator is in fact a 2D-RRA arbiter (requestensl aesources are two dimensions)
and instead of doing both dimensions simultanequsk® can do one after
another: one request is selected in each row ardah selected requests for the same
resource are arbitrated again. Thus the same scagiimeFig.12 can be used for wf4
with 4 + 4 four-input RRA arbiters in LUT-cascadwmrh; this variant is denoted as
wf4+. Priority inputs are rotated one bit from ewerbiter to the next one, in both
groups. The cost2 of this solution is 8-times thett of RRA4. It turns out that it is
less than cost of a single PLA for wf4+, see coluomstl in [Tab.4].) Similar
conclusions hold true for wf3 and wf3+, too; allmrawf3+ is composed of 3 + 3
three-input RRA arbiters.

[Tab. 5] summarizes the results for FPGA desigre raluced LUT cascades.
We have converted PLA specification into VHDL (byeams of PLA- VHDL
converter ver.1.02 from Warsaw Military Universif Technology) and used Xilinx
FPGA synthesis tool to obtain designs based onpdtjnsingle output LUTS.
Examples given under reduced LUT cascades aretasélét such a way that LUTs
are as much uniform in size as possible. LUT inpatgputs and maximum width
enable complete reconstruction of cascades. Thébauof LUTs and their capacity
in bits are given in last two columns of [Tab. 5].

Generally, LUT cascades require larger aggregdtedpacity of LUTs than 4-
input LUTs in FPGA design because of their coagmanularity, but this may be
compensated by much lower wiring area of cascad#t tells. If we take the delay
of FPGA’s 4-input LUTs plus wiring delay approxirebt equal to cascaded LUTS’
delay, we can compare logic levels of FPGA withceadg length (#LUTSs). This way,
it comes out from [Tab. 5] that we should be aldeget the same or better
performance with reduced LUT cascades. Of counstiie case of wf3+ and wf4+ the
delay given by the number of LUTs between inpuid antputs differs from the total
number of LUTs. Both the values are separated &gldsh "/", see [Tab. 5].

7 Conclusions

The presented method of MTBDD/LUT cascade synthafsisultiple-output Boolean
functions aided by the HIDET tool proved to be a&hieé for synthesis of
combinational and sequential designs. The expetahemesults show that LUT
cascades offer smaller number of logic levels thBGA and smaller or comparable
chip area than PLA (provided that a programmabtssipoint and a bit of RAM
occupy the same area). The method is applicahilectompletely specified, multiple-
output integer functions of Boolean variables arasvillustrated on the class of
arbiter and allocator networks. A delay from ihpeguests to an arbitration decision



MTBDD nodes PLA LUT

n | m|#cub| all | false true costl cost2 | cost2/

>w >d cost | x-points | bits costl

RRA3 6 | 3| 10 | 20 10 10 150 146 0,97
RRA4 8 |4 17 | 37 20 17 340 258 0,76
RRA6 12| 6| 37 | 91 51 40 1110 914 0,82
RRA8 16 | 8 | 65 |179| 105 75 2600 2338 0,90
RRA12 | 24 |12| 145 |489| 300 189 8700 8418 0,97
LGLP3 6 | 3| 18 | 30 10 20 270 242 0,90
LGLP4 7 | 3| 28 | 48 18 30 476 450 0,95
LGLP6 | 10| 4| 54 |101 41 60 1296 1218 0,94
LGLP8 |12 | 4| 88 |153 78 75 2464 1778 0,72
LRS3 6 | 3| 13 | 18 8 10 195 114 0,58
LRS4 10| 4| 33 | 39 22 17 792 282 0,36
LRS6 21| 6| 193 |111 78 33 9264 986 0,11
WF3gox| 10| 3 | 10 | 45 28 17 230 274 1,19
WF3 g | 11| 3| 10 | 45 26 19 250 306 1,22
WF3gsx| 10| 3| 10 | 45 28 17 230 274 1,19
WF4 90| 19| 4| 16 |109 74 35 714 978 1,37
WF4 95,19 | 4| 17 |108 67 41 714 866 1,21
WF4 gy |18 | 4 | 17 |102 63 39 680 546 0,80
WF4 93|19 | 4| 17 |117 79 38 714 978 1,37
PE4 4 13| 5 4 0 4 55 24 0,44
PE8 8 4| 9 8 0 8 180 56 0,31
PE12 12| 5| 13 | 12 0 12 377 88 0,23
PE16 16| 5| 17 | 16 0 16 629 120 0,19
PE32 32| 6| 33 | 32 0 32 2310 248 0,11
WF3+ 12| 9| 30 |not | looked for 990 864 0,87
WF4+ 20 |16| 68 |not | looked for 3808 2048 0,54

1. PEs are implemented with intermediate outputs, PE32 as 4 x PE8 + 1x PE4
2. WF3+ and WF4+ are implemented as 6 x RRA3 and 8 x RRA4
3. LUTcost2 in bits is the aggregated capacity of LUTs in generic cascades

Table 4: Properties of MTBDDs, PLAs and generic LddEcade design



is given by the adjustable number of LUTs in theceale and has been chosen less or
comparable to FPGA logic levels. If the high-spedtitration is required on a stream
of input vectors, pipelining can be used. Arbitatresults will then follow one after
another separated by a single LUT delayThe effenggs of LUT cascades has been
proved in terms of the relative size of a PLA ahd aggregate bit capacity of all
LUTs in a cascade. Arbiters, as well as other digisystems frequently used in
practice, have relatively low complexity,

Reduced LUT cascades

FPGA cell cell max. .
#4-LUT | levels | inputs outputs width #LUTs | Zbits
RRA3 9 2 5,4 3,3 3 2 144
RRA4 14 4 55,4 3,34 3 3 256
RRA6 29 5 6,6,6,5 3,4,4,6 4 4 896
RRAS8 43 7 4x7.5 3,5,5,4,8 5 5 2432
RRA12 82 12 6x8,7 |4,4,3x6,5,12 6 7 9472
LGLP3 10 3 4.5 3,3 4 2 144
LGLP4 17 4 55,5 4,43 4 3 352
LGLP6 48 6 6,6,6,6 455,4 5 4 1152
LGLP8 70 9 7,77 45,4 5 3 1664

LRS3 6 2 4.4 2,3 3 2 80
LRS4 8 2 6,6 2,4 3 2 384
LRS6 24 3 9,9,9 3,3,6 4 3 6144
WF3 gox 9 3 5,5,5 2,3,3 3 3 256
WF4 gox 24 4 6,7,7,7 3,4,3,4 4 4 1600
WF3+ 54 4 3xRRA3 | +3xRRA3 3 4512 864
WF4+ 112 8 4xRRA4 | +4xRRA4 3 6/>24 | 2048

PE4 3 1 2,3 3,2 1 1 48
PES8 8 2 3,4,3 4,42 1 3 112
PE12 15 4 455 55,4 1 3 368
PE16 20 5 4555 5,5,5,4 1 4 528
PE32 40 10 4xPES8 +1xPE4 1 4/513 476

Column #LUTs gives #LUTs from input to output /total number of LUTs

Table 5: FPGA designs and the reduced LUT cas@agiementations

which makes their cost-effective cascade implentemts possible. Beside easy
interconnection there are other advantages of das@aplementation. Testing of
LUT cascades reduces to a problem of testing RAMdutes. Fault tolerance
techniques for memories are thus also applicalled’s. Due to a highly developed
memory technology the power consumption is very lfowv RAMs and it only
remains to verify experimentally real power savifgsspecific applications.

Future research will address more general multiplgput Boolean functions
specified by the Espresso fr type — those with lapping input cubes and with



ternary output cubes as in [Table 1]. That will madossible to compare the quality
of our variable ordering heuristic with other hatid methods [Yanushkevich, 2006],
[Drechsler, 1998]. A redundant (non-disjunctive)cal@position or multi-variable
decomposition in a single step are also of inteeest could provide appropriate
design techniques for new classes of functiongrasent, the MTBDDs constructed
by the presented technique are being applied témigation of digital control
firmware and software
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