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Abstract:  Assigning one (more) shared resource(s) to several requesters is a function of 
arbiters (allocators). This class of decision-making modules can be implemented in a number of 
ways, from hardware to firmware to software. The paper presents a new computer-aided 
technique that can produce representations of arbiters/allocators in a form of a Multi-Terminal 
Binary Decision Diagram (MTBDD) with close to minimum cost and width. This diagram can 
then serve as a prototype for a cascade of multiple-output look-up tables (LUTs) that 
implements the given function, or for efficient firmware implementation. The technique makes 
use of iterative decomposition of integer functions of Boolean variables and a variable-ordering 
heuristic to order variables. The LUT cascades lead directly to the pipelined design, simplify 
wiring and testing and can compete with the traditional FPGA design in performance and with 
PLA design in chip area. 
 
Keywords: Multi-Terminal BDDs, LUT cascades, iterative disjunctive decomposition, arbiter 
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1 Introduction 

Design of digital systems with a degree of regularity in physical placement of 
subsystems and in their interconnection has always been a much desired goal and is 
even more so today. A regular logic has advantages which make it more attractive: 
short development time, better utilization of chip area, easy testability and easy 
modifications all end up in a lower cost. A one-dimensional cascade of look-up tables 
(LUT cells) is such a regular structure.  

At present, LUTs with up to 6 binary inputs and a single binary output are 
common components of FPGAs. Multiple-output LUTs can be thought of as 
composed of single-output LUTs or can be manufactured as embedded RAMs. They 
may provide support for reconfigurable architectures, asynchronous cascades or 
clocked pipelines; speed is competitive with other FPGA designs [Nakamura, 2005], 
layout and wiring are very easy. The multiple-output LUT cascade is a promising 
reconfigurable logic device for future 45 nm and 32 nm VLSI technology [Nakamura, 
2005].  



Realization of every multiple-output Boolean function by a LUT cascade was 
proved possible [Yoeli, 1970]. However, the suggested algebraic method of synthesis 
was not practical, as it produced redundant cascades of the same length for the 
simplest functions as well as for the most complex ones, and therefore necessarily 
cascades too long; intuitively, for simple functions short non-redundant cascades 
should do. 

A direct synthesis of non-redundant LUT cascades comes out easily from the 
known representation of multiple Boolean functions in a form of Multi-Terminal 
Binary Decision Diagrams (MTBDD) [Yanushkevich, 2006]. Cascaded LUTs are 
slices (layers) of this MTBDD. The question is how to order the variables in the 
diagram, because the ordering influences the size and shape of the MTBDD. Among 
all possible orderings of variables we should find one that produces a diagram optimal 
in some sense (e.g., cost, width, average path length). An optimum ordering of 
variables can be treated as a separate problem or it can be solved concurrently with 
LUT cascade synthesis by iterative decomposition [Dvořák, 2007a, b]. Sequential 
processing of optimized MTBDDs by means of micro-engines with multi-way 
branching can significantly improve firmware performance [Dvořák, 2007a]. 

Multiple-output Boolean functions have been more recently represented by 
BDD_for_CF diagrams [Matsuura, 2007]. Here the ordering of variables has to be 
optimized first; the top-down iterative decomposition then starts from the root and 
after a removal of a single variable the whole diagram has to be reconstructed.  
A disadvantage of this approach is a large size of BDD_for_CF diagrams, because 
input as well as output variables are used as decision variables. 

In this paper we present a heuristic technique for bottom-up iterative 
decomposition of integer-valued functions starting from the leaves. The main 
contribution is that the bottom-up synthesis of a MTBDD/LUT cascade need not 
know the optimum ordering of variables, because the locally optimum order of 
variables is generated concurrently. The obtained MTBDDs and LUT cascades can be 
used in hardware, firmware and software implementation of combinational and 
sequential functions. 

The paper is structured as follows. Basic definitions and concepts are explained in 
Section 2. Our heuristic approach for construction of sub-optimal MTBDDs and LUT 
cascades is presented in Section 3. Section 4 applies the ideas to four types of arbiters, 
their decomposition and implementation, whereas Section 5 is similarly devoted to 
allocators. Experimental results are summarized in Section 6, and commented on in 
the Conclusion. 

2 Basic Definitions   

A system of m Boolean functions of n Boolean variables, 

 fn
(i) : (Z2)

n → Z2 ,  i = 1, 2, ..., m (1) 

will be simply referred to as a multiple-output Boolean function Fn. Instead of a full 
function table, we prefer to use a shorthand description of a system (1) in a form of 
a PLA matrix, i.e., as a set of (n+m)-tuples, called function cubes, in which the first n 



components correspond to the inputs and the last m components to the outputs −  see 
an example in [Tab. 1]. 

Symbols in the PLA matrix are interpreted the following way: each position in 
the input plane (x1 to x4 in [Tab. 1]) corresponds to an input variable where a 0 implies 
the corresponding input literal appears complemented in the product term, a 1 implies 
the input literal appears un-complemented in the product term, and "-" implies the 
input literal does not appear in the product term. In Espresso tool [Brzozowski, 1997], 
a command-line option f , d , r , fd , dr , fr , or fdr selects any combination of the ON -
set (f), the OFF-set (r) or the DC-set (d) in the output format (type f is a default).  We 
will use logical type fr for each output, so that a 1 means this product term belongs to 
the ON-set, a 0 means this product term belongs to the OFF-set, and a “-“ means this 
product term has no meaning for the value of this function. 

 
 

  x1 x2 x3 x4  y1 y2 
1  0 0 - 0  1 1 
2  1 0 - 0  1 0 
3  - 0 0 -  1 - 
4  - - 1 1  0 - 
5  - 1 1 0  0 0 
6  - 1 - 1  - 1 
7  0 - 0 1  1 - 

 

        x1    x2     x3    x4         y1     y2  

 
Table 1: The example of multiple-output 
Boolean function specification by cubes 

 (n = 4, m = 2) 

 

 

 

 
 

Table 2: Element-wise cube intersection 

 
Thus, the value “-“ is considered uncertain, whereas 0 and 1 are certain. An 

element c of {0, -, 1}n is called an input cube and element d of {0, -, 1}m is called 
an output cube. Function Fn is incomplete if it is defined only on set D ⊂ (Z2)

n; 
(Z2)

n \ D = X is then the don’t care set (DC-set). The elements in X are input vectors 
that for some reason cannot occur; for example, two of the input 4-tuples, 0010 and 
1100, have no outputs defined, so these rows are omitted from [Tab. 1]. A function 
(Espresso "type fr") is completely described by providing its ON-set and OFF-set. 
Espresso computes the DC-set as the complement of the union of the ON-set and the 
OFF-set. It is an error for any min-term to belong to both the ON-set and OFF-set. 

Next we will review the basic notions of cube calculus [Brzozowski, 1997]. 
 

Definition 1. Compatibility relation ∼ is defined on the set {0, 1, -}: 
0 ∼ 0, 1 ∼ 1, - ∼ -, 0 ∼ -, 1 ∼ -, - ∼ 0, - ∼ 1, 

but the pairs (0,1) and (1,0) are not related by ∼. Compatibility relation is extended to 
cubes {0, -, 1}n denoted as c = (c1, c2, …, cn): two cubes c, ć ∈{0, -, 1}n are 
compatible, 
                         c ∼ c´ if  and only if  ci ∼ci´ for all i,  1 ≤ i ≤ n;   
in other words, two cubes c and c´ are compatible if and only if they have a non-
empty common sub-cube.  
The compatibility relation is reflexive and symmetric, but not transitive. 

 

 0 1 - 
0 0 n.a.  0 
1 n.a.  1 1 
- 0 1 - 

 



Definition 2. A binary operation intersection (product) is defined on the set {0, 1, -} 
in [Tab. 2]. It is not defined for pairs (0, 1) and (1, 0). The intersection can be further 
extended to two or more compatible cubes if it is applied element-wise.   
 

A set of (n+m)-tuples does not necessarily define a Boolean function, because it 
is possible to assign conflicting output values. An fr function must satisfy the 
consistency condition: if two input cubes are compatible, so are the corresponding 
output cubes [Brzozowski, 1997]. Thus if a min-term applied to the input is contained 
in two or more input cubes, an intersection of output cubes will be seen at the output 
and there will be no contradictions. 

Cube specifications of general fr functions exemplified by the function in [Table 
1] may contain compatible cubes and ternary output cubes. In this paper, we will use 
only a restricted class of fr functions because they are sufficient for the targeted 
applications and because their processing is greatly simplified. Our concern will be an 
incompletely specified integer (R-valued) function of n Boolean variables 

Fn: D → ZR ,                                                         (2) 

D⊆(Z2)
n, ZR = {0,1,2, …, R − 1}, R ≤ 2m, such that no two input cubes are compatible. 

Output cubes are integer values that can be recoded back to output binary vectors b ∈ 
{0,1} m when desired. A min-term applied to the input is thus contained in one and 
only one input cube. Function Fn is not defined on a don´t care set X = (Z2)

n \ D.  
We will use a function F4: D → Z5,  D⊂ (Z2)

4 with a map at [Fig. 1] as a running 
example of a class of functions under our consideration. Here 6 cubes are mapped into 
5 integer values. The function is not defined in |X| = 6 out of 16 points. 

 
 

 

00 01 10 11
00 0  2  
01 1 1   
10 3 3 3 3
11 4 0  

ab 
cd 

!a!b!c!d  !a!bc!d 

!ab!c  

abc!d abcd 

a!b  

F4  a b c d f 
0 0 0 0 0 0 
1 0 1 0 - 1 
2 0 0 1 0 2 
3 1 0 - - 3 
4 1 1 1 0 4 
5 1 1 1 1 0 

  

Figure 1: The map of integer function F4 and the equivalent cube specification  

 The most of multiple-output Boolean functions used in practice, including arbiter 
and allocator functions, can be expressed in cube notation with don´t cares. Cube 
notation is also a standard input specification for Espresso synthesis tool. We have 
generated cube specifications for all considered functions automatically from their 
definitions for any given size of synthesized arbiters and allocators.    

Machine representation of single-output Boolean functions frequently uses Binary 
Decision Diagrams (BDDs), which can have many forms, [Yanushkevich, 2006]. 
Ordered BDDs (OBDDs) use the same order of variables along all paths, whereas free 
DDs relax this restriction. For a given variable order there exists a unique OBDD with 



a minimum number of decision nodes (i.e. size), so called reduced OBDD or 
ROBDD. The same is true for Multi-Terminal Binary Decision Diagrams (MTBDDs) 
representing binary-input, integer-valued output functions [Yanushkevich, 2006].  
Alternatively, we can use a BDD for the characteristic function (BDD_for_CF). This 
kind of BDD can be obtained by existing tools [Uni. Hamburg, 2006], but ordering of 
variables is a separate problem, [Matsuura, 2007].   

The DD size is the important parameter as it directly influences the size of the 
data structure needed to store the DD. However, the size of a DD is very sensitive to 
variable ordering and finding a good order even for BDDs is an NP-complete problem 
[Yanushkevich, 2006]; there are n! possible orderings of n variables. The size of DDs 
for random functions grows exponentially with the number of variables n for any 
ordering, but functions used in digital system design with few exceptions do have 
a reasonable DD size. One exception is the class of binary multipliers: for all possible 
variable orderings, the BDD size is exponential for n-bit inputs and 2n-bit output 
[Bryant, 1991]. 

We will refer to ROBDD or MTBDD with the best variable ordering as to the 
optimal BDD. The term a “sub-optimal DD” will denote a DD with a size near to the 
optimal BDD. However, in a functional decomposition, the minimization of the BDD 
width is more important than the minimization of the total number of nodes, because 
the BDD width directly influences the cascade width k. Some heuristic synthesis 
techniques take this into consideration [Matsuura, 2007]. The average path length 
(APL) of a DD that relates to the average evaluation time can also be optimized 
[Nagayama, 2005]. 

We conclude this Section by three definitions. 
 

Definition 3. An ordered DD is non-redundant, if each test variable is used at one and 
only one level of the DD. 
 

In what follows only non-redundant ordered DDs will be considered, even though 
redundant testing may sometimes lead to a smaller DD size. 
 
Definition 4. A generic binary cascade C of the form k × 1 is the system 

 C = [k, H1, H2, …, Hn, π], 

where 
• Hi: (Z2)

ki-1 × Z2
 → (Z2)

ki, 1 ≤ i ≤ n is a function implemented by the i th logic 
device (cell) with ki-1 horizontal inputs, 1vertical (side) input xπ(i) and ki 
outputs;  (Z2)

0 = ∅. 
• π is a permutation of the set {1, 2,…, n} that assigns input variable xπ(i) to the 

i th cell in the cascade, i =1, 2, …, n, 
• k = max [ki ] is a cascade width, 
• n, the cascade length, is the total number of cells. 
 
Cascade cells have up to k horizontal inputs (rails) carrying Boolean values 

between cells and each cell has 1 additional vertical input. As first cells have k0 = 0,  
k1 = 1, k2 = 2, k3 ∈ <1, 3>, k4 ∈ <1, 4>, …horizontal inputs, first t cells such that   
kt = k are typically combined into a single cell [Fig. 3b], so that the cascade length is 



then n − t +1. Cell functions Hi are described by LUTs and the cascade is then 
referred to as the LUT cascade. 
 
Definition 5. A cascade is said to be non-redundant if each input variable used at 
a vertical input enters one and only one cell. Otherwise the cascade is redundant. If 
a reference is made to a cascade, we will assume implicitly a non-redundant cascade. 

3 Construction of LUT Cascades and of Sub-Optimal MTBDDs 

In this section we present a heuristic technique for a sub-optimal LUT cascade 
construction. It is a generalization of the BDD construction by means of iterative 
disjunctive decomposition [Dvořák, 2007b]. The classical Ashenhurst-Curtis decom-
position of Boolean functions works with decomposition tables constructed for 
various partitions of input variables X = (X1, X2). A search for the minimum number of 
distinct columns in the decomposition table (so called column multiplicity) is a 
combinatorial problem with computation time and the memory requirements 
exponential in the number of inputs n. Thus the straightforward implementation of the 
classical method is impractical for functions with many inputs. In our approach we 
use partition |X1| = 1, |X2| = i iteratively (i = n-1, n-2,…,1); in each step an input 
variable is selected in such a way that the width of the cascade is minimized. 
Simultaneously we obtain a MTBDD, which is in fact revealing the internal structure 
of LUTs in terms of decision nodes. 

Before formulation of the algorithm, we prefer to illustrate the synthesis 
technique on the F4 example [Fig. 1]. The integer function z = F4(a, b, c, d) of four 
binary variables is specified by cubes at the top of [Fig. 2]. In the meantime we will 
select the order of variables in advance as d, c, b, a. A single variable (highlighted 
within tables in [Fig. 2]) will be removed from the function in one decomposition 
step. Starting with variable d, we inspect the set of input cubes with value 0 or 1 in 
column d and look for all possible compatible pairs of input cubes e = (e1, e2, e3, 0)  
and e’ = (e’1, e’2, e’3, 1) hiding their values 0 and 1. One cube (...,0) may be 
compatible with several cubes (...,1) and vice versa. These pairs will be referred to as 
binary pairs (b-pairs). 

Next we will identify input cubes with value "-" in column d. From each such 
cube u = (u1, u2, u3, -) we can create a compatible pair u = (u1, u2, u3, 0) and u’ = (u1, 
u2, u3, 1) by substitution 0 and 1 for uncertain value "-". These pairs will be referred to 
as unary pairs (u-pairs) because of their origin from one cube. Remaining cubes of 
two types, q = (q1, q2, q3, 0) or r = (r1, r2, r3, 1), are not compatible between 
themselves and neither with any cube in binary pairs; we will call them orphaned 
input cubes. This is because the compatible cubes q = (q1, q2, q3, 1) or r = (r1, r2, r3, 0) 
map to the DC values and therefore are not listed in the cube table. We can thus 
append each orphaned cube with the identical invisible input cube (denoted "x") with 
the DC output value. We will call these pairs appended pairs (a-pairs). 

In our example in [Fig. 1] we will find 
- only one b-pair, cubes 4&5 
- two u-pairs, cubes 2&2 and 3&3   
- two a-pairs, cubes 0&x, 1&x.  



When we do decomposition of function F4 by removal of variable d,  

                                        F4= H(G(a, b, c), d),                                                 (3) 

we have to intersect all b-, u-, and a-pairs of compatible input cubes u = (u1, u2, u3) 
and v = (v1, v2, v3) in order to obtain  cubes of function G and map them into pairs of 
integer output values [P, Q] as shown below:  
 

  F4:   u = (u1, u2, u3)    F4 (u1, u2, u3, 0) = P 
 F4:  v = (v1, v2, v3)   F4 (v1, v2, v3, 1) = Q                             (4) 
  G:    u * v = z = (z1, z2, z3)    Z : = [P, Q]                                          

Figure 2: Iterative decomposition of an integer function of 4 binary variables 

For example, pair of values [4, 0] will be produced by cubes 4 and 5 in the first table 
in Fig.2; without values of d are these cubes compatible and can be replaced in the 
new table of a residual function G(a, b, c) by a single input cube 111 – their 
intersection. The removed variable d is left empty in all cubes of the following tables. 
A pair of output values [4, 0] from intersection of cubes 4&5 is replaced by a new 
integer id (0), as indicated in the assignment 0 := [4, 0], [Fig. 2].  

Unary pairs of cubes 2&2 and 3&3 produce output pairs of the same values [1, 1] 
and [3, 3] redefined to new identities 1 and 2. Finally input cubes 0 and 1 are 
appended with the same invisible cubes to produce output pairs [0, DC] and [2, DC]. 
Now the DC values must be defined so as not to increase the number of existing 
unique pairs. If merging with one already found unique pair is not possible, like in our 
case, we will use pairs of the same values [0, 0] and [2, 2] and give them new 

a b c d z comp. c d →
0 0 0 0 0 0 cubes LUT4 00 01 10 11
1 0 0 1 0 2 4&5 0:= [4,0] 00 0 0 2 2
2 0 1 0 - 1 2&2 1:= [1,1] ab 01 1 1
3 1 0 - - 3 3&3 2:= [3,3] ↓ 10 3 3 3 3
4 1 1 1 0 4 0&x 3:= [0,0] 11 4 0
5 1 1 1 1 0 1&x 4:= [2,2]

c →
comp. 0 1

0 1 1 1 0 cubes LUT3 00 3 4
1 0 1 0 1 3&4 0:= [3,4] ab 01 1 1
2 1 0 - 2 2&2 1:= [2,2] ↓ 10 2 2
3 0 0 0 3 0&x 2:= [0,0] 11 0 0
4 0 0 1 4 x&1 3:= [1,1]

comp.
0 0 0 0 cubes LUT2 00 0
1 1 0 1 0&3 0:= [0,3] ab 01 3
2 1 1 2 1&2 1:= [1,2] ↓ 10 1
3 0 1 3  11 2

comp.
0 0 0 cubes LUT1 a 0 0
1 1 1 0&1 0:= [0,1] ↓ 1 1



identities 3 and 4; arrows in [Fig.2] show replacement of DC values in the map of F4. 
Sometimes it may be useful to replace all DC values by a special default value that 
will be interpreted as "no _output" or "error". 

Pairs of different output values correspond to a true decision node, whereas pairs 
of the same output values produce degenerate or false decision nodes, because 
variable d in fact does not decide anything. Nodes in the MTBDD are labeled by the 
new identities of output pairs. There is one true node (0) and four false nodes (1, 2, 3 

and 4 shown as black dots) in the lowest level of the MTBDD in [Fig. 3a]. 
By now, we have exhausted all possible pairs of compatible cubes of F4 with d = 

1 and d = 0 and have replaced them by new shorter cubes of the residual function G. 
As a result of the removal of variable d from function F4, each unique pair of function 
values can be assigned an integer id, what becomes one row of the LUT4, [Fig.2]. The 
number of LUT rows must be augmented by dummy rows to the nearest power of 2. 
The same procedure is repeated in the following decomposition steps until all 
variables have been removed. We proceed in a backward direction, from the leaves of 
the MTBDD to its root or from LUT4 to LUT1, [Fig. 3a, 3b]. In the case of LUT 
cascades, it is sufficient to go on with iterative decomposition only until the number 
of remaining variables equals the required number of binary inputs of the 1st LUT. 

The remaining question not addressed as yet is, which variable should be used in 
any given step. We use a heuristic that strives to minimize the LUT cascade width. At 
each step, a variable is selected that generates the minimum number of rows in the 
sought LUT or equivalently the minimum number of decision nodes w (including d 
false nodes) in the sought level of the MTBDD. In the case of a tie, the lowest cost 
criterion is applied: a variable producing the lowest number (w − d) of true decision 
nodes in the current level of the MTBDD is taken. In the case of a tie again, a variable 
is selected randomly. 
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Figure 3: Iterative decomposition of the function from Fig. 3: 
a) MTBDD,  b) a generic LUT cascade, and c) a useful LUT cascade 



The generic LUT cascade [Fig. 3b] can be shortened to two LUTs by combining 
first three LUTs as shown. The "1 out of 5" coding of outputs can be re-coded into a 
dense 3-bit code by a decoder built-in into the last LUT4, decreasing the cost of this 
LUT. Yet another cost-saving measure is a technique known as "intermediate 
outputs". As it is seen in [Fig. 3a], some terminal values (1 and 3) are generated much 
earlier than in the last level of the MTBDD. We can take them out from the first LUT 
cell in [Fig. 3c]. The cost in bits of these three LUT cascades (generic, shortened + 
decoder, intermediate outputs) is 66 : 50 : 56. 

There is another practical reason why we need to reduce the cascade length – 
overall delay and the resulting speed. We can combine several consecutive LUT cells 
easily into one cell to reduce the delay.  The cost in bits of this single cell is of course 
mostly larger than the aggregate cost of combined cells. Combining two cells with the 
same number of inputs x and outputs y does not increase the overall cost only if the 
single cell has one more input as against two original cells: 

 
                                                       2*(y2x) = y2x+1.                                              (5) 

Useful cascades shorter than n will be referred to as reduced cascades. 
At this point it is appropriate to mention the possible shapes of MTBDDs.  From 

the above example, it could be erroneously deducted that a profile of a MTBDD (all 
node count per level from leaves to the root) is always non-increasing. However, the 
profile generally may not be monotonic. We will consider three cases: 

 
1. R = |D| = 2n: the worst case fully specified function, the MTBDD is complete 

binary tree with 2n−1 true nodes; nodes/level drop away by one half from the previous 
level.   

2. R < |D| = 2n: fully specified functions, some function values occur more times. 
3. R ≤ |D| < 2n: incomplete functions (with don´t cares). 
  

Class 2 is in the worst case characterized by a profile increasing to a certain maximum 
and than decreasing towards the root. This is because the first level of the MTBDD 
can contain no more than R2 nodes, as there are at most that many pairs of output 
values. Similarly the following levels cannot have more than R4, R8,… nodes. So the 
up-down profile will culminate at the point where the complete tree growing from the 
root meets the restriction ascending in the opposite way from leaves. 

MTBDDs of incomplete functions (class 3) are limited similarly and, moreover, 
also by cardinality |D| of the function domain: |D| points cannot create more than |D| 
compatible pairs including appended pairs. This makes the MTBDD look like a "table 
mountain" with southern slopes (at leaves) much steeper than northern slopes (at the 
root). The upper bound on the number of decision nodes was found in [Dvořák, 
1997]. 

To aid LUT cascade synthesis, the program tool HIDET (Heuristic Iterative 
Decomposition Tool) has been developed. It implements the algorithm in [Fig. 4] 
(letters S stand for sets, M and L for tables, w for local MTBDD width (the number of 
all nodes) and d for the number of false nodes. The outer loop (12−34) does n steps of 
iterative decomposition whereas the inner loop (16−25) is looking for the best 
variable in each decomposition step. The inner loop tests all available variables of the 
yet-to-be decomposed function: selects a variable (14), initializes the local MTBDD 



cost measures: width w and d (15), creates cube pairs with the actual variable valued 0 
and 1 (b-pairs) or the actual variable uncertain – u-pairs (17), eliminates redundant 
pairs (18) and merges output values of orphaned cubes with existing unique output 
pairs or with itself (19). Then the cost measures w and d are updated (20 - 21) and the 
condition is tested, whether the currently the best variable should be replaced by the 
actual one: if the new local width w is smaller than the current one, it is replaced. If it 
is the same, then the replacement takes place only if there are more false nodes d 
among all w nodes than for the best variable so far (22 – 23). When the loop 
terminates, the best variable is known (26). 

 
 

1. Input:  
2.    Min, the given table of function cubes;   
3.    Sv, the set if input variables     
4.    n = |Sv|,  number of input variables;    
5.   
6. Output: i in 1 to n 
7.    Mi, a cube table of the ith residual function; 
8.    Li,  i

th  LUT counted from the end of a cascade; 
9.    vi, the variable removed in step i ; 
10.  
11. Initialize i ← 1, M0 ← Min; 
12. for i in 1 to n do 
13.    // Determine the best variable // 
14.    vbest ← arbitrary variable from Sv,  
15.    wbest ← size(Mi-1), dbest ← 0; 
16.    for all variables v ∈ Sv do 
17.         Mp ← compatible_pairs(Mi-1, v);           [make b- and u- pairs] 
18.         Sp ← unique_pairs(Mp);           [unique output pairs = LUT rows]  
19.         Sm ← merge_pairs(Sp);           [a-pairs: append one output value ] 
20.         w ← size(Sm);                                        [all nodes, true and false] 
21.         d ← number of pairs of the same values in Sm;         [false nodes] 
22.         if (w < wbest) or ((w == wbest) and (d > dbest))  
23.               then vbest ← v, wbest ← w, dbest ← d; 
24.         endif 
25.    endfor 
26. vi ← vbest;  
27. //  Decompose // 
28. Mp ← compatible_pairs(Mi-1, vi); 
29. Sp ← unique_pairs(Mp); 
30. Sm ← merge_ pairs(Sp); 
31.  Li ← enumerate_pairs(Sm); 
32. Mi ← replace pairs in Mp by new id numbers from Li; 
33. Sv ← Sv \ {vi};  
34. endfor 

Fig.4: The symbolic HEDIT algorithm for iterative decomposition 



 The decomposition is then repeated with the best variable (28 – 30), the output 
pairs are enumerated (31), the function cubes of a residual function are created (32) 
and the best variable is removed from the set (33). A new iteration of the outer loop 
then starts with the residual function short of that variable. 

We have done designs with up to several hundred cubes, the largest LRS8 arbiter 
with 36 inputs and 8 outputs needed 1025 cubes.  The sequential processing time on 
the Pentium-based PC has been for all presented designs between 10 ms (RRA3) and 
1s (LRS6). We could not test the program on a standard benchmark set, because most 
of the benchmark circuits are specified by general fr functions with possible 
compatible input cubes and with non-empty DC set. As yet, the first version of 
HIDET can accept only a restricted class of fr functions as mentioned above; it is not 
difficult to show that the same restriction holds for all residual functions and the use 
of HIDET is thus correct. The next version of HIDET should address a general case 
of fr functions, too. 

4 Arbiter Circuits 

LUT cascades have been applied to many useful digital function modules [Sasao, 
2005a], [Sasao, 2005b], [Sasao, 2006], [Sasao, 2007], [Qin, 2006] and their 
effectiveness and performance has been compared to benchmark circuits [Matsuura, 
2007]. One area not addressed as yet in the context of LUT cascades is arbiter and 
allocator circuits. A traditional design of arbiters is discussed in [Dally, 2003]. Here 
we are going to apply LUT cascades to various arbiters. 

We will synthesize four representative types of arbiters, namely: 
1      Priority encoders with fixed priority 
2 Programmable priority arbiters PPA − an arbiter with, e.g., random priority   or 

Round Robin arbiter (RRA) with rotating priority. 
3 Last Granted Lowest Priority scheme arbiter LGLP. 
4 Matrix arbiter (Least Recently Served scheme, LRS). 

A key property of an arbiter is its fairness. Intuitively, it is ability to provide equal 
service to the different requesters. For the purpose of our case study, we will use two 
concepts of fairness.  

 
Definition 6. A weak fairness means that every request is eventually served. The 
maximum amount of time that a requester will wait is limited by the number of 
requesters. 

 
Definition 7. Strong fairness guarantees, that requesters will be served equally often. 
This means that the number of times requesters are served will differ by less than ε % 
when averaged over a sufficient number of arbitrations.  

4.1 Priority encoders   

The n-input priority encoders (PEn) can serve as the simplest arbiters with fixed 
priority: the input request rn-1 has the highest fixed priority and then the priority 
decreases to the lowest priority level for input r0. Output of the PEn is the address of 
the active request with the highest priority − the winning request. There are  



log2 (n+1)  address bits since the case of no request must not coincide with any 
requester address. Optionally, n explicit grant outputs g0, g1,…, gn-1 can be used 
instead ("1-out-of n" or one-hot coding). The cube specification of the PEn consists of   
n+1cubes, see the example of PE4 in [Fig.5], the number of cubes is reduced by 1 in 
each decomposition step.  

The MTBDD of priority encoders are very simple; they consist of a straight line 
of true decision nodes, one per each input variable (the minimum possible), and each 
node has another outgoing edge to a terminal node. MTBDDs of PEs with address 
outputs have been constructed by HIDET and their parameters are listed in [Table 4].  
 
  

r3 r2 r1 r0  a2 a1 a0  g3 g2 g1 g0 
0 0 0 1  0 0 0  0 0 0 1 
0 0 1 -  0 0 1  0 0 1 0 
0 1 - -  0 1 0  0 1 0 0 
1 - - -  0 1 1  1 0 0 0 
0 0 0 0  1 0 0  0 0 0 0 

 
Fig. 5: Cube specification of Priority Encoder PE4 

 
Priority encoders can be designed effectively using intermediate outputs 

mentioned before. To build a LUT cascade, we can create slices of the MTBDD, each 
slice corresponding to a single LUT.  The LUT cascade has #LUT cells inter-
connected by a single wire, each cell has additional n/#LUT side inputs and  
n/#LUT intermediate outputs, [Fig. 6]. 

 
                         g7 g6 g5                   g4 g3 g2                                     
 
 
                                                                                         g1                                    
                                                                                         g0 
 
 
 
     r7 r6 r5                     r4 r3 r2                                    r1 r0  

 
Fig. 6: The LUT cascade for PE8; n=8, #LUT=3 

 
We can compare the LUT cascade cost (when #LUT divides n) with intermediate 
outputs and a cost of the PLA with address outputs. The latter is measured by the 
number of programmable cross-points and equals to #cubes*(2n+m); n inputs are fed 
into an AND array in the direct as well as in the negated form, m outputs come out of 
an OR array. We have:  
  
PLA cost = #cubes*(2n+m) = (n+1)(2n+m)   
LUT cascade cost = #LUT*2n/#LUT + 1(n/#LUT + 1) −2n/#LUT (n/#LUT + 1) − 2n/#LUT + 1 



 
The LUT cascade cost contains two negative terms taking into account one missing 
input in the first cell and one missing output in the last cell. Even 
though asymptotically PLA cost << LUT cascade cost, for designs useful in practice   
the relation is opposite: 
 
1. n = 8, #LUT = 4:   PLA cost =  9*(16 + 4) = 180,  cascade cost = 96 − 20 = 76 
2. n =16, #LUT = 4: PLA cost = 17*(32 + 5) = 629, cascade cost = 640 −112= 528. 
 
Larger designs would be composed of PEs of smaller size anyway, e.g. PE32 would 
be designed more efficiently as a hierarchy of four PE8 and one PE4, [Tab. 5]. 

For PEs it holds true that according to a subset of active requests, only a single 
grant output corresponding to the highest priority request in this subset is asserted. 
The usefulness of PEs as arbiters is in practice limited because PE is not fair, not even 
in the weak sense. If one request is continuously asserted, none of other requests will 
ever be served.  There is no limit to how long a lower priority request may need to 
wait until it receives a grant. 

4.2 A Programmable Priority Arbiter (PPA) 

To improve a degree of fairness, priority of input requests must be updated 
dynamically. The n-bit pointer or priority register is maintained which points to the 
requester who is next. A single 1 in this ring register (one-hot encoding) points to the 
requester i, currently with the highest priority; the priority of the other inputs   

  j mod n,  j = i −1, i − 2, …, i − (n−1) 

decreases and is at the lowest level for the input i−n+1 = (i+1) mod n. By updating the 
position of 1 in the pointer register, we obtain a Programmable Priority Arbiter, PPA. 
Taking into account bits p0−p3 of the pointer register, we have the following 
conditions for asserting grant signals (n = 4): 
 

g3 = p3r3 + p2!r2!r1!r0r3 + p1!r1!r0r3 + p0!r0r3   
g2 = p2r2 + p1!r1!r0!r3r2 + p0!r0!r3r2 + p3!r3r2  
g1 = p1r1 + p0!r0!r3!r2r1 + p3!r3!r2r1 + p2!r2r1  
g0 = p0r0 + p3!r3!r2!r1r0 + p2!r2!r1r0  + p1!r1r0. 
 

For example, if the requester 3 pointed to is active (r3 = 1), it gets the grant (g3 = p3r3 
= 1). If not, the next active requester 2 gets the grant (g2 = p3!r3r2 = 1); if requester 2 
is not active either, requester 1 gets the grant (g1= p3!r3!r2r1) or the last requester 0 if 
it is the only active requester (g0 = p3!r3!r2!r1r0). The MTBDD for this arbiter 
obtained by HIDET is shown in [Fig. 7a], and the LUT cascades in [Fig. 7b, 7c]. 
HIDET also generated decompositions of similar arbiters with 6, 8 and 12 inputs, 
[Tab. 4].  

There are several strategies how to program (update) the priority register of the 
PPA.  Beside random generation of a one-hot priority vector there are three other 
basic methods for updating the priority vector: 



1. After asserting a grant, rotate the priority vector one bit in the direction of 
decreasing priority (rotating Round Robin Arbiter, RRA). 

2. After asserting a grant, move the 1 to the requester after the one that just 
received the grant (Last Granted Lowest Priority scheme, LGLP). 

3. After asserting a grant, move the 1 to the first active requester after the 
one that   just received the grant. 

While a random generation of a one-hot priority vector offers only a small 
improvement in fairness with respect to the fixed priority arbiter, the first method is 
slightly better; it is considered weakly fair though, because if only a subset of inputs 
is active, some requests get satisfied more often than others. For example, if only 
requesters 3 and 0 in our 4-input RRA are active, and the pointer register points at 
requester 3, requester 3 will be allowed access (g3 = p3r3 = 1) and then requester 0 
will receive three grants in a row (g0 = p2!r2!r1!r0 = 1,  g0 = p1!r1 r0 = 1, g0 = p0r0 =1). 
(Two requesters r2 and r1 did not use their turn with the highest priority moving in a 
cycle 3 → 2 → 1→ 0 → 3).    
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Figure 7: A MTBDD and LUT cascades for the 4-input programmable priority 

arbiter: a) MTBDD, b) 4- and 5- input LUTs, c) 5- input LUTs, a pipelined version. 
 

This problem is fixed in the second method. The LGLP arbiter is almost strongly 
fair. Here the priority vector gets modified on the basis of the just produced grant: the 
Last Granted requester gets the Lowest Priority. An FSM implementation of the 
LGLP, that responds in one clock cycle and enables use of a resource for arbitrary 
number of clock cycles, will be presented below.  

Finally, method three provides a strongly fair arbiter by considering only active 
requesters. Continuing with the above example of the 4-input RRA, when the grant is 



given to requester 3, method three will update the pointer register to point at the next 
active requester 2. After servicing requester 2, pointer register will point back at 
requester 3, if it remains active, etc. The kind of arbiter operating according to method 
three can be implemented with two RRAs working in parallel [Weber, 2001]. 

LUT cascades can be used for pipelined implementation of RR arbiters and for 
non-pipelined implementation of other types. For a pipelined implementation of the 
RRA, it is sufficient to complete the LUT cascade with pipeline registers between 
LUTs. Variables used at vertical cell inputs must also be pipelined as shown at 
[Fig. 7c]. The performance of the pipeline under the continuous stream of input 
vectors is then determined by a single LUT delay. One arbitration decision comes out 
every clock cycle. 

4.3 The LGLP Arbiter 

We will design the LGLP arbiter as a Moore type sequential state machine that 
responds to a request in one clock cycle and assigns the resource to a requester for 
one or more cycles. It has n inputs that each represents a request line, 2n states S0, S1, 
…, S2n-1 and n grant outputs. Even-numbered states monitor request inputs and odd-
numbered states generate grant outputs (one grant per state). The pointer register that 
determines priorities of inputs is updated after servicing a request by cyclic shift in 
such a way that the request just satisfied gets the lowest priority. It may, but need not, 
stay active for the next arbitration. 

Let us consider a 4-input LGLP arbiter with 8 states. Priorities of request inputs   
in various even-numbered states (the highest priority requests are in bold) and grant 
signals generated in the odd-numbered states are: 

 
S0: r3 r2 r1 r0  S1: g3 
S2: r2 r1 r0 r3  S3: g2 
S4: r1 r0 r3 r2  S5: g1 
S6: r0 r3 r2 r1  S7: g0 

 
For example, in state S0, requester 3 has the highest priority and requester 0 the lowest 
one. If the requester 3 is active, the state of the LGLP moves from S0 into S1 and grant 
g3 is asserted. If requester 3 is not active, the first active requester from 2, 1 or 0 (in 
this order) will produce the state change into S3, S5 or S7 and will get the grant g2, g1 
or g0 only once, unlike to the RRA behavior. State transitions for even-numbered 
states are thus easy to specify; e.g. for state S0 we have: 

 
old state s2s1s0  r3 r2 r1 r0  new state s2s1s0 

000 (S0)  1 x x x  001(S1) 
000 (S0)  0 1 x x  011(S3) 
000 (S0)  0 0 1 x  101(S5) 
000 (S0)  0 0 0 1  111(S7) 

 
An odd-numbered state S2i+1, i = 0−3, issuing the grant, transits to the next even-
numbered state S(2i+2)mod 2n as soon as the request terminates (goes low). 

Function tables of LGLP arbiters have been generated automatically for 3, 4, 6, 8 
and 12 request inputs and decomposed as before. [Fig.8a] shows for example the LUT 



cascade implementation with 4 LUTs obtained by HIDET. The state register clock 
cycle is dominantly determined by the delay of 4 LUTcells. If we combine two 
adjacent cells together [Fig. 8b], we can almost double the speed, provided that the 
delay of 4-input and 5-input cells is the same. The last cell in both cascades only 
transforms the state code (s2s1s0) of odd-numbered states into grant signals g1 to g4. 
For comparison, VHDL synthesis tool for Xilinx FPGA generates this arbiter with 17 
4-input LUTs in 4 logic levels. 

4.4 The Matrix Arbiter with the Least Recently Serviced (LRS) Strategy 

The LRS strategy cannot be implemented by a dynamically changing priority vector 
only; it has to use priority matrix P, where pik = 1 means that the i th request has 
priority over the kth request. The just asserted grant output gj resets the j th row of P to 
all zeros and sets the j th column of P to all ones. Thus the request r j will have priority 
over no other requests and all requests will have priority over r j. 
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Figure 8: LUT cascade implementation of the 4-input LGLP arbiter. 
a) 4-input LUTs b) 5-input LUTs 

The priority matrix P initialized and updated according to above rules is anti-
symmetric: elements pik under the main diagonal are complements of elements pki 
above it. It is therefore sufficient to store only elements of P above the main diagonal. 
For n requests we will thus need (n2 – n)/2 state variables (one half of all non-
diagonal elements). 

As an example, we will use arbiter LRS4 that is implemented in matrix form in 
[Dally, 2003]. It has 6 state variables s5, s4, s3, s2, s1, s0 and 4 request inputs r3, r2, r1, 
r0. We will let the LUT cascade generate 4 grant outputs g3, g2, g1, g0, which will be 
then used to reset and set selectively 6 state flip-flops. This time we will implement 



the LRS4 arbiter in firmware. We have used again the HIDET tool to decompose 
function LRS4: (Z2)

10 → Z4. The result is shown as the MTBDD at [Fig. 9]. 
Evaluation of Boolean functions at the firmware level can use the MTBDD split 

into 3 blocks [Fig. 9]. By making use of a hardware micro-engine with a support for 
multi-way branching, we can speed up evaluation of Boolean functions with respect 
to a general purpose CPU core. A suitable architecture of a micro-engine, a modified 
version of the one in [Dvořák, 2007a], is depicted in [Fig. 10]. The micro-instruction 
format (µIF) determines the way of selecting the address of the next microinstruction. 

Out of all microinstructions formats supported by the micro-engine architecture, 
two formats are essential for fast evaluation of multiple-output Boolean functions: 
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Figure 9: MTBDD of the 4-input LRS arbiter. 

1. the jump to an address specified in micro-instruction modified by BCU;  

 Ln: exit Lm@x1...xk; 

2. a conditional output (on state transition) and the jump to an address specified in 
micro-instruction (no modification), 

   Ln: c_output exit Lm. 



The first format provides support for multi-way branching. It is the jump to the 
target address obtained from the address specified in the micro-instruction and 
modified by up to 4 external variables at a time, including 0 variable (no 
modification), by means of 16-way Branch Control Unit (BCU). Input variables are 
selected by multiplexers, so that a microinstruction contains MXs control field and a 
BCU mask. 

The task of the BCU (such as Am 29803A) is to shift active inputs, selected by a 
4-bit mask, to the lowest positions of the 4-bit BCU output vector. The BCU output 
vector is then wire-ORed with the address obtained from the microinstruction. This 
way we can store dispatch tables in compact form in control memory. Replacement of 
up to 4 bits in the address is denoted by operator “@”. If wired-OR is used for 
replacement, the bits being replaced must be reset to 0. 
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Figure 10: Micro-programmed controller architecture with multi-way branching 

 

LRS: exit L1@s5s1 
L1@00: exit L2@s4s0s3r2 
L1@01: exit L2@s4s0s3r2 
L1@10: exit L3@s4s0s3r2 
L1@11: exit L4@s0s3r2 
L2@0000: exit L5@s2r0 
L2@0001: exit L5@s2r0 
L2@0010: exit L6@s2r0 
... 
...  
L8@1110: g0 exit Next 
L8@1111: g0 exit Next 
Next: 

  

Figure 11: A symbolic micro-program for the LRS4 arbiter 



If there are more than 4 external variables, we traverse a MTBDD in several steps 
testing up to 4 variables at a time. We will illustrate rewriting a MTBDD at [Fig. 9] 
into the micro-program with multi-way branching. The symbolic micro-program 
targeted for the micro-engine in [Fig. 10] is shown in [Fig. 11]. The micro-program is 
composed of 8 dispatch tables starting at symbolic addresses L1 to L8, [Fig. 9]. The 
size of dispatch tables varies according to false nodes on the path from the block 
inputs down to the block outputs. There will be three dispatch table of size 4 (L1, L5, 
L6), two of size 8 (L4, L7) and 3 of size 16 (L2, L3, L8). The total number of micro-
instructions is thus 

 3×4 + 2×8 + 3×16 = 76 

and an arbitration decision is produced after execution of four microinstructions. The 
state of the arbiter is kept in 6 R-S flip-flops and these flip-flops are selectively set 
and reset by signals gi according to the rules for updating matrix P: 

R0 = R1 = R2 = g0,  R3 = R4 = g1,  R5 = g2, 
S0 = g1,  S1 = S3 = g2,  S2 = S4 = S5 = g3. 

Out of 6 state variables and 4 input requests up to 4 signal lines are selected by 4 
multiplexers, fed into BCU and used in the least significant positions for address 
modification, as shown in [Fig. 10]. 

Had we used only single variable tests (a binary program with 2-way branching), 
we would need 16 dispatch tables of size 2, i.e. 32 microinstructions in total. 
However, the performance would be almost 3-times lower due to serial execution of 
11 microinstructions, one in each level of the MTBDD. 

5 Allocators 

An m × n allocator is a unit that accepts m requests on its inputs for n distinct 
resources and generates grants on its outputs. It is therefore more general than an 
arbiter that makes decision regarding only a single resource. Any particular problem 
and its solution can be represented in terms of two binary-valued m × n matrices, a 
request matrix R and a grant matrix G. One requester may ask one or more resources, 
but 
1. at most one grant for each input (requester) may be asserted; 
2. also, at most one grant for each output  (resource) can be asserted. 

By means of a bipartite graph representation, the allocation can be formulated as 
bipartite matching problem and solved exactly, yielding the maximum possible 
number of assignments (maximum matching). Maximal matchings are those where no 
additional requests can be serviced without removing one of the existing grants. 

As the exact solution of the allocation problem is too time consuming, we usually 
put up with approximate solution in hardware. So called requesters-first separable 
allocators use a set of priority encoders to select one resource per requester and then  
priority encoders in the second set to solve simultaneous requests for the same 
resource. Resources-first separable allocators do these decisions in the opposite order. 
Some allocators (PIM, iSLIP) reach a decision in several iterations. 



Separable allocators can easily be constructed from PPAs or other arbiters. The 
example of 4 × 3 resources-first allocator is in [Fig. 12]. There are four requesters and 
3 resources. The first index denotes a requester, the second index is the id of 
a resource. For simplicity, priority inputs are omitted in [Fig. 12]. 
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Figure 12: 4 × 3 resources-first allocator 

Next we will design an n × n wavefront allocator (WFA) that arbitrates among 
requests for inputs and outputs simultaneously, [Fig. 13]. 

• It works by granting row and column tokens to a diagonal group of cells, in 
effect giving this group priority. 

• A diagonal group k contains cells xij such that  

 (i + j) mod n = k. 

• Example [Fig. 13]: Let the priority be given at the start to a diagonal group 
(i + j) mod 4 = 3. This is done by asserting signal p3. Element 21 gets the 
grant, remaining elements send tokens down and to the right. 

• An element will get a grant if it received both row and column tokens. If 
only one token comes or if the element has no request, tokens will pass 
through it. In the example, highlighted grants g21, g00, g32 will be issued in 
response to 8 active requests shown. 

• In the next round, the following diagonal group is selected. This ensures 
fairness of allocations. 

For example grant g00 is asserted under the following conditions: 

g00  =   (p0!p1!p2!p3r00) + 
         + (!p0 !p1!p2p3r00!r03!r30) + 
         + (!p0!p1p2!p3r00!r02!r03!r20!r30) + 
         + (!p0p1!p2!p3r00!r01!r02!r03!r10!r20!r30); 



similar equations can be written for remaining 15 grant signals, 16 Boolean functions 
of 20 variables in total. Let us note that typically functions gix do not depend on 2-3 
input variables. 

To simplify the problem, the iterative decomposition has been done on four 
groups of outputs g0x  − g3x. Output grouping has been used already in [Matsuura, 
2007], where the problem of optimum grouping has been analyzed and a solution 
suggested. In our case grants related to one requester are defined by incompatible 
cubes and, due to restrictions in the present version of HIDET, have been naturally 
included in a single group.  
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Figure 13: 4 × 4 wavefront allocator 

The PLA-matrix description of four grants g0x is shown in [Tab. 3]. From the 
number of uncertain values in 16 cubes we can figure out that the function has 67% of 
don’t care values. The generic iterative decomposition using HIDET tool gave us the 
following optimal (in terms of our heuristics) ordering of variables:  

p0, r00, p1, p2, p3, r01, r02, r11, r12, r13, r10, r20, r03, 
r21, r22, r23, r30, r31, r33, r32. 

In each decomposition step we obtained the number of true and false decision nodes 
in the current level of the MTBDD and the size of the associated LUT. By combining 
adjacent generic LUTs together one can create larger LUTs as shown in [Fig. 14]. 

6 Experimental results 

We have generated function tables of many instances of four types of arbiters and two 
WF allocators automatically by means of small routines in C which enable scaling to 
the desired size. The example of the resulting PLA matrix description is shown at 
[Tab. 3]. The number of inputs, outputs and generated cubes in selected designs and 



processed later by the HIDET tool are given in first three columns of [Tab. 4]. 
Iterative decomposition of this class of functions was a matter of seconds on the 
Pentium-powered PC.  The  sample  results  for  RRA,  LGLP  and  LRS  arbiters  and 
WFA allocators are summarized in [Tab. 4], namely MTBDD nodes, PLA cost and   
cost of LUTs in generic cascades. 
  
.i 20   
.o 4 
.ilb p0 p1 p2 p3 r00 r01 r02 r03 r10 r11 r12 r13 r20 r21 r22 r23 
r30 r31 r32 r33 
.ob g00 g01 g02 g03 
.type fr 
.p 16 
10001--------------- 1000 
00011--0--------0--- 1000 
00101-00----0---0--- 1000 
010010000---0---0--- 1000 
0100-1-------------- 0100 
100001-----------0-- 0100 
000101-0-----0---0-- 0100 
00100100-0---0---0-- 0100 
0010--1------------- 0010 
0100-01-----------0- 0010 
1000001-------0---0- 0010 
00010010--0---0---0- 0010 
0001---1------------ 0001 
0010--01-----------0 0001 
0100-001-------0---0 0001 
10000001---0---0---0 0001 
.e 
 
Table 3: Sample cube specification of the 4 × 4 wavefront allocator, group g00− g03 
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Fig. 14.  The wavefront allocator -  shortened cascades for group g0x with 6-, 7-, 
and 8-input cells (p0 ≡ 0, …, r33 ≡ 19) 



The last column of [Tab. 4] shows how PLA cost1 (in crosspoints) compares to 
the generic cascade cost2 (in bits). If we take one crosspoint in a PLA (1 gate) as 
expensive as 1 bit in a LUT (one storage cell), we find that cost of generic cascades is 
always less than that of PLA, including PEs with intermediate outputs. It seems that 
the only expensive designs are allocators, because PLA cost1< LUT cascade 
cost2. To get better results for allocators, we can decompose the problem in a better 
way than how it was done with partitioning outputs into groups. The wavefront 
allocator is in fact a 2D-RRA arbiter (requesters and resources are two dimensions) 
and instead of doing both dimensions simultaneously, we can do one after 
another: one request is selected in each row and then all selected requests for the same 
resource are arbitrated again. Thus the same scheme as in Fig.12 can be used for wf4 
with 4 + 4 four-input RRA arbiters in LUT-cascade form; this variant is denoted as 
wf4+. Priority inputs are rotated one bit from every arbiter to the next one, in both 
groups. The cost2 of this solution is 8-times the cost1 of RRA4. It turns out that it is 
less than cost of a single PLA for wf4+, see column cost1 in [Tab.4].) Similar 
conclusions hold true for wf3 and wf3+, too; allocator wf3+ is composed of 3 + 3 
three-input RRA arbiters.  

[Tab. 5] summarizes the results for FPGA designs and reduced LUT cascades. 
We have converted PLA specification into VHDL (by means of PLA → VHDL 
converter  ver.1.02 from Warsaw Military University of Technology) and used Xilinx 
FPGA synthesis tool to obtain designs based on 4-input, single output LUTs. 
Examples given under reduced LUT cascades are selected in such a way that LUTs 
are as much uniform in size as possible. LUT inputs, outputs and maximum width 
enable complete reconstruction of cascades. The number of LUTs and their capacity 
in bits are given in last two columns of [Tab. 5].  

Generally, LUT cascades require larger aggregate bit capacity of LUTs than 4-
input LUTs in FPGA design because of their coarser granularity, but this may be 
compensated by much lower wiring area of cascaded LUT cells. If we take the delay 
of FPGA’s 4-input LUTs plus wiring delay approximately equal to cascaded LUTs’ 
delay, we can compare logic levels of FPGA with cascade length (#LUTs). This way, 
it comes out from [Tab. 5] that we should be able to get the same or better 
performance with reduced LUT cascades. Of course, in the case of wf3+ and wf4+ the 
delay given by the number of LUTs between inputs and outputs differs from the total 
number of LUTs. Both the values are separated by the slash  "/", see [Tab. 5].  

7 Conclusions 

The presented method of MTBDD/LUT cascade synthesis of multiple-output Boolean 
functions aided by the HIDET tool proved to be suitable for synthesis of 
combinational and sequential designs. The experimental results show that LUT 
cascades offer smaller number of logic levels than FPGA and smaller or comparable  
chip area than PLA (provided that a programmable cross-point  and a bit of RAM 
occupy the same area). The method is applicable to incompletely specified, multiple-
output integer functions of Boolean variables and was illustrated on the class of 
arbiter and allocator networks. A delay  from  input requests to an arbitration decision 
 



 

         MTBDD nodes PLA    LUT     
 n m #cub all   false true   cost1 cost2 cost2/  
    Σw Σd cost x-points bits cost1 
RRA3 6 3 10 20 10 10 150 146 0,97 
RRA4 8 4 17 37 20 17 340 258 0,76 
RRA6 12 6 37 91 51 40 1110 914 0,82 
RRA8 16 8 65 179 105 75 2600 2338 0,90 
RRA12 24 12 145 489 300 189 8700 8418 0,97 
LGLP3 6 3 18 30 10 20 270 242 0,90 
LGLP4 7 3 28 48 18 30 476 450 0,95 
LGLP6 10 4 54 101 41 60 1296 1218 0,94 
LGLP8 12 4 88 153 78 75 2464 1778 0,72 
LRS3 6 3 13 18 8 10 195 114 0,58 
LRS4 10 4 33 39 22 17 792 282 0,36 
LRS6 21 6 193 111 78 33 9264 986 0,11 

WF3 g0x 10 3 10 45 28 17 230 274 1,19 

WF3 g1x 11 3 10 45 26 19 250 306 1,22 

WF3 g2x 10 3 10 45 28 17 230 274 1,19 

WF4 g0x 19 4 16 109 74 35 714 978 1,37 

WF4 g1x 19 4 17 108 67 41 714 866 1,21 

WF4 g2x 18 4 17 102 63 39 680 546 0,80 
WF4 g3x 19 4 17 117 79 38 714 978 1,37 
PE4 4 3 5 4 0 4 55 24 0,44 
PE8 8 4 9 8 0 8 180 56 0,31 
PE12 12 5 13 12 0 12 377 88 0,23 
PE16 16 5 17 16 0 16 629 120 0,19 
PE32 32 6 33 32 0 32 2310 248 0,11 
WF3+ 12 9 30 not  looked for 990 864 0,87 
WF4+ 20 16 68 not   looked for 3808 2048 0,54 

          
1. PEs are implemented with intermediate outputs, PE32 as 4 x PE8 + 1x PE4 
2. WF3+ and WF4+ are implemented as 6 x RRA3 and 8 x RRA4  
3. LUTcost2 in bits is the aggregated capacity of LUTs in generic cascades 

Table 4: Properties of MTBDDs, PLAs and generic LUT cascade design 

 



is given by the adjustable number of LUTs in the cascade and has been chosen less or 
comparable to FPGA logic levels. If the high-speed arbitration is required on a stream 
of input vectors, pipelining can be used.  Arbitration results will then follow one after 
another separated by a single LUT delayThe effectiveness of LUT cascades has been 
proved in terms of the relative size of a PLA and the aggregate bit capacity of all 
LUTs in a cascade. Arbiters, as well as other digital  systems  frequently  used  in 
practice,  have  relatively  low  complexity,  

 

 Reduced LUT cascades 
 FPGA 
 #4-LUT levels 

cell  
inputs 

cell  
outputs 

max. 
width 

#LUTs Σbits 

RRA3 9 2 5,4 3,3  3 2 144 
RRA4 14 4 5,5,4 3,3,4  3  3  256 
RRA6 29 5 6,6,6,5 3,4,4,6 4 4  896 
RRA8 43 7 4×7,5 3,5,5,4,8 5 5  2432 
RRA12 82 12 6×8,7 4,4,3×6,5,12 6 7  9472 
LGLP3 10 3 4,5 3,3 4 2  144 
LGLP4 17 4 5,5,5 4,4,3 4 3  352 
LGLP6 48 6 6,6,6,6 4,5,5,4 5 4  1152 
LGLP8 70 9 7,7,7 4,5,4 5 3  1664 
LRS3 6 2 4,4 2,3 3  2  80 
LRS4 8 2 6,6 2,4 3 2  384 
LRS6 24 3 9,9,9 3,3,6 4 3  6144 
WF3 g0x 9 3 5,5,5 2,3,3 3 3  256 
WF4 g0x 24 4 6,7,7,7 3,4,3,4 4 4  1600 
WF3+ 54 4 3×RRA3 +3×RRA3 3 4/Σ12 864 
WF4+ 112 8 4×RRA4 +4×RRA4 3 6/Σ24 2048 
PE4 3 1 2,3 3,2 1 1 48 
PE8 8 2 3,4,3 4,4,2 1 3 112 
PE12 15 4 4,5,5 5,5,4 1 3 368 
PE16 20 5 4,5,5,5 5,5,5,4 1 4 528 
PE32 40 10 4×PE8 +1×PE4 1 4/Σ13 476 

Column #LUTs gives #LUTs from input to output /total number of LUTs 

Table 5:   FPGA designs and the reduced LUT cascade implementations  

 
which makes their cost-effective cascade implementations possible. Beside easy 
interconnection there are other advantages of cascade implementation. Testing of 
LUT cascades reduces to a problem of testing RAM modules. Fault tolerance 
techniques for memories are thus also applicable for LUTs. Due to a highly developed 
memory technology the power consumption is very low for RAMs and it only 
remains to verify experimentally real power savings for specific applications. 

Future research will address more general multiple-output Boolean functions 
specified by the Espresso fr type – those with overlapping input cubes and with 



ternary output cubes as in [Table 1]. That will make possible to compare the quality 
of our variable ordering heuristic with other heuristic methods [Yanushkevich, 2006], 
[Drechsler, 1998]. A redundant (non-disjunctive) decomposition or multi-variable 
decomposition in a single step are also of interest and could provide appropriate 
design techniques for new classes of functions. At present, the MTBDDs constructed 
by the presented technique are being applied to optimization of digital control 
firmware and software  

Acknowledgements 

This research has been carried out under the financial support of the research grants 
“Natural Computing on Unconventional Platforms”, GP103/10/1517, “Safety and 
security of networked embedded system applications”, GA102/08/1429,  
 "Mathematical and Engineering Approaches to Developing Reliable and Secure 
Concurrent and Distributed Computer Systems" GA 102/09/H042  , all  care of Grant 
Agency of Czech Republic,  and “Security-Oriented Research in Information 
Technology”, MSM 0021630528.   

References 

[Bryant, 1991] Bryant, R. E.: “On the complexity of VLSI implementations and graph 
representations of Boolean functions with applications to integer multiplication”; IEEE 
Transactions on Computers, 40, (1991), 205–213,. 

[Brzozowski, 1997] Brzozowski, J. A., Luba, T.: “Decomposition of Boolean Functions 
Specified by Cubes”; Res. report CS-97-01, University of Waterloo, Canada (1997). 

[Dally, 2003] Dally, W. J., Towles, B.: “Principles and Practices of Interconnection Networks”. 
Morgan Kaufmann Publishers / Elsevier, San Francisco (2003). 

[Drechsler, 1998] Drechsler,R., Becker, B.: “Binary Decision Diagrams - Theory and 
Imoplementation”. Kluwer Academic Publishers, Boston (1998). 

[Dvořák, 2007a] Dvořák, V.: “LUT Cascade-Based Architectures for High Productivity 
Embedded Systems”; International Review on Computers and Software, 2, 4 (2007), 357–365.   

[Dvořák, 2007b] Dvořák, V.: “Efficient Evaluation of Multiple-Output Boolean Functions in 
Embedded Software or Firmware”; Journal of Software, 2, 5 (2007), 52–63. 

[Dvořák, 1997] Dvořák, V.: “Bounds on the Size of Decision Diagrams”. J.UCS (Journal of 
Universal Computer Science), 3,1 (1997), 2 - 22. 

[Matsuura, 2007] Matsuura, M., Sasao, T.: “BDD representation for incompletely specified 
multiple-output logic functions and its application to the design of LUT cascades”;   IEICE 
Transaction on Fundamentals of Electronics, Communications and Computer Sciences,  E90-A, 
12, (2007), 2770–2777. 

[Nakamura, 2005] Nakamura, K., Sasao, T., Matsuura, M., Tanaka, K., Yoshizumi, K., Qin, H., 
Iguchi, Y.: “Programmable logic device with an 8-stage cascade of 64K-bit asynchronous 
SRAMs”; Cool Chips VIII, IEEE Symposium on Low-Power and High-Speed Chips, IEEE 
Press (2005). 



[Nagayama, 2005] S. Nagayama, A. Mishchenko, T. Sasao, and Jon T. Butler, "Exact and 
heuristic minimization of the average path length in decision diagrams"; Journal of Multiple-
Valued Logic and Soft Computing, 11, 5-6, (2005), 437-465. 

[Qin, 2006] H. Qin and T. Sasao, "Design of address generators using multiple LUT cascade on 
FPGA"; Proc. SASIMI Workshop, (2006), 146-152. 

[Sasao, 2005a] T. Sasao,"Radix converters: Complexity and implementation by LUT 
cascades"; Proc. ISMVL (2005), 256-263  

[Sasao, 2005b] T. Sasao, Y. Iguchi, T. Suzuki, "On LUT cascade realizations of FIR filters"; 
DSD 2005 (8th Euromicro Conference on Digital System Design: Architectures, Methods and 
Tools), 2005, 467-474. 

[Sasao, 2006] T. Sasao and J. T. Butler, "Implementation of multiple-valued CAM functions by 
LUT cascades"; Proc. ISMVL (2006); also available in electronic version at http://www.lsi-
cad.com/sasao/Papers/pub2006.html 

[Sasao, 2007] T. Sasao, S. Nagayama and J. T. Butler, "Numerical function generators using 
LUT cascades"; IEEE Transactions on Computers, 56, 6 (2007), 826-838. 

[Uni. Hamburg, 2006] http://tams-www.informatik.uni-hamburg.de/applets/ 

[Weber, 2001] M. Weber: “Arbiters: Design Ideas and Coding Styles”; Proc. of the SNUG 
2001 (Synopsis User Group Conference), Boston, USA (2001), 1-22. 

[Yanushkevich, 2006] Yanushkevich, S. N., Miller, D. M., Shmerko, V.P., Stankovic, R. S.: 
“Decision Diagram Techniques for Micro- and Nanoelectric Design. CRC Press, Taylor & 
Francis Group, Boca Raton, FL (2006). 

[Yoeli, 1970] Yoeli, M.: “The Synthesis of Multivalued Cellular Cascades”; IEEE Trans. 
On Computers, C-9 (1970), 1089–1090.  

 

 


