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Department of Intelligent Systems

Prof. Alexander Meduna
Department of Information Systems

Prof. Lukáš Sekanina
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Preface

Computational development rerpesents an extensive subset of the evolutionary
design area. In general, the development is intended as an additional mecha-
nism of evolutionary algorithm attempting to overcome the problem of scale
that represent a crucial issue during the evolutionary design. Many models
and techniques have been introduced so far, including their applications in
various fields.

This book introduces a new class of developmental methods called an
instruction-based development. The key feature is the evolution of application-
specific programs, consisting of simple instructions, which is similar to the lin-
ear genetic programming approach. The concept of programs, in fact, enables
to establish an universal computational model depending on the instruction
set involved, interpretation and way of execution of the instructions. The pro-
gram, represented as a sequence of instructions, can thus specify an arbitrary
algorithm which is understood as a prescription for the development (con-
struction) of a target object.

The objective of this work is to apply the instruction-based development
to design generic structures. Combinational circuits have been chosen as suit-
able domain to demonstrate the capabilities of this approach. Experiments
have been conducted, Two different approaches to the instruction-based de-
velopment have been introduced.

The first approach has been called a continual development. The target
circuit can grow from an initial solution theoretically infinitely, preserving
a desired function all the time during the development. A case study of the
continual development is presented in the domain of the evolutionary design
of generic sorting networks. It has been shown that the evolution is able to dis-
cover innovative solutions which exhibit better parameters in comparison with
a conventional principle. The general properties of the best result have been
demonstrated formally. Moreover, evolution of generic polymorphic circuits
has been presented using the continual development approach.

The second approach represents a parametric development. In this case the
target circuit is developed every time from the start, while the size of its target
instance is specified by a parameter. An external information, that we called
an environment, has been introduced into the developmental system in order
to develop generic structures containing irregular parts. The experiments have
been conducted in the area of the evolutionary design of generic combinational
multipliers. Two variants of a parametric developmental system have been
presented. The first one represents an initial experiment of the evolution of
common generic multipliers using the development, whilst the second one is
intended to design effective generic carry-save multipliers.

In general, we have introduced an extensive set of experiments demonstrat-
ing the capability of the proposed concepts of instruction-based development
to design various generic structures, including a discovery of some new general
innovative solutions.
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Introduction

From the very beginning of life on the Earth, a huge variety of living forms
emerged including both vegetation and animal. However, none of them was
born in a moment equipped fully with all appropriate capabilities. They are
a result of a biological tool called the development (ontogeny), representing
a process so complicated that even the modern science utilizing the recent
knowledges and front-end devices is not able to provide in some cases a reli-
able answer to all the question of origins or principles of its functioning. But
before the evolution could create such a different range of life, it created the
process of development which is liable for creating every species of life on this
planet. The development is in fact the process of construction that is based on
the genes, proteins, cells and the environment that affect each other in order
to create a living organism [S. 03]. In nature the environment influences sig-
nificantly the developmental process. Therefore, different organisms can arise
that are adapted to the specific conditions (e.g. temperature, air pressure,
sun shine etc.). The organisms possess different properties living in a desert
or in polar areas, possibly in a river or in a deepness of the ocean. There is
a big difference of temperature, pressure or light among these environments
and the adaptation of the living organisms is crucial for their surviving. The
fundamental principles and properties of the biological development represent
the main inspiration for a specific biologically inspired technique in the area
of the computer science — computational development — which represents
the main topic of this book.

1.1 Computational development

In fact, the term computational development, which was originally introduced
in [Kum04], represents a set of techniques inspired by the biological develop-
ment. In the area of the evolutionary algorithms, these techniques are inter-
preted as the prescriptions transforming the genotypes to the phenotypes.
While the genotypes (also called chromosomes or genomes in the parlance of
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evolutionary computing) represent directly the candidate solutions, in case
of the traditional evolutionary design, the developmental approaches inter-
pret a genotype as a prescription for the construction of the candidate solu-
tion (a phenotype). As evident, the process of the construction is crucial for
both the biological and computational development. Since the construction of
a candidate solution from the genotype using the computational development
is performed indirectly by means of the prescription stored in the genotype
and the knowledges included into the evolutionary system, the techniques of
the computational development is usually denoted as a generative represen-
tation or generative mapping from the genotypes to the phenotypes. In the
next sections the term development will always denote the computational de-
velopment, if not explicitly specified. Note that some literature use the terms
computational embryology or embryogenesis that pose the same as the devel-
opment.

The presence of many approaches of the genotype–phenotype mapping
arises a question of what can be considered as the developmental mapping
and what can be not. To clarify this problem, let us compare the properties of
the direct and generative encodings in more detail. The direct representation
of the candidate solutions utilizes a complete knowledge of its structure, i.e.
the set of the building blocks and their interconnection. If the phenotype con-
tains repeated structures, they are encoded by repeated sequences of code in
the genotype. Moreover, one element in the set of the genotypes corresponds
to exactly one element in the solution space (the set of the candidate solu-
tions – the phenotypes). For instance, consider a digital circuit represented at
the gate level using the cartesian genetic programming (CGP) [MT00]. The
circuit is encoded as a sequence of integers that represent the functions of the
gates and their interconnection for all the elements of the particular structure
used in CGP. It means the genome defines the structure of the circuit by
means of the building blocks the circuit is composed of. Another example of
the genotype–phenotype mapping may consider the problem of the optimiza-
tion of a multidimensional mathematical function, i.e. to find its extreme. In
this case the chromosome consists of a bit sequence interpreted as a binary
representation of the values of the function variables (domain of the function).
The mathematical expression of the function maps the elements of the domain
onto the appropriate values in the co-domain of the function. In both exam-
ples the genome interpretation is determined by the mapping which assigns
unambiguously to each genotype an appropriate phenotype. This mapping is
based on the exact and complete specification of the candidate solution in-
cluded in the genotype. Therefore, the genotype–phenotype mapping specifies
what to compute (or construct). On the other hand in case of the generative
encoding the chromosome represents a prescription (an algorithm) for the
construction of the target object, i.e. the genotype specifies how to build the
phenotype using the building blocks and knowledges included into the devel-
opmental system. The generative representations thus focus on the algorithm
for the construction of the candidate solution rather than on representing the
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solution itself. Since the developmental process is usually non-trivial, usually
including advanced techniques (recursion, external control etc.), it is possi-
ble to increase the generative power of the genotype–phenotype mapping and
keep the genome length and the evolution time reasonable.

1.2 Why is the development useful?

The increasing demands on the complexity and size of the solutions created
by the evolutionary design lead to increasing requirements on the encoding
of the solutions for the evolutionary systems. The consequence of this issue is
that the genome length (and hence the search space) grows enormously and
the evolutionary algorithm is not able to find the solution in a reasonable
time using the direct encoding and the common computing resources. This
phenomenon is denoted as the problem of scale. Moreover, the time needed
for evaluating the candidate solutions plays an important role. In case of the
evolutionary design of digital circuits the evaluation time increases exponen-
tially depending on the number of inputs of the target circuit. Therefore, the
power of the evolutionary design process is degraded by the evaluation of the
candidate solutions. As evident, there are two different levels of the scalability
in the evolutionary design which differ in the factor having a crucial impact
on the scalability. (1) The length of the chromosome usually relates to the
complexity of the solution structure that should be encoded inside the chro-
mosome. Therefore, it is a case of the problem of scale at the level of the
structure of the candidate solutions. (2) The problem of scale at the level of
the fitness function relates to the computational effort of the evaluation of the
candidate solutions.

The development represents one of the possible approaches trying to over-
come the problem of scale. Since the genome contains the algorithm — the
prescription for the construction of the candidate solution — it is possible to
utilize its computational abilities which may, in some cases, reduce the length
of the chromosome and make the evolution more efficient. Moreover, advanced
features can be described by the algorithm that are out of the scope of the
direct encoding. The features, which are inspired by the phenomenons known
from the biological development, include:

• Adaptation – the phenotype is able to develop with respect to different
condition, requirements etc.

• Compact genotype – in some cases the length of the genotype can be
reduced by using the suitable generative representation.

• Search space reduction – in some cases the size of the search space keeps
reasonable which is the consequence of shorter genotypes.

• Reusability – if the candidate solution contains repeated substructures, it
is possible to utilize only one fragment of code in the genotype to describe
all the repeated structures, i.e. to reuse the parts of the phenotype.
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• Self-repair – it is possible to restore the function of the malformed part of
the phenotype.

• Scalability – the computational abilities of the generative representations
enable the phenotype to “grow”, for example by means of a parametric
approach, recursion and other techniques.

• Emergent behavior and self-organization – simple interaction between the
computational elements of the generative representation may lead to a very
complex global behavior. Note that this feature is typical especially for
cellular automata and genetic regulatory networks.

1.3 Problems of generative representations

Despite the useful properties and abilities of the development summarized
in the previous section, there are some problems related to the generative
representations which have to be dealt with in the applications of the devel-
opmental systems. In general, the design of the generative representation for
a particular problem is difficult as the set of building blocks and their interac-
tions may not be known to solve the problem effectively. In consequence, the
evolutionary design process using the proposed developmental encoding may
be limiting since the design of the generative representation is usually per-
formed by means of the conventional engineering methods that may restrict
the evolution in searching the unexplored but promising parts of the solution
space.

1.4 Inspiration for this work

This work focuses on a specific class of the developmental systems based on
the evolution of computer programs. In fact, the basic idea is very close to the
genetic programming (GP) approach that poses one of the most known evo-
lutionary algorithm nowadays. Although the first experiments working with
the principles of the genetic programming have already been conducted by
Stephen F. Smith [Smi80] and Nichael L. Cramer [Cra85], as the father of
this evolutionary technique is usually considered John R. Koza who pub-
lished a paradigm for genetically breeding populations of computer programs
[Koz90] which, in fact, was later used as a draft for the first of Koza’s famous
series of books [J. 92][J. 94][J. 99][J. 03].

The original Koza’s work represents the basic principle of GP applied
in the direct genotype–phenotype mapping approach. Later, modifications of
GP were introduced in order to exploit the advantages of developmental en-
coding and the developmental genetic programming (DGP) was introduced
(see [J. 99] and [J. 03] for details). DGP was applied for example to design
the topology and sizing of electrical circuits, placement and routing of elec-
trical circuits, design of antennas and others. Although the approach to the



i
i

“bidlo-phdthesis-fitmono” — 2011/1/27 — 15:25 — page 5 — #13 i
i

i
i

i
i

1.5 Research motivation 5

genotype–phenotype mapping is different using DGP in comparison with the
original GP mapping, both variants use the tree representation of the program
code.

In recent years different variants of genetic programming have emerged,
following the fundamental idea of Koza’s GP, i.e. the automatic evolution
of computer programs. Three basic forms of representations may be distin-
guished which differ in the structure of the programs. In addition to Koza’s
tree representation these include linear and graph representations [BNKF97].
For the purposes of this work it is especially mentioned the linear representa-
tion leading to the linear genetic programming (LGP) that is described and
analyzed in detail in [BB07].

In [Sek04] Sekanina presented a novel evolutionary developmental method
for the design of arbitrarily large sorting and median networks. His approach
utilizes very similar idea based on the LGP representation regarding the evo-
lution of computer programs for the design of digital circuits. The programs
to be evolved consist of application-specific instructions intended for manip-
ulating the building blocks (so-called comparators) of the sorting and median
networks. Therefore, the developmental model is designed ad hoc – for a par-
ticular application and with respect to the properties of the circuits to be
developed. Moreover, in comparison with Koza’s development of the electric
circuits at the transistor level, the design of sorting and median networks is
performed at a higher level of abstraction. This work actually represents the
main inspiration for the research presented in this book. Advanced modifica-
tions will be presented and other developmental models based on the linear
representation will be introduced for the evolutionary design of generic struc-
tures of combinational circuits.

1.5 Research motivation

Although there are some difficulties regarding the applications of the com-
putational development in the area of the evolutionary design, generative
mappings provide many features that are not available in the direct repre-
sentations. These features may be important for the design and functioning
of up-to-date systems in various fields. Therefore, the research of the develop-
mental models and their properties represents a significant area of the present
science.

Considering the results obtained by means of traditional genetic program-
ming, and developmental genetic programming in particular, the research in
this area indicates that the GP approach (independently on the representation
applied) provides a powerful technique to produce interesting and innovative
outcomes. Several PhD theses and books have been published dealing with
the principles and applications of different developmental models in various
fields. A brief overview of the work related to the developmental models is
stated in Section 3.2.
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The utilization of the LGP concept in this book is based on Sekanina’s
paper [Sek04], where a developmental method was presented demonstrating
the ability of an evolutionary algorithm to design growing structures. In par-
ticular, an algorithm for the design of arbitrarily large sorting and median
networks was introduced. The evolution discovered a solution not only for
a single instance of the problem, but for all the instances. In this case, the
concept of the design of generic structures is based on iterative process. The
approach introduced in [Sek04] foreshadows that there may be a big potential
for a successful research in this area.

Koza has dealt with the evolution of analog circuits using the develop-
mental genetic programming. The circuits are functional in a wide range of
values of the circuit components. The values of components are determined by
mathematical expressions containing free variables. Koza called this concept
as the design of parametrized topologies. For more information, see chapters
9–13 of [J. 99]. Although the evolved circuits may be considered as general
from the point of view of the component parameters, they are not general
from the point of view of the circuit structure and scalability (i.e. the number
of inputs).

In fact, there is a different aspect of considering the generality of the de-
veloped solutions if compared Koza’s applications of GP and the experiments
presented in this book. While Koza considers the development of specific cir-
cuit structures in which the generality is achieved by different component
values, another kind of generality of the developed solutions can be consid-
ered from the point of view of the size of the target instances (at the level of
the object structure).

Although plenty of applications utilizing the genetic programming have
been presented, the automatic construction of generic solutions at the struc-
tural level still represents a rare case in the evolutionary design. Therefore,
the evolutionary development of arbitrarily large structures will constitute
a crucial issue for the research in this book. Specifically, it will be focused on
the adaptation of the developmental system to the design of arbitrarily large
combinational circuits of various classes. As Koza and others demonstrated
the power of the genetic programming in many applications, it is supposed
that this approach may also be successfully applied in this research.

For the purposes of the generic evolutionary design presented in this book,
a new concept of development utilizing the principles of genetic programming
has been invented. A new term “application-specific instruction-based devel-
opment” is introduced and two different approaches are identified: (1) contin-
ual development and (2) parametric development. The features of this concept
are described in Chapter 4. The case studies demonstrating the capabilities
of the new approach are presented in Chapter 5 and 6. Note that that these
three chapters represent the main contribution of this work.



i
i

“bidlo-phdthesis-fitmono” — 2011/1/27 — 15:25 — page 7 — #15 i
i

i
i

i
i

1.6 Research hypotheses 7

1.6 Research hypotheses

In the previous sections, some crucial topics were mentioned in which the
developmental mappings are contributive. On the basis of the existing suc-
cessful experiments related to the concept of genetic programming, a promis-
ing area of so-called application-specific instruction-based development has
been selected as a suitable domain for the research in this book. This concept
can be applied in different areas (for different classes of circuits) as demon-
strated in the next chapters. Considering the two different approaches of the
instruction-based development, the following hypotheses will be formulated
for the purposes of this work with respect to the issues stated in the previous
sections.

Hypothesis 1

The evolution is able to generate infinitely growing structures if the continual
development is applied using a proper encoding.

Hypothesis 2

The evolution is able to generate parametrized generic structures if the para-
metric development is applied using a proper encoding.

Hypothesis 3

The evolution is able to generate innovative general solutions or rediscover
conventional general solutions if an appropriate approach of instruction-based
development is applied using a proper encoding.

All the hypotheses deal with an evolutionary algorithm utilized to design
the program consisting of application-specific instructions by means of which
the generic solution is developed. The successfulness of the methods is strongly
dependent on the problem encoding chosen as common in the evolutionary
design field. However, plenty of successful experiments have been presented
using the genetic programming approach and developmental genetic program-
ming in particular by means of which “general” solutions have been evolved. In
addition, as demonstrated in chapters 5 and 6, it is possible to evolve generic
combinational circuits (i.e. to design a program for the development of arbi-
trarily large instance of a given circuit) using the proposed instruction-based
approach.

In order to confirm the hypotheses, a domain-specific knowledge is needed
to be supplied to the evolutionary developmental system which also influences
the representation (encoding) of the candidate solutions – phenotypes. This
information is usually inspired by a conventional solution of the given problem.
Note that structural level is considered during the design, i.e. a set of building
blocks together with the rules of their composition is chosen and the evolution
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searches for a program to construct the target system. It is evident that if
a general solution is known for the design of a given system (to solve a given
problem), it is always possible to choose a set of instructions by means of which
a program (algorithm) is created to construct that system (i.e. its arbitrarily
large instance). Of course, the fact that a generic solution of a problem can be
represented as a program of an instruction-based developmental system does
not imply that it can be successfully evolved. The proper encoding is just
the crucial issue for the evolutionary algorithm to design that solution. The
experiments shows that the design of an efficient developmental encoding for
a given problem is not a trivial task. Nevertheless, this is a common obstacle in
the evolutionary design and evolutionary developmental design in particular.

However, the approach described in the previous paragraph (i.e. design-
ing an instruction-based evolutionary developmental system on the basis of
known general conventional solutions) was successfully applied in several do-
mains from the area of creating generic combinational circuits. For example
the general straight-insertion algorithm was considered as conventional con-
struction algorithm on the basis of which the instruction set, sorting networks
representation, interpretation and the way of execution of the instructions
were chosen as described in Section 5.3. It represents one of the possible ap-
proaches that enables to develop arbitrarily large sorting networks which can
“grow” continually by increasing the number of inputs maximally by two in
each step. In Section 5.5, a different instruction set and a modified construc-
tion process is described enabling the sorting networks to “grow” by up to
four inputs per a step, exhibiting more complex structures of the resulting net-
works which demonstrates better properties of this encoding in comparison
with the previous one. Similar approach was applied in case of development of
generic multipliers presented in Chapter 6. This demonstrates that more gen-
erative encodings exist to solve a given problem; different levels of efficiency of
evolutionary process as well as resulting solutions may obviously be observed.

1.7 Goals and proposed solutions

The main goal of this work is to apply the concepts of continual development
and parametric development to the construction of generic (i.e. arbitrarily
large) combinational circuits of different classes.

The problem of scale represent the most significant impediment related
to the evolutionary design of complex systems. If the design of generic com-
binational circuits is considered, the number of inputs represents an impor-
tant issue that influences the scalability of the solutions to be evolved as the
evolution time increases exponentially with the increasing number of inputs.
Therefore, it is the case of the problem of scale at the level of the fitness
function (i.e. the evaluation of the candidate solutions). Since this work fo-
cuses on the evolutionary development of generic circuit structures, the goal
is, in particular, to provide the scalability of the circuits evaluation. In order
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to do so, the following approach will be applied during the evolutionary pro-
cess. A genome of the evolutionary algorithm encodes a single prescription
for the development (construction) of the solution. If the continual develop-
ment is considered, then the evaluation involves more solutions resulted from
more iterations of the development (i.e. applications of the program being
evolved). However, it is not possible to evaluate all the instances. Therefore,
only a subset of the solutions are evaluated after each of a reasonable number
of iterations. At the end of the evolutionary process, the evolved program
is applied for higher number of iterations in order to verify if it is general
(i.e. able to construct potentially arbitrarily larger solutions than that were
evaluated during the evolution).

Similarly, a reasonable finite number of instances is evaluated during the
evolutionary process for several different values of parameters in case of the
parametric developmental approach. The resulting programs are then verified
in order to determine if they are able to work also for other values of the
parameter.

It is not possible to verify the program considering all the instances of the
developed solution, therefore, only a subset of instances is evaluated during
verification. In general, there are two possibilities how to demonstrate that the
development by means of the evolved program is really general. (1) To prove
rigorously by means of theoretical apparatus that the evolved program is able
to construct arbitrarily large solution. (2) To identify whether the evolved
program represents an already known general method, then the comparison
of the evolved and conventional method demonstrates the generality of the
evolved program.

Suitable problem domains are needed to find out in order to confirm the
research hypotheses and to demonstrate the abilities of the proposed devel-
opmental approach. Arithmetic circuits whose operands may be represented
by arbitrary number of bits were identified as proper objects for the continual
and parametric development. In particular, the continual development will be
demonstrated on the sorting network problem and the parametric develop-
ment will be applied to the design of combinational multipliers.

1.8 Contributions

The contributions of this work follow from the features and abilities of the
proposed developmental method. This approach is inspired by the linear ge-
netic programming. On the basis of the developmental model two different
variants are identified: continual development and parametric development.
This concept is applied on the development of generic circuit structures. In
order to demonstrate the abilities of the proposed approach, sorting network
problem and combinational multiplier design are selected as suitable applica-
tion domains for the evolutionary design using the development. It is shown
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that both the approaches are able to construct arbitrarily large circuits of the
given classes.

The continual development approach is applied on solving the generic sort-
ing network problem. It is demonstrated that the evolution is able to discover
an innovative solution in comparison with the conventional method of the
same type. The best evolved algorithm for the construction of the sorting
networks is analyzed, optimized and proved to be general using the mathe-
matical apparatus. The development of the sorting networks represents a rare
case in the area of the evolutionary design related to the ability of the evolved
solution to grow continually and theoretically infinitely. The scalability ob-
tained by this approach is based on the utilization of the regular structures
of the resulting circuits that enable us to increase the number of inputs of
the circuit being developed preserving the circuit functionality. In case of the
development of the sorting networks, the growth may be performed in steps
differing in the number of inputs of the subsequent sorting network instances.
The development of sorting networks with the number of inputs increasing
by 4 has been evolved so far. The resulting sorting networks exhibit better
properties in comparison with the networks of the same size created by means
of the conventional method. This feature demonstrates the robustness of the
continual development with respect to the specific application.

The parametric development approach is applied to the design of arbitrar-
ily large combinational multipliers. In general, the multipliers are considered
as a class of circuits that is difficult to design using the evolutionary algo-
rithms. Therefore a higher-level abstraction has been chosen in order to suc-
cessfully develop generic multipliers using the proposed representation. It is
demonstrated that the evolution is able to discover algorithms for the develop-
ment of arbitrarily large multipliers. Although the resulting solutions exhibit
no innovation in comparison with the conventional design, this method rep-
resents the first case if the design of generic combinational multipliers using
the evolutionary algorithm combined with a developmental encoding.

1.9 The book structure

This book is divided into eight chapters describing the theoretical background,
the developmental method invented during the research, case studies together
with experimental results and concluding remarks. The content of the chapters
is as follows.

Chapter 2 contains the description of the relevant evolutionary techniques
related to the experiments presented in this book. In particular, genetic algo-
rithm is introduced in Section 2.3 which is utilized herein in order to design
the developmental programs for the construction of combinational circuits.
Genetic programming as the fundamental evolutionary algorithm this work
is inspired by in summarized in Section 2.4. A special kind of the genetic
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programming — the linear genetic programming — is also mentioned, rep-
resenting the basis for the proposed developmental system for the design of
generic combinational circuits.

The basic principles of the development are summarized in Chapter 3. Sec-
tion 3.1 briefly introduces the crucial aspects of the biological development
that represents the main inspiration for the techniques of the computational
development. The most important models related to the computational devel-
opment are described in Section 3.2. Several works have dealt with the research
of the developmental encodings and their applications. A brief survey of the
relevant books, PhD theses and important papers is stated in Section 3.2.

Chapter 4 introduces the principles and features of the application-specific
instruction-based developmental method which represents the core topic of
this book and its approaches are applied in the description of the case studies.

Chapter 5 describes in detail the first extensive case-study applying the
instruction-based development. It is devoted to the evolutionary design of
developmental programs for the construction of generic sorting networks using
the concept of continual development. Experiments were conducted with the
evolution of arbitrarily large sorting networks and then considering only odd-
input and even-input networks. The results are presented in Section 5.3. An
advanced approach to the continual development of generic sorting networks
is introduced in Section 5.5. In the category of even-input sorting networks
(see Section 5.4.3) an innovative solution was discovered in comparison with
the conventional approach. Finally, a theoretical analysis has been performed
together with the proof of generality of the best solution in Section 5.6.

The second case-study, which is presented in Chapter 6, deals with the
evolutionary design of generic combinational multipliers using the parametric
development. The initial concept of developmental encoding for the design of
generic multipliers is introduced in Section 6.2. It represents the first case when
generic combinational multipliers were evolved using the development. An
advanced approach, focused to design of more effective carry-save multipliers,
is presented in Section 6.3 (again, the concept of parametric development is
employed).

Chapter 7 presents the continual development of polymorphic circuits. It is
the first case when polymorphic circuits were evolved using the developmental
encoding. The research if focused on the design of polymorphic parity circuits
ans polymorphic median and sorting networks. The results are summarized
in Section 7.4.

Chapter 8 summarizes the results and consequences of this work and out-
lines the potential directions for the future research in the area of instruction-
based developmental systems.
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Evolutionary algorithms

This chapter summarizes the basic principles of the evolutionary algorithms
(EAs) and focuses in more detail on evolutionary techniques that are relevant
for the experiments presented in chapters 5 and 6.

2.1 Concept of evolutionary algorithms

Evolutionary algorithms represent a set of biologically inspired, stochastic
search algorithms based on a model of natural, biological evolution, which
was formulated for the first time by Charles Darwin. In contrast to the tradi-
tional search algorithms, evolutionary algorithms operate over a population of
candidate solutions rather than over a single solution. The candidate solutions
(also called phenotypes) are encoded into the individuals (also called geno-
types, genomes or chromosomes), which constitute a problem representation
in the EA.

Every new population is created throughout reproduction. The process of
reproduction performs selection of chromosomes (i.e. the encoded form of the
candidate solutions) according to their ability to solve the given problem. This
ability is called a fitness measure which is calculated in a fitness function. The
selected chromosomes are modified by means of so-called genetic operators
(sometimes also called variation operators) that are inspired by the similar
processes known from nature. Note that the utilization of specific genetic
operators and the selection operator depend on the type of the evolutionary
algorithm and the problem to be solved. While the genetic operators work over
the chromosomes (genotypes), the fitness function evaluates the candidate
solutions (phenotypes).

The mapping between genotypes and phenotypes (also called growth func-
tion) may be direct or indirect (however, some EAs do not distinguish between
genotypes and phenotypes at all). Note that this book deals with the indirect
mappings, i.e. the development (see Chapter 3). The concept of the genotype–
phenotype mapping and the calculation of the fitness function in the EA is
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14 2 Evolutionary algorithms

shown in Figure 2.2. Since the selection operator prefers fitter genomes over
the less fitter genomes, there is a selection pressure pushing the evolution of
the population to better solutions. The selection pressure implies that the
fitter individuals live for a longer while and generate offspring, which inherit
their genetic information. The structure of a general evolutionary algorithm
is shown in Figure 2.1.

set time t = 0

create initial population P(t)

evaluate each individual in P(t)

WHILE acceptable solution not found DO

t = t + 1

create P(t) using P(t - 1)

evaluate P(t)

END WHILE

Fig. 2.1. The structure of a general evolutionary algorithm

solution spacerepresentation space

(genotypes) (phenotypes)

space of fitness values

growth function fitness function

Fig. 2.2. Illustration of the genotype–phenotype mapping and the fitness computa-
tion in the evolutionary algorithm. The representation space consists of the encoded
forms of the candidate solutions contained in the solution space. The genetic op-
erators are applied on the chromosomes, the chromosomes are translated onto the
solutions according to a growth function and the fitness function these solutions.

There are many books providing a survey of different evolutionary tech-
niques covering theoretical as well as practical issues, for example [ES03,
P. 99]. Moreover, original literature focuses on the specific variants of evolu-
tionary algorithms. Holland’s genetic algorithms [Hol75], Koza’s genetic pro-
gramming [J. 92], Fogel’s evolutionary programming [FOW66] and evolution-
ary strategies [Sch65, Rec73] developed by Bienert, Rechenberg and Schwefel
probably represent the most known and widely used variants of evolutionary
algorithms.
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Although, the operation and representation of the solutions differ in dis-
tinct variants of evolutionary algorithms, these algorithms have one in com-
mon: inspiration in nature, in particular, evolutionary biology.

The next section contains a brief overview of the natural background of
the EAs, considering the fundamental principles stated in [B9̈6]. For detailed
information see also [Dar06].

2.2 Biological background

Charles Darwin’s theory of evolution explains the adaptive change of species
by the principle of natural selection, which favors those species for survival
and further evolution that are best adapted to their environmental condi-
tions. In addition to selection, another important factor for evolution recog-
nized by Darwin is the occurrence of small, apparently random and undirected
variations between the phenotypes, i.e., the manner of response and physical
embodiment of parents and their offspring. These mutations prevail through
selection, if they prove their worth in light of the current environment; other-
wise, they perish. The basic driving force for selection is given by the natural
phenomenon of production of offspring. Under advantageous environmental
conditions, population size grows exponentially, a process which is generally
limited by finite resources. When resources are no longer sufficient to sup-
port all the individuals of a population, those organisms are at a selective
advantage which exploit resources most effectively.

This point of view is presently generally accepted as the correct macro-
scopic explanation of evolution. However, modern biochemistry and genetics
has extended the Darwinian theory by microscopic findings concerning the
mechanisms of heredity. The resulting theory is called synthetic theory of
evolution or, sometimes, neodarwinism.

This theory is based on genes as transfer units of heredity and may be
described in simplified form as follows. Genes are occasionally changed by
mutations. An individual represents the unit of selection. Selection acts on the
individuals, which expresses in its phenotype the complex interactions within
its genotype, i.e. its total genetic information, as well as the interaction of the
genotype with the environment in determining the phenotype. The evolving
unit is the population which consists of a common gene pool included in the
genotypes of the individuals.

In the evolutionary framework, the fitness of an individual is measured only
indirectly by its growth rate in comparison to others. That means the fitness
represents the prosperity of the individual in a particular environment. Fur-
thermore, natural selection is no active driving force, but differential survival
and reproduction within a population makes up selection. Selection is simply
a name for the ability of those individuals that have outlasted the struggle for
existence to bring their genetic information to the next generation. This point
of view, however, reflects just our missing knowledge about the mapping from
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16 2 Evolutionary algorithms

genotype to phenotype, a mapping which — if it were known — would allow
us to evaluate fitness in terms of a variety of physical properties. In Section
3.1, the basic principles will be briefly outlined which are presently known
about this mapping, representing the crucial part of inspiration for this work,
i.e. the biological development.

2.3 Genetic algorithms

The original principle of a genetic algorithm (GA) was introduced by Holland,
who proposed a model for studying adaptation in natural and artificial sys-
tems [Hol75]. Later, genetic algorithms were popularized by Goldberg [Gol89].
Since that time, this biologically inspired technique underwent a significant
development and many different variants of GA emerged. Therefore, there is
no single definitive genetic algorithm; rather algorithms have been created
from a suite of representations, selection and variation operators to suit our
particular applications [ES03].

2.3.1 Simple genetic algorithm

In this section, basic variant of genetic algorithm will be introduced that is
commonly referred to as simple GA or canonical GA [ES03, P. 99].

The genetic algorithms are perhaps the most well known variant of evo-
lutionary algorithms. GAs belong to the class of algorithms that explicitly
distinguish the search space (i.e. the space of genotypes) and solution space
(i.e. the space of phenotypes) – see Figure 2.2. GA’s maintain a population of
individuals consisting of the genotypes, each of which corresponds to a phe-
notype from the solution space. The genotypes, which are usually of constant
length1, consist of encoded version of phenotype parameters and are referred
to as genes. A value of a gene is called an allele. The collection of genes in one
genotype represents a genome (chromosome).

The simple genetic algorithm, whose structure is shown in Figure 2.3,
works as follows [P. 99]. The genotype of every individual in the population is
initialized with random alleles. The main loop of the algorithm then begins,
with the corresponding phenotype of every individual in the population being
evaluated and given a fitness value according to how well it fulfils the problem
objective or fitness function. These scores are then used to determine how
many copies of each individual are placed into a temporary area often termed
the “mating pool” (i.e. the higher the fitness, the more copies that are made of
an individual). The simple GA uses two genetic operators: crossover (sometime
termed as recombination) and mutation.

Two parents are randomly picked from the “mating pool”. Offspring are
generated by the use of the crossover operator, which randomly allocates genes
1 Advanced versions of GA may utilize variable-length chromosomes.
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set time t = 0

create initial population P(t)

evaluate each individual in P(t)

WHILE acceptable solution not found DO

reproduce individuals according to their fitnesses into

a ‘‘mating pool’’ (higher fitness implies more copies of

an individual in the ‘‘mating pool’’)

t = t + 1

WHILE P(t) is not filled with new offspring DO

randomly take two individuals from ‘‘mating pool’’

use probabilistic random crossover to generate two offspring

apply probabilistic random mutation to the offspring

place offspring into population P(t)

END WHILE

evaluate each individual in P(t)

END WHILE

Fig. 2.3. The structure of the simple genetic algorithm

from each parent’s genotype to each offspring’s genotype. For example, con-
sider two parent chromosomes ‘ABCDEF’ and ‘abcdef’. Consider that a cross
point 2 was selected randomly, i.e. the chromosomes will be crossed at the
position behind the second gene of each of them. Then two following offspring
will be generated by the simple GA: ‘ABcdef’ and ‘abCDEF’. The crossover
represents a probabilistic genetic operator, which means that the operation is
performed only with a given probability, otherwise the parents are just copied
to the next generation. After recombination, mutation operator is occasionally
applied (usually with much lower probability than crossover) to the offspring.
When it is used to mutate an individual, typically a single gene is selected
and its allele is changed randomly. For example, if the fourth gene of a chro-
mosome ‘110010’ ought to be mutated, then the form of the mutated genome
will be ‘110110’.

Using crossover and mutation, offspring are generated until they fill the
new population (all parents are discarded). This entire process of evaluation
and reproduction then continues until a satisfactory solution emerges or the
GA has run for a specified number of generations.

2.3.2 Advanced genetic algorithms

The simple GA is especially favoured for those that try to theoretically analyze
and predict the behavior of genetic algorithms rather than for the utilization
in practical applications. In reality, typically more advanced GAs are applied.
In addition to the common features of the advanced techniques, including for
example more realistic natural selection, more genetic operators, ability to
detect when evolution ceases, overlapping populations, elitism (where some
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18 2 Evolutionary algorithms

fit individuals can survive for more than one generation) etc., some advanced
variants of GAs have been utilized [P. 99].

• Parallel GAs – multiple processors are used to run the GA [AC94].
• Distributed GAs – multiple populations are separately evolved with few

interactions between them [WS90].
• Messy GAs – a number of ‘exotic’ techniques are utilized, such as variable-

length chromosomes, cut and splice operators in place of fixed-length
crossover operations, two-phase evolutionary process (primordial phase
and juxtapositional phase), (sometime) competitive templates to empha-
size salient building blocks [DG91].

• Hybrid GAs – GAs are combined with local search algorithms, e.g. see
[Geo94].

• Structured GAs – allows parts of chromosomes to be switched on and off
using evolvable ‘control genes’ [DM92].

• Steady-state GAs – the entire population is not changed at once, but rather
a part of it. In each generation, only a subset of the population is replaced
by the offspring created by the genetic operators. Steady-state GA was
introduced by Whitley in [WK88].

2.4 Genetic programming

Genetic programming actually represents a modified variant of the genetic
algorithm. In particular it differs from the genetic algorithm in the represen-
tation of individuals and in the genetic operators. Genetic programming in
its original form belongs to the class of EAs, which does not distinguish be-
tween genotypes and phenotypes. The individuals (and also solutions to be
evolved) represent general computer programs that are evaluated in solving
a given problem. In 1990, Koza introduced the concept of genetic programming
[Koz90], which represents one of the most known and widely used evolutionary
algorithm nowadays. In the process of the GP research, more variants of ge-
netic programming representations have emerged. In addition to the original
tree-based representation of computer programs introduced by Koza, there
are also graph-based representations (e.g. Miller’s cartesian genetic program-
ming [MT00]) or linear representation [BB07]. In this section, the principles
of the standard GP will be mentioned, which provided an inspiration for the
other GP representations, and the linear GP, which is relevant to this work.

2.4.1 Standard genetic programming

In standard genetic programming [J. 92], the structures undergoing adap-
tation (i.e. the chromosomes to be evolved like in the genetic algorithms)
are general, hierarchical computer programs of dynamically varying size and
shape. The programs are composed of functions and terminals appropriate
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to the problem domain. The functions may be standard arithmetic opera-
tions, standard programming operations, standard mathematical functions,
logical functions, or domain-specific functions. Depending on the particular
problem, the programs may be Boolean-valued, integer-valued, real-valued,
complex-valued, vector-valued, symbolic-valued or multiple-valued. The ini-
tial population is usually generated randomly.

Each individual computer program in the population is evaluated by mens
of the fitness function in terms of how well it performs in the particular prob-
lem environment, i.e. how well it can solve the particular task.

For example, in a problem involving finding the strategy for playing
a game, the fitness measure would be the score (payoff) received by a player in
the game (i.e. the ability of the program being evolved to play the game with
the score to be optimized). For many problems, fitness is naturally measured
by the error produced by the computer program.

Typically, each computer program in the population is run over a number
of different fitness cases so that its fitness is measured as a sum or an av-
erage over a variety of representative different situations. These fitness cases
sometimes represent a sampling of different values of an independent variable
or a sampling of different initial conditions of a system. For example, the fit-
ness of an individual computer program in the population may be measured
in terms of the sum of the absolute values of differences between the output
produced by the program and the correct answer to the problem. This sum
may be taken over a sampling of 100 different inputs to the program, which
may be chosen at random or may be structured in some way.

Primary genetic operators

The Darwinian principle of reproduction and survival of the fittest and the ge-
netic operation of recombination (crossover) represent the primary operators
utilized in genetic programming. These genetic operators are used to create
a new offspring population of individual computer programs from the current
population of programs.

The reproduction operation is the basic engine of Darwinian natural se-
lection and survival of the fittest. The operation of reproduction consists of
two steps. First, a single individual computer program is selected from the
population according to some selection method based on fitness. Second, the
selected individual is copied, without alteration, from the current population
into the new population (i.e. the new generation).

The crossover operator creates variation in the population by producing
new offspring that consist of parts taken from each parent. The crossover op-
eration starts with two parental individuals selected by means of a selection
operation and produces two offspring individuals (programs). The parental
programs are typically of different sizes and shapes. The operation begins by
independently selecting, using a uniform probability distribution, one random
point in each parent to be the crossover point for that parent. The crossover
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fragment for a particular parent is the rotated subtree which has as its root
the crossover point and which consists of the entire subtree lying below the
crossover point (i.e. more distant from the root of the original tree). The
first offspring individual (computer program) is produced by replacing the
crossover fragment of the first parent by the crossover fragment of the second
parent and the second one is created by replacing the crossover fragment of the
second parent by the crossover fragment of the first parent (i.e. the crossover
fragments of the parental individuals are simply swapped in the offspring). For
example, consider the two parental expressions in Figure 2.4a. The functions
appearing in these expressions are the Boolean AND, OR and NOT functions
the terminals are the Boolean arguments D0 and D1. Assume that the points
of both trees are numbered in a depth-first, left-to-right way. Suppose that
the second point of the first parent (the NOT function) is randomly selected
as the crossover point. Suppose also that the sixth point of the second par-
ent (the AND function) is selected as the crossover point. The portions of
the two parental expressions marked by dashed lines in Figure 2.4a are the
crossover fragments. The crossover operation is performed by swapping the
crossover fragments between the two parental individuals in order to produce
two offspring individuals. The resulting offspring are depicted in Figure 2.4b.
The offspring programs are typically of different sizes and shapes than their
parents.
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Fig. 2.4. The operation of crossover in genetic programming

Secondary genetic operators

In addition to the two primary genetic operations of reproduction and
crossover in genetic programming, there are five optional secondary opera-
tions, for example [J. 92]: mutation, permutation, editing, or encapsulation.

The mutation operation begins by selecting a point at random within the
individual computer program. The mutation point can be an internal (i.e.
function) or an external (i.e. terminal) point of the tree. The mutation oper-
ation then removes whatever is currently at the selected point and whatever
is below the selected point and inserts a randomly generated fragment of
computer program (i.e. subtree) to that point.
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The permutation operator selects a function (internal) point of the tree at
random. If the function at the selected point has k arguments, a permutation
is selected at random from the set of k! possible permutations. Then the
arguments of the function at the selected point are permuted in accordance
with the random permutation.

The editing operation provides a means to edit and simplify the indi-
vidual programs. This operation recursively applies a pre-established set of
domain-independent and domain-specific editing rules to each individual in
the population. The universal domain-independent editing rule is the follow-
ing: If any function that has no side effect and is not context dependent has
only constant atoms as arguments, the editing operation will evaluate that
function and replace it with the value obtained from the evaluation. For ex-
ample, the fragment 1+2 will be replaced with 3 and the fragment of Boolean
expression 1AND1 will be replaced with 1. In addition, the editing operation
applies a pre-established set of domain-specific editing rules. For example,
for numeric problem domains, there might be an editing rule that inserts 0
whenever a subexpression is subtracted from itself. In Boolean domain, for
instance, one might use an editing rule to apply one of De Morgan’s laws to
an expression or other expression-simplifying rules.

The encapsulation is a means for automatically identifying a potentially
useful subtree and giving it a name so that it can be references and used later.
The operation of encapsulation begins by selecting a function (internal) point
at random. A new function is defined corresponding to the fragment repre-
sented by the subtree at the selected point. Then the subtree is removed from
the original tree and the reference to the newly defined function in inserted
at that point.

Algorithm of genetic programming

The genetic programming starts with an initial population of randomly gen-
erated computer programs. In each generation, the primary operations of re-
production and crossover are applied to the selected individuals. Occasionally,
secondary genetic operators may be applied to the offspring generated by the
primary genetic operations. After this process, the population of offspring
(i.e. the new generation) replaces the old population (i.e. the old generation).
Each individual in the new population of computer programs is then mea-
sured for fitness, and the process is repeated over many generations. The ba-
sic algorithm of the genetic programming is in fact identical with the genetic
algorithm shown in Figure 2.3 without mutation [J. 92].

2.4.2 Linear genetic programming

Linear genetic programming (LGP) represents another variant of encoding of
the computer programs in the genetic programming. This section summarizes
the basic features of LGP, gathering from [BB07].
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The tree programs used in Koza’s standard GP correspond to expressions
(syntax trees) from a functional programming language. This approach is also
referred to as tree-based genetic programming (TGP). Functions are located
at inner nodes, while leafs of the tree hold input values and constants. In
contrast, linear genetic programming is a GP variant that evolves sequences
of instructions from an imperative programming language or from a machine
language.

The term linear refers to the structure of the (imperative) program repre-
sentation. It does not stand for functional genetic programs that are restricted
to a linear list of nodes only. Moreover, it does not mean that the methods
itself is linear, i.e. may solve linearly separable problems only. In many cases,
genetic programs represent highly non-linear solutions due to their inherent
power of expression.

The use of linear bit sequences in GP goes back to Cramer and his JB lan-
guage [Cra85]. A more general approach was introduced in [Ban93]. Nordin’s
work [Nor94] of subjecting machine code to evolution was the first GP ap-
proach that operated directly on an imperative representation. It was sub-
sequently expanded and developed into the AIMGP (Automatic Induction
of Machine Code by Genetic Programming) approach [Nor97, BNKF97]. In
AIMGP individuals are manipulated as binary machine code in memory and
are executed directly without passing an interpreter during the fitness calcu-
lation, which poses a significant speedup compared to interpreting systems.
In [Nor97] machine code GP and the applications of this linear GP approach
to different problem domains have been studied.

There are two basic differences between a linear program and a tree pro-
gram [BB07]:

(1) A linear genetic program can be seen as a data flow graph produced by
multiple usage of register content. That is, on the functional level the evolved
imperative structure represents a special directed graph. In traditional tree-
based GP the data flow is more rigidly determined by the tree structure of
the program.

The higher variability of linear program graphs allows the result of sub-
programs (subgraphs) to be reused multiple times during calculation. This
permits linear solutions to be more compact in size than tree solutions and to
express more complex calculations with less instructions.

(2) Special noneffective code segments coexist with effective code in linear
genetic programs. They result from the imperative program structure — not
from program execution — and can be detected efficiently and completely.
Such structurally noneffective code manipulates registers not having an impact
on the program output at the current position. It is thus not connected to the
data flow generated by the effective code. In a tree program, by definition, all
program components are connected to the root. As a result, the existence of
noneffective code necessarily depends on program semantics.

Noneffective code in genetic programs is also referred to as introns. In gen-
eral, it denotes instructions without any influence in the program behavior.
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In standard genetic programming, the noneffective code causes a “bloat” (ex-
pansion in size) of the evolved programs. In linear representation, it is easy to
avoid this problem by limiting the program length (i.e. specifying a maximal
number of instruction) which, in effect, leads to the constant-length chro-
mosomes. In fact, the amount of introns in the evolving program can vary
the effective length of the code (which will never be larger than the spec-
ified limit) and hence more effective algorithms can potentially be evolved.
Note that explicit introns may be specified by means of a “no operation”
(NOP) instruction. Moreover, the noneffective code is considered to be bene-
ficial during evolution for two major reasons. First, it may act as a protection
that reduces the effect of variation on the effective code. Second, noneffective
code allows variations to remain neutral in terms of fitness change. In linear
programs introns may be created easily at each position with almost the same
probability.

According to the above notion, there is a distinction between an absolute
program and an effective program in linear GP. While the former includes all
instructions, the latter contains only the structurally effective instructions.
The effective length of a program is measured in the number of effective
instructions it holds. Each program position or line is supposed to hold exactly
one instruction.

In [BB07], the general concept of LGP is described in detail, including
coding of instructions, instruction set, branching, iteration and modulariza-
tion concepts, execution of programs and the issues related to the evolution
of programs in the linear representation, i.e. initialization, reproduction and
variation operators. However, only the fundamental concept — the linear rep-
resentation of the genetic programs — is utilized in its original form with
respect to the specific requirements of the domains in which the experiments
were conducted. Therefore, the features and setup of the application-specific
evolutionary design systems applied in this work will be provided in chapters
5 and 6, where experimental results are presented.

2.4.3 Developmental genetic programming

Koza introduced a variant of genetic programming — developmental genetic
programming (DGP) — for the construction of topology and sizing of elec-
trical circuits (see [J. 03] and Part V of [J. 99]). For this purpose, program
architecture operations and architecture-altering operations were introduced.
The circuit is developed progressively from an embryo (usually supplied to
the system by the designer) according to the program being evolved in ge-
netic programming. The operations of the genetic programs are interpreted
as a prescription for manipulating the parameters and structure of the em-
bryo (e.g. electric values of the components, adding new components into the
circuit, modifying their interconnection etc.).
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Similar principle was utilized to the automatic design of the geometry
and sizing of antennas [J. 03]. In this case the principle of a flying turtle was
utilized that is known from LOGO programming language.

2.4.4 Summary of genetic programming

As evident from the sections 2.4.1, 2.4.2 and 2.4.3, genetic programming pro-
vides a general concept and a wide range of representations for the evolution
of computer programs in various programming languages. Although genetic
programming in its original form represents a direct mapping that does not
distinguish between genotypes and phenotypes during evolution, it can be en-
hanced easily into the developmental form as demonstrated in [J. 03]. More-
over, application-specific changes may be introduced in order to utilize the
GP concept in different domains.

In this book, a developmental approach based on the principles of LGP
for the design of generic structures of digital circuits will be introduced that
has been called instruction-based development. Experiments will be presented
from the domains of the evolutionary design of arbitrarily large sorting and
median networks and combinational multipliers.
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Development

The issue of development represents the crucial part of this work. Some impor-
tant general features of development was introduced in Chapter 1. This chap-
ter summarizes the fundamental principles of biological and computational
development, proposes a survey of the fundamental developmental models
and an overview of the recent work in this area.

3.1 Biological background

The basic principles of the computational development are inspired by the
natural (biological) development. Therefore, it is important to summarize the
fundamental principles of the biological development before the artificial de-
velopmental models will be introduced. Since the field of natural development
is very complex, only a brief introduction to its principles will be stated.

Biological development concerns the life cycle of multicellular organisms.
DNA (deoxyribonucleic acid) acts as a long-term information storage of how
to develop the organism. DNA encodes genes according to which proteins
are synthesized through the process of transcription and translation. Proteins
may specify the behavior of cells. This process has been understood as the
“central dogma” of biology [Coh07].

The following subsections summarize the basic principles of functioning
the development, based on that “central dogma”. Detailed information of this
field from the both biological and computational point of view can be found,
for example, in [Wol07, S. 03, ZB08].

3.1.1 DNA

DNA forms the genetic material for almost all living organisms (with the
exception of some viruses that replace DNA with RNA (ribonucleic acid) as
the genetic material) [Lew99].
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Nucleic acids consist of polynucleotide chains. They contain four types
of bases, two purines: adenine (A) and guanine (G), and two pyrimidines:
cytosine (C) and thymine (T). In RNA, thymine is replaced by uracil (U).
The DNA molecule is built up as follows: the bases extend inwards from each
nucleotide chain, with purines pairing with pyrimidines, resulting in the fol-
lowing base pairings: guanine pairs with cytosine (G-C) and adenine pairs
with thymine (A-T) or (A-U in RNA). These base pairings are termed com-
plementary. A consequence of complementary base pairing is that one strand
of DNA or RNA can act as a template for the synthesis of a complementary
strand. Nucleic acids are therefore uniquely capable of directing their own
self-replication.

The sequence of nucleotides in DNA is important as it codes for amino
acids that constitute the building blocks of the corresponding polypeptide or
protein. Each amino acid is represented by a sequence of three nucleotides.
The nucleotide triplet is termed as a codon and the rules according to which
the codons are translated to amino acids are referred to as genetic code. This
code is unambiguous, i.e. one codon does not specify more than one amino
acid. However, each amino acid can be specified by more different codons.
Considering the four bases in DNA (or RNA) strand, there are sixty-four
codons. Sixty-one of them define amino acids (although only 20 different amino
acids exist). The remaining three represent stop signals for protein synthesis.

3.1.2 Genes and proteins

A gene represents a region of DNA (or RNA in some viruses) that codes for
one or more molecular products (mRNA or protein) [ZB08]. Genes control
development mainly by specifying which proteins are made in which cells and
when. In this sense genes are passive participants in development, compared
with the proteins for which they code.

A protein is a sequence of amino acids that directly determine cell behav-
ior, including which genes are expressed. To produce a particular protein its
gene must be switched on (expressed) and transcribed into messenger RNA
that is then translated into protein [Wol07].

3.1.3 Proteins synthesis

The sequence of bases in the DNA (representing a gene) specifies the se-
quence of amino acids in a protein chain. However, DNA does not directly
control protein synthesis. It occurs in the cell cytoplasm under the control of
RNA synthesized from the DNA template in a process called transcription.
Ribosomes, macromolecular structures in the cells, involve RNA produced
by transcription in order to transfer it into protein in the process termed as
translation.
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Transcription

After a signal to switch on a gene is received, a single-stranded RNA copy of
the gene is first made in a process called transcription. This RNA synthesis
is catalyzed by enzymes called RNA polymerases. Only the relevant region of
DNA is transcribed into RNA, so while the DNA carries information about
many proteins, the RNA carries information from just one part of the DNA,
usually information for a single protein [ZB08]. When a gene is being tran-
scribed into RNA, which is in turn directing protein synthesis, the gene is said
to be expressed.

Translation

There are three main classes of RNA in all cells: messenger RNA (mRNA – it
is the RNA produced by transcription), ribosomal RNA (rRNA) and transfer
RNA (tRNA) as well as numerous smaller RNAs with a variety of roles [ZB08].
rRNA and tRNA are involved in the process of mRNA translation and protein
synthesis.

The mRNA is translated into protein by ribosomes, multimolecular com-
plexes formed of rRNA and ribosomal proteins. Amino acids do not recognize
the codons in mRNA directly and their addition in the correct order to a new
protein chain is mediated by the tRNA molecules, which transfer the amino
acid to the growing protein chain when bound to the ribosome. The tRNA
molecules have a three-base anticodon at one end that recognizes a codon in
mRNA, and at the other end a site to which the corresponding amino acid
becomes attached by a specific enzyme. This process results in the synthesis
of a protein chain.

3.1.4 Cells

Cells are the atomic constructional units of organisms. They come in two
specific classes: prokaryotic (bacteria and blue-green algae) and eukaryotic
(plants and animals). The DNA in a prokaryotic cell is not encased within
a nuclear envelope. Eukaryotic cells enclose their DNA within a membrane,
conferring an additional opportunity to control gene regulation (they also
contain organeless such as the chloroplast and mitochondria).

Generally, in the terminology of computer science, cells can be likened to
autonomous agents in that they have:

• sensors (in the form of protein-based receptors that bind signals, or ion-
channels that permit signals through the cell membrane that receive in-
formation from the environment),

• internal logic that integrates this information (the genome) and
• effectors (synthesized proteins) able to perturb the environment.



i
i

“bidlo-phdthesis-fitmono” — 2011/1/27 — 15:25 — page 28 — #36 i
i

i
i

i
i

28 3 Development

As evident, cells are fundamentally protein-processing machines, sensing
protein signals, being controlled by proteins and outputting new proteins for
other cells to sense.

Cell membrane

The cell takes great paints to separate itself from its immediate environment.
That is to say the cell has a very well defined boundary – the cell membrane.
The immediate purpose of the membrane is to prevent proteins from seeping
away. At the same time, however, proteins need to be able to enter and leave
the cell in order to affect it. This passage of proteins is not random. Cell ex-
ercise specificity: they can select which proteins enter and leave them. To this
end, the cell membrane is semipermeable (or selectively permeable), allowing
only certain protein molecules through.

Cell signaling

Groups of cells can influence the development of another group of cells by
emitting signals. This process is termed induction. Inductive signals provide
instructions to cells on how to behave. In essence, the inductive signal ‘selects’
a single cellular response from an already limited number of responses [Wol07].

Cell signaling enables cells to detect and respond to conditions within the
extracellular environment. In the case of multicellular organisms, cells need
to be able to communicate over short and long distances in order to shape the
developing organism.

Cell division

Cells multiply by duplicating their content and then dividing into two cells –
parent and daughter. This forms a cell division cycle, which is a complicated
process that consists of a number of stages [AJL+94]: interphase (DNA repli-
cates and proteins are synthesized before and after mitosis), mitosis (nuclear
division, which itself consists of several stages) and cytokinesis (the division
of the cytoplasm of a cell following the division of the nucleus).

Cell division is a crucial aspect of development. Two types of cell division
occur: symmetric and asymmetric. The symmetry or asymmetry is in relation
to cytoplasmic factors sequestered within the cell. Symmetric division occurs
when the plane of cleavage divides the cell into equal sizes with equal propor-
tions of cytoplasmic proteins. Asymmetric division occurs when the plane of
cleavage divides the cell into unequal sizes with daughter and parent cell con-
taining different cytoplasmic factors. The orientation or direction of the cell
division is not random, it is controlled and directed. However, exactly what
determines the direction in which a cell is to divide is still under investigation
in cell biology [S. 03].
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3.1.5 Developmental processes

Central to development is construction and self-organization. During the de-
velopmental process, a single cell (the zygote) “grows up” — develops — into
a complex multicellular organism.

Five developmental phases can be observed during the cellular develop-
ment: cleavage division, pattern formation, morphogenesis, cell differentiation
and growth. These processes do not necessarily occur sequentially, but overlap.
Let us now briefly describe each of them.

Cleavage division

Cleavage division involves the zygote (fertilized cell) undergoing a series of
rapid divisions to create more cells. Unlike cellular proliferation where cells
grow after dividing, during cleavage division there is no increase in cellular
mass between each division. The result of this process is a hollow ball of cells,
known as blastula.

Pattern formation

Pattern formation is the process by which ‘a spatial and temporal pattern of
cell activities is organized within the embryo so that a well-ordered structure
develops’ [Wol07]. Pattern formation comprises two main stages: (1) the pro-
cess by which the initial body plan is laid down and (2) the allocation of cells
to different germ layers (primary cell layers in an embryo). The first stage
results in the setting up of a coordinate system, which is achieved through
two axes defining the anterior and posterior ends and the dorsal and ventral
sides of the body (both axes are at right angle to each other). The second
stage of pattern formation is also responsible for creating the different germ
layers, namely the ectoderm (external layer of cells), mesoderm (middle layer)
and endoderm (inner layer of cells).

Morphogenesis

Morphogenesis involves incredible change in the three-dimensional form of the
developing embryo as a result of cell movement and conformational changes
that generate forces. Extensive cell migration (movement of cells) can also oc-
cur. The most dramatic change during morphogenesis is gastrulation [Wol07].
Typically, all animal embryos undergo the dramatic changes of the gastrula-
tion process after which a gastrula is created from the blastula.

Cell differentiation

Cell differentiation is a gradual process by which cells acquire different struc-
ture and function from one another, resulting in the emergence of distinct
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cell types, for example, neurons or skin cells. Differentiation is fundamentally
about the different proteins cells contain. If a cell has become terminally dif-
ferentiated, it continues to produce these proteins due to a change in a gene
expression that causes a stable pattern of gene activity, else the cell may con-
tinue differentiating over successive cell divisions. Therefore, differentiation is
influenced by at least the following two processes.

• Cell signaling – a mechanism by means of which intercellular communica-
tion is performed.

• Asymmetric division – division that results in the asymmetric apportioning
of factors (proteins) in the parent cell, causing parent and daughter cell to
acquire different developmental fates. It also acts as a symmetry-breaking
mechanism [Tur52, Wol07].

Growth

The final process, growth, involves an increase in size due to one of a number
of methods: cell proliferation, in which cells multiply; a general increase in
cell size and the accretion of extracellular materials, such as bone.

3.2 Models in computational development area

Computational development is a recently established field in which many ar-
tificial models have been devised and investigated. The applications of these
models range from testing hypotheses and predicting new issues in biology to
exploring artificial developmental systems in order to investigate the proper-
ties of specific developmental models or constructing complex adaptive sys-
tems in computer science. A wide diversity of topics has been covered in such
research. This section provides a brief survey of the most significant develop-
mental models and their applications.

3.2.1 Lindenmayer systems

Lindenmayer systems (or L-systems) are parallel rewriting systems (gram-
mars) which were originally introduced by Aristid Lindenmayer to model the
development of multicellular organisms [Lin68]. L-systems work on a finite set
of symbols called an alphabet, where each symbol represents a cell. The initial
organism is represented by a finite string of symbols that is called axiom. Each
cell of that string may be rewritten according to a rewriting rule from a finite
set of rules. Since the development of organisms in nature happens in parallel,
L-systems are inherently parallel rewriting systems, i.e. in one developmental
step each cell of the organism is rewritten.

The advantage of L-systems is the simple form of the developing objects
consisting of simple symbols. Moreover, the developmental process performed
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by L-systems may be adapted to specific requirements of a given application.
For example, parametric L-systems, stochastic L-systems or environmentally-
sensitive L-systems exist [RA97]. Considering these features, theoretically ar-
bitrary problem may be encoded using the strings of symbols that can be
generated by L-systems. If the number of rewriting steps is not limited, it
is possible to develop the strings of arbitrary length which may potentially
enable L-systems to perform generic design by means of the rewriting process.
However, the selection of symbols and their interpretation to solve a specific
problem as well as the design of a suitable rewriting system represent a diffi-
cult task.

L-systems fundamentally represent a mathematical model to investigate
the development of multicellular organisms in biology (the first experiments
conducted by Lindenmayer were focused to plant development). Later, L-
systems became a popular parallel grammar concept in the area of formal
languages. In addition, typical applications include the utilization of L-systems
in the field of computer graphics. The strings generated by L-systems are
interpreted as geometric “commands” to draw graphical primitives. This of
drawing images is known as turtle graphics. For example, L-systems have
been utilized to produce biologically realistic images [PL90]. Fractals represent
another well-known domain of this kind of rewriting systems.

Koch’s curve represents one of the most known fractal that is possible
to generate by L-systems. It is a case of a mathematical curve described
for the first time by the Swedish mathematician Helge von Koch in 1904
[vK93]. Figure 3.1 shows the development of Koch’s curve together with the
rewriting rules of the L-system applied. The L-system works with the alphabet
containing symbols F , + and − whose interpretation is as follows:

• F : draw a line,
• +: change the direction of drawing the next line by 60◦ counter-clockwise,
• −: change the direction of drawing the next line by 60◦ clockwise.

The axion consists of a single symbol F that in graphical interpretation
represents a single line denoted by (0) in Figure 3.1a. After the first develop-
mental step, the axion is rewritten according to the rule (1) from Figure 3.1b
to the string F + F − −F + F . The graphical interpretation corresponds to
four segments I.-IV. (drawn respectively by the appropriate F s of the string)
shown in the instance denoted by (1) of Figure 3.1a. During the second step,
all F s are rewritten in parallel according to the rule (1) and the symbol +,
respective −, is rewritten to itself according to the rule (2), respective (3),
from Figure 3.1b. The development continues in the same way. The graphical
interpretations of the developed strings after the second and third step are
represented by the instances denoted (2) and (3) in Figure 3.1a.
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(a) (b)

Fig. 3.1. (a) Three steps of development of Koch’s curve, (b) Rewriting rules of the
L-system applied for the development

3.2.2 Cellular automata

The concept of cellular automata (CA) was originally invented by Ulam and
von Neumann as a mathematical model for investigating the behavior of com-
plex systems and self-replication [vN66]. CAs are discrete dynamical systems
composed of a regular array of cells. Each cell may be in a state from a finite
set of states. The form of the cellular array is specified by the dimension of the
CA. In most cases, one-dimensional (1D) and two-dimensional (2D) automata
are considered. CAs of higher dimensions are also possible.

States of the cells are updated synchronously in discrete time steps accord-
ing to a local transition function. The local transition function determines the
next state of a cell in dependence on the combination of states of cells included
into a cellular neighborhood (for example, typical cellular neighborhood of
a cell in a 1D CA consists of the cell and its two immediate neighbors). If
the local transition function is identical for all the cells of a CA, the CA is
referred to as uniform, otherwise the CA is called non-uniform or hybrid. In
case of a finite cellular structure, which is typical in real applications, addi-
tional neighborhood has to be specified for the cells lying at the boundary of
the cellular array. This is called as boundary conditions. Constant or cyclic
boundary conditions have usually been considered. The constant boundary
conditions assign constant states to the “missing” neighbors of the boundary
cells; these states are invariable during the development of the cellular au-
tomaton. In case of the cyclic boundary conditions, the boundary cells are
considered to be adjacent to the appropriate boundary cells at the opposite
of the cellular array.

The behavior of the CA is determined by the local transition function. The
development (i.e. the computation) of the CA is represented by a sequence
of configurations of the after each developmental step (i.e. the synchronous
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update of states of all the cells according to the local transition function),
where the configuration is understood as a sequence of cell states of the CA
at a given time. Although the processing elements (i.e. the cells) and the
local transition function are usually simple, the CA may exhibit very complex
global behavior. This phenomenon is referred to as emergent behavior.

The cellular automata represent universal computational model which
means that arbitrary algorithm can be realized. Since there are only local
interactions between the cells in the basic variant of the CA concept, the cel-
lular arrays exhibit highly regular structures. Therefore, CAs are suitable for
hardware implementations. Massive parallelism represents another advantage
of this model. However, the design of a CA (i.e. the initial configuration and
the local transition function) in order to achieve a specific behavior is often
very difficult which represents a substantial disadvantage of the CAs. Another
limitation is that the complex problems (for example, to process many input
data) require high number of cells of the CA which gets expensive if imple-
mented in hardware in comparison with an optimized solution that does not
utilize cellular automaton.

The Game of Life invented by John Conway probably represents one of the
most known applications of cellular automata [Gar70]. It simulates the life of
cells using binary (i.e. each cell may possess either state 0 – a dead cell or 1 –
a living cell) 2-dimensional CA. Each cell survives or dies in dependence on its
surrounding cells according to the following rules (local transition function):

• Each living cell with one or no neighbors dies, as if by loneliness.
• Each living cell with four or more neighbors dies, as if by overpopulation.
• Each living cell with two or three neighbors survives.
• Each unpopulated place with three living neighbors becomes populated

(i.e. a new cell arises).

A popular application of CAs is the study of self-replicating structures.
The goal is to design a CA which is able to make a copy of an object next to
the original one specified in the CA initial state. Langton proposed a so-called
self-replicating loop which represents a 2D cellular automaton whose cells can
possess one of eight states. The replicating structure consists of a loop (a suit-
able arrangement of states in the initial configuration) and a replicator (an
extension of the loop) which ensures “copying” of the loop structure next to
the original one. After a sufficient number of steps (depending on the size of
the loop) the original structure is replicated. If the development of the CA
continues, then more copies of the loop arise [Lan84]. Other typical appli-
cations include the utilization of CAs to solve the density task (a decision
if the initial binary configurations contain more 1s than 0s) or synchroniza-
tion task (every arbitrary binary initial configuration will produce switching
configurations consisting of all 1s and all 0s after a sufficient number of steps).
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3.2.3 Genetic regulatory networks

In biology, genetic regulatory networks (GRNs) describe interactions of genom-
es and environment which leads to protein synthesis. On the basis of gene
regulation and protein synthesis in biology, Dellaert and Beer introduced
a general computational model called identically – genetic regulatory net-
works [DB94, Del95]. A gene model represents the basic part of a GRN. This
model consists of a regulatory region and a coding region. The regulatory re-
gion contains a condition that must be satisfied in order to execute the coding
region. The coding region contains proteins produced by the gene activation.
The GRN is represented by an oriented graph whose vertices represent genes
and edges represent the interaction of the genes, i.e. proteins produced by
a gene depend on other genes (specified in the coding region of the gene).

For example, consider the genetic regulatory network shown in Figure 3.2.
A simple network showing how different gene products of some genes regulate
other genes is shown inside a cell, depicted as a rounded rectangle in Figure
3.2. The network describes a system that produces a number of products and
then turns off when enough of product B is produced. The GRN shows that
the entire network becomes activated when product B enters the cell from
an external source. B causes A to be produced, which in turn causes C to
be produced by another gene. A and C, without D in the cell cause more
B to be created, which in turn feeds back into the production of A, further
strengthening the cycle. Eventually, when a great deal of B is present, D is
finally produced, stopping the generation of B and ending the feedback cycle.
The GRN shows that interesting dynamics can result from the regulatory
interactions of different genes [SM03].

Fig. 3.2. An example of genetic regulatory network [SM03]. A, B, C and D denote
products produced by the genes (vertices of the graph representing the GRN). The
symbol >> means a large amount.
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3.2.4 Random boolean networks

Random boolean networks (RBNs) were introduced by Stuart Kaufmann
[Kau69, Kau93] for simulating the protein expression patterns in cells of
a developing embryo. Later, this model was investigated by Dealler and Beer
[DB96]. The concept of RBNs is similar to genetic regulatory networks de-
scribed in the previous Section. In contrast with the GRNs, the basic element
of a RBN (a vertex of the oriented graph describing the network) is repre-
sented by an arbitrary Boolean expression whose result effect other Boolean
expressions — “genes” — of the RBN. The edges of the graph represent inter-
actions between the vertices (i.e. input values to be processed by the vertices
and output values produced by the boolean expressions and processed by
other vertices). RBNs are computationally less expensive than GRN imple-
mentations, while exhibiting similar computational dynamics.

For example, consider the random boolean network shown in Figure 3.3.
The state of the network is given by the boolean values of A, B, and C. At each
time step, the state values are updated based on their values in the previous
time step according to the boolean expressions specified in the vertices. The
current state of a cell is given by the current state of the RBN by means of
which the cell is modeled [DB96].

Fig. 3.3. An example of random boolean network [SM03]. In general, the expression
A : B op C specifies a boolean variable A whose value is determined by the boolean
expression on the right of the colon. op denotes an arbitrary boolean operation.

3.2.5 Cellular encoding

Frédéric Gruau introduced a specific grammar-based developmental model
for the construction of neural networks in an efficient modular manner. This
method was termed cellular encoding [Gru94].

Cellular encoding takes the form of grammar tree used to encode a de-
velopmental process. The language upon which the grammar is defined uses
instructions that correspond to local graph transformations controlling cell
division (the genotype). Each cell retains a copy of the entire grammar-tree,
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but has a pointer pointing to different subtrees of the main tree. Development
begins with a single cell, which is subjected to cell division by duplication,
according to the instructions in the genome. The result of this process is the
phenotype, a neural network.

Cellular encoding is an example of context free system, in which neighbor
state is not taken into consideration (it does not use cell signaling). Addition-
ally, the model does not make use of diffusion chemicals, such as proteins.
Symbolic knowledge is used in the grammar to permit hierarchies, symmetry
and problem decomposition into sub-problems.

3.2.6 Graph-generation grammar

Hiroaki Kitano and his group were among the first to conduct research into
evolving computational development (i.e. the utilization of an evolutionary
algorithm to find a suitable behavior of a given developmental model, in par-
ticular, to evolve rewriting rules of a 2D parallel rewriting system). Kitano’s
model, that he called as graph-generation grammar, was successfully applied
in a variety of areas, e.g. neural networks [Kit90], logic circuits or complex
chemical circuits [Kit96].

The graph-grammar generation system is based on a rewriting system that
develops a solution from a single starting symbol. In contrast with a standard
grammar (for example an L-system described in Section 3.2.1), each rewriting
rule substitutes a 2×2 matrix for a single symbol. The symbols are rewritten in
parallel (similarly to L-systems) in each developmental step. After a specified
number of developmental steps a square matrix is developed that is interpreted
as a graph connection matrix. The resulting graph represents the target object
(e.g. a neural network, a digital circuit etc.).

3.2.7 Some other developmental models

In the previous section, some of the most popular developmental models were
summarized that have been applied in the evolutionary design fields. There
are much more models which are based on those approaches (possibly their
modifications and combinations) presented in the previous paragraphs. How-
ever, a detailed description of each of them is out of the scope of this work.
Let us summarize some important references dealing with other developmen-
tal systems which were applied in various areas in recent years. An important
resource related to development represents the book [S. 03], where a detailed
description of some developmental models are stated from both the biolog-
ical and computational point of view. The research of other developmental
techniques may be found, for example, in the following publications:

• Design, optimization and analysis of cellular automata and their appli-
cations to solve some typical difficult tasks is described in Sipper’s book
[Sip97]. The author also introduces an original evolutionary method for
the design of cellular automata called cellular programming.
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• Haddow and Tufte investigated the development of digital circuits by
means of L-systems and 2D cellular automata through FPGA recon-
figuration, i.e. the design of circuits is performed directly in hardware
[HTvR01, Tuf04, TH05].

• Utilization of L-systems as a generative encoding was investigated by Gor-
don. Development of mechanical structures, neural networks, controllers
or robot simulators and the comparison of these methods with parametric
encoding is presented in [HP01, Hor03].

• Gordon conducted the research of scalability of the evolutionary design
in the area of digital circuits using principles of biologically inspired de-
velopment. A concept of abstraction, modularity and reusability in the
development was introduced. Possibilities for overcoming the problem of
scale were demonstrated on various applications in comparison with direct
mapping [GB02, Gor03, GB05b, GB05a, Gor05].

• A computationally complete developmental model based on the principles
of gene expression and cell differentiation was introduced by Roggen in
[RFF07]. In fact, it is a special case of cellular automata (a regular cell
structure possessing only local cell interactions). The abilities of this model
were demonstrated on the development of 2D patterns (e.g. the Norwegian
flag) and neural networks for image recognition.

• Adaptation and self-repair during the developmental process were investi-
gated by Miller in [Mil03] by means of a cellular automaton-based model.
Experiments were conducted considering development of French flag and
other graphical patterns. A detailed description of Miller’s approach may
also be found in Chapter 15 of [S. 03].

3.2.8 Summary of developmental models

As evident from the previous sections, most of the basic developmental models
have been inspired by the appropriate processes observed in biology, for exam-
ple cell division, gene regulation etc. However, their application in practical
evolutionary systems may often be difficult. Therefore, more general methods
have been introduced in order to be easily applied in technical domains rather
than simulating purely biological principles. A typical representative of such
approach is, for instance, developmental genetic programming.

In the next chapter, another variant of developmental concept will be
introduced whose objective is to demonstrate the ability to design generic
structures. The main inspiration is also taken from the general genetic pro-
gramming approach – the evolution of computer programs.
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Instruction-based development

This work is focused on the research of generative encodings for the pur-
poses of the evolutionary design of generic structures of digital circuits. This
chapter briefly summarizes the key concepts invented for and applied in the
experiments presented in the next chapters. First, problems of the existing
developmental models will be discussed. Then a new approach will be intro-
duced whose features have been considered with respect to the problems of
the existing models. This approach will be referred to as instruction-based
development. The issue of introducing a new developmental system is not to
propose a biologically plausible model or to study any particular aspects of the
biological development. The objective is to propose a more general concept
that will be convenient for engineers (as designers of the evolutionary and de-
velopmental systems for specific applications), focusing on scalable structural
evolutionary design (in terms of generic solutions as the products of the evo-
lutionary process) that represents one of the challenging tasks in the common
field of evolutionary computing. The concept of the instruction-based devel-
opment represents the main contribution of this book. In the last part of this
chapter, different variants of the instruction-based model will be described
which are crucial for the case studies presented in the next chapters.

4.1 Problems of existing models

Before introducing the instruction-based developmental approach, let us briefly
summarize the features of the existing developmental models and discuss their
suitability to solve different kinds of problems. In particular, let us focus on
the problem of the design of generic structures (or more generally, on solving
arbitrarily large instances of a problem) which represents the crucial issue of
this work. The discussion will be devoted to cellular automata, Lindenmayer
systems (or grammars, in general), genetic regulatory networks and random
boolean networks. These models can be considered as basic approaches in the
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area of the computational development. Although there are much more mod-
els invented to solve specific problems, they utilize various modifications of
the basic concepts, possibly their combinations. For instance, Kitano’s graph
generation grammar is a 2D extension of L-systems, Gruau’s cellular encoding
is a variant of graph grammar (a specific form of a rewriting system) and so
on.

Cellular automata

Probably the most limiting issue of the CAs is the way of their design that
is less intuitive for human designer. Therefore, CAs have often been evolved.
However, the state space of cellular automata grows with increasing number
of possible states, especially in the case of non-uniform CAs with increasing
number of cells. Hence the evolutionary design of cellular automata is not
scalable. If the CAs are applied as a developmental model, it is possible to
achieve very complex (emergent) behavior. However, the generic developmen-
tal design using CAs may potentially be possible if a uniform theoretically
infinite cellular model is applied.

Grammar models

Considering the typical grammar-based rewriting system, the crucial issue for
evolutionary developmental design is the representation of candidate solutions
by means of symbols. The size of the search space depends on the number of
symbols and the number and complexity of the rewriting rules. Although
there are some applications involving L-systems as developmental model in
the evolutionary design, the generic development based on this model is still
a rare case. In theory, however, strings of arbitrary size can be developed
using rewriting systems if recursive and generative (i.e. non-reducing) rules
are allowed which could make the generic design possible. The crucial feature
of such developmental system is the interpretation of the developed strings
because no systematic approach exists.

Genetic regulatory networks

GRNs represent a computational model inspired by specific biological process
– the gene regulation in living organisms. The concept of GRNs enables to
design extensive networks that may exhibit very complex behavior. However,
the design of a suitable GRN for a specific application is a non-trivial task
especially due to the difficult encoding of the problem using the basic elements
of this model (no systematic approach exists to design GRNs in order to
perform computations). Therefore, the utilization of GRNs as developmental
model in an engineering area is still a rare case. Because of irregular structure
of GRNs in general, in which the computations occur only in the existing
vertices of the network, this model seems to be inadvisable for generic design.
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Random boolean networks

In fact, RBNs can be understood as a generalized concept of binary cellular
automata in which the cellular neighborhood is non-local and irregular (dif-
ferent cells may possess different number of neighbors from different places
of the cellular structure which leads to graph representation of the RBNs).
Therefore, similar features can be observed as in the case of cellular automata.
Because of more complex structure of RBNs and interaction between the cells
(i.e. nodes of the graph representing the RBN), more complex behavior is
achievable in comparison with cellular automata of the same size. In addi-
tion, RBNs are more difficult to design due to larger state (search) space in
comparison with CAs. Because of similar features regarding the structure of
RBNs in comparison with genetic regulatory networks, the utilization of this
model for the generic development is unusual.

In the previous paragraphs, the suitability of different developmental mod-
els to solve the generic design problem was discussed. The main problem re-
garding this task is that the model is either less intuitive for investigation “by
hand” (which makes the solutions difficult to understand and hard to modify
to adjust them to a specific requirements) or the concept of the model (struc-
ture, the way of computation etc.) is unsuitable to solve generic (scalable)
tasks. Considering these issues, it is evident that research of new concepts
and developmental models is needed in order to advance in solving the com-
mon challenges where complexity and scalability represent the main features.
Therefore, a new approach has been devised and studied with the aim to
improve the features that are critical in the developmental models discussed.
A new developmental model — an instruction-based approach — was invented
whose concept is inspired by the assembly languages in which an instruction
represents the basic program construct. The programs can be represented by
simple linear sequences of instructions and hence easily be encoded in the
chromosomes of the evolutionary algorithms. Moreover, the instructions are
comprehensible to human designer (programmer), hence the instruction-based
developmental systems are easier to design and verify before the evolution-
ary process is applied and the evolved solutions are more suitable for the
subsequent analysis and modification/optimization.

4.2 Introducing the instruction-based approach

Two variants of Koza’s genetic programming were mentioned in sections 2.4.2
and 2.4.3: developmental genetic programming and linear genetic program-
ming. Whilst, the linear GP refers to the representation of genotypes in ge-
netic programming, the developmental GP represents an enhancement of the
standard GP (the genotype is interpreted as a developmental encoding de-
termining how to create the phenotype). These two aspects represent a basis
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for introducing the new developmental approach whose main principle will be
described in the following paragraphs.

Considering the capabilities of the genetic programming in different areas,
its concept (regardless of what representation of the programs is utilized in the
encoding) can be viewed as a universal technique for the evolution of computer
programs (i.e. for the automatic design of algorithms). The genetic program-
ming approach considering the linear representation of the programs will be
used to evolve algorithms that are designed specifically for a given application
(problem to be solved). These programs will be interpreted as a prescriptions
for the development of the target objects (circuits) at the structural level.
This approach will be termed an application-specific development. Be-
cause only simple instructions will be considered (similar to machine-language
instructions) rather than more complex program constructs, our approach will
be referred to as instruction-based development. Note that the single term
“development” related to the experiments described in the next chapters will
refer to “application-specific instruction-based development”.

On the basis of the IBD concept, it is possible to define an evolutionary
instruction-based developmental system to perform the automatic de-
sign process. This design system consists of an application-specific assembly
language (let us call it by its abbreviation – ASAL), an ASAL interpreter,
a set of domain-specific building blocks and an evolutionary algorithm in
which a genome is interpreted as an ASAL program – a prescription for the
construction of a target object using the building blocks. The ASAL represents
a suitable set of instructions chosen with respect to the specific application
and its programming rules. The programming rules are implemented by the
ASAL interpreter. These rules typically include the encoding of the instruc-
tions, representation of their arguments, way of execution of the instructions
and so on. In fact, the ASAL interpreter represent a runtime environment for
executing the evolved programs (i.e. to perform the developmental process).
Moreover, it implements additional resources which are provided to the evo-
lutionary algorithm in order to make the automatic programming easy (anal-
ogous to programming languages provide similar means to the programmer).
For example, the interpreter may implement variables that the programs use
or a specific rules of interconnecting the building blocks during the develop-
ment. The evolutionary algorithm is typically a GP-based approach. However,
arbitrary encoding of the instructions in the chromosomes, operations and al-
gorithm to evolve the programs may be applied.

As evident, the concept of an IBD design system is very similar to Koza’s
developmental genetic programming. For the purposes of this book, an en-
hancement of this approach will be introduced in order to enable the design
of generic structures which is the main goal of this work. The following re-
quirements will be applied on the developmental process and the object being
developed to reach the goal:
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1. The evolved program (or its part) should be possible to apply repeatedly
or iteratively.

2. Additional parameters may be introduced into the ASAL interpreter spec-
ifying, in particular, the “size” of the target design.

3. The target object is able to “grow”, respective the size of the instance to
be developed is parametrized, according to the item (1), respective (2).

4.3 Application of instruction-based development

Considering the concept of the instruction-based developmental system de-
scribed in the previous section, the problem of finding a solution using an
IBD design system may be defined as discovering a program (by means of an
evolutionary algorithm) for the design of generic structures. In fact, the key
feature of the instruction-based development is the linear genetic program-
ming approach transfered into the area of computational development. In this
work, the IBD approach is intended to be applied on the structural level of
the target objects.

In general, the goal of this work is the research of the computational de-
velopment for the purposes of construction of generic circuit structures. Two
different variants of the instruction-based development have been investigated:

• Continual development. The construction process is performed itera-
tively. The size of the target object is determined according to the number
of iterations (developmental steps). It means that the object “grows up”
from a simple initial instance (or possibly from scratch). If the initial in-
stance of a given problem is specified at the beginning of the developmental
process, it is usually called an embryo. Since the size of the object depends
on the number of developmental steps, the solution is usually required to
be functional after each iteration.

• Parametric development. A crucial feature of this approach is a pa-
rameter (or a set of parameters) as the input of the developmental system
supplied by the designer that determines the size of the target structure.
For different values of parameters the target object is developed from the
start and the last instance is usually taken as the result. Therefore, the
objects before the last step need necessarily not to be fully functional.
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Continual development of arbitrarily large
sorting networks

In this chapter, an evolutionary design system is presented concerning an ap-
plication of instruction-based development for the automatic design of generic
(i.e. arbitrarily large) sorting networks. The continual development approach
is utilized in combination with the genetic algorithm. The key feature of this
method is that the target object is required to be fully functional after each
step of the development. It means that the circuit can “grow” continually and
theoretically infinitely.

The domain of sorting networks was chosen because (1) conventional so-
lutions of designing arbitrarily large sorting networks exist and, therefore,
the results can be compared and (2) evolutionary techniques have already
been utilized to design sorting networks for a predefined number of inputs;
the evolution of arbitrarily large sorting networks, however, represents a rare
case.

In overview, the proposed developmental system works as follows. First,
a small sorting network (that is called an embryo) has to be prepared to solve
the trivial instance of a problem. Then the evolved program is applied on the
embryo to create a larger sorting network (solving a larger instance of the
problem). In the next step, the same program is used to create a new instance
of the sorting network from the created larger sorting network and so on.
Every new instance of the sorting network is able to perform the function of
all its previous instances. It will be demonstrate that such program can be
designed automatically by means of evolutionary techniques.

It will be shown that the proposed approach is able to rediscover the com-
mon conventional principle of insertion which is traditionally used for con-
structing larger sorting networks from smaller instances. Furthermore, it will
be shown that some of the evolved programs are able to produce much more
efficient sorting networks (in terms of the comparison count and delay) than
the conventional solution can offer. Finally, a formal proof will be presented
demonstrating the generality of the best evolved algorithm for the construc-
tion of the sorting networks. The proposed method improves Sekanina’s initial
approach, described in [Sek04], which did not yield better solutions than the
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46 5 Continual development of arbitrarily large sorting networks

conventional method. His method also did not deal with delay of resulting
circuits.

5.1 Research motivation in this domain

Many studies have still been published dealing with the evolutionary design
of sorting networks. Most of them are focused on the design of sorting net-
works with a given (constant) number of inputs. However, design of general
approaches for the sorting networks represents a rare case in the field of evo-
lutionary computation. Inspired by the existing conventional principles for
the design of generic sorting networks and by Sekanina’s work [Sek04] dealing
with the evolutionary development of sorting networks, the first case study of
this work will be focused on the evolutionary design of this kind of circuits
in order to demonstrate the abilities of instruction-based development. Sort-
ing networks exhibit a simple structure consisting of homogeneous building
blocks – comparators. Therefore, the structure can be easily represented in
the evolutionary algorithms and manipulated by the development.

Although there are efficient sorting networks known for up to 16 inputs, the
direct design of larger networks is difficult. Therefore, an effective algorithm
is needed for creating larger sorting networks from existing smaller instances.
For example, an N+2 sorting network may be needed to be created from an N -
input network. The issue of what arrangement of comparators should be added
to the existing network in order to obtain larger efficient network represents
the main problem of this approach. Possible solutions will be proposed in this
chapter.

Effective implementation and sorting in hardware represents the main ad-
vantage of the sorting networks. Sorting networks can also be utilized as cir-
cuits for calculating medians. For example, median circuits represent a crucial
components of image filters. Therefore, the results of this research may be uti-
lized in this field.

5.2 Sorting networks and their design

The concept of sorting networks (SNs) was introduced in 1954; Knuth traced
the history of this problem in his book [Knu98]. A sorting network is defined
as a sequence of compare–swap operations (comparators) that depends only
on the number of elements to be sorted, not on the values of the elements.
A compare–swap of two elements (a, b) compares and exchanges a and b so
that a ≤ b is obtained after the operation.

The main advantage of the sorting network is that the sequence of com-
parisons is fixed. Thus it is suitable for parallel processing and hardware im-
plementation, especially if the number of sorted elements is small. Figure 5.1
shows an example of a 3-input sorting network.
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5.2 Sorting networks and their design 47

Fig. 5.1. (a) a three-input sorting network consists of three comparators, (b) alter-
native symbol. This network can be described using the string (0,1)(1,2)(0,1).

Inputs (N) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Delay 0 1 3 3 5 5 6 6 7 8 8 9 10 10 10 10

Comparators 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60

Table 5.1. The number of comparators and delay of some of the best currently
known SNs

The number of compare–swap components and delay are two crucial pa-
rameters of any sorting network. By delay it is meant the minimal number
of groups of compare–swap components that must be executed sequentially.
The inputs of the comparators inside a single group are independent of each
other and therefore these comparators can be executed in parallel. Design-
ers try to minimize the number of comparators, delay or both parameters.
Table 5.1 shows the number of comparators and delay of some of the best
currently known sorting networks. Some of these networks were designed (or
rediscovered) using evolutionary techniques [CM01, CM02b, CM02a, Hil90,
Jui95, J. 99]. In most cases the evolutionary approach was based on the en-
coding given in Figure 5.1 (in which comparator inputs are encoded using two
integers). Evolutionary techniques were also utilized to discover fault-tolerant
SNs [HF04, MCFF00].

In order to find out whether an N -input SN operates correctly, it should
be tested N ! input combinations. Thanks to the zero–one principle this num-
ber can be reduced. This principle states that if an N -input sorting network
sorts all 2N input sequences of zeros and ones into nondecreasing order, it will
sort any arbitrary sequence of N numbers into nondecreasing order [Knu98].
Furthermore, if a proper encoding is used, on say 32 bits, and binary opera-
tors AND instead of minimum and OR instead of maximum, 32 test vectors
can be evaluated in parallel and thus reduce the testing process 32 times.
Unfortunately, it is usually impossible to obtain the general solution if only
a subset of input vectors is utilized during the evolutionary design [IFK00].

SNs are usually designed for a fixed number of inputs. It is also valid for
the mentioned evolutionary approaches. As the evolutionary approach which
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utilizes direct encoding is not scalable, there exists a limit on the size of
the evolved SNs. Some conventional approaches exist for designing arbitrarily
large sorting networks. Figure 5.2 shows two principles for constructing a SN
for N + 1 inputs when an N -input network is given [Knu98].

• Insertion – the (N+1)st input is inserted into a proper place after the first
N elements have been sorted.

• Selection – the largest input value can be selected before the remaining
ones are sorted.

Fig. 5.2. Making (N+1)-sorters from N -sorters: (a) insertion principle, (b) selection
principle

It is evident that the insertion principle corresponds to the straight inser-
tion algorithm known from the theory of sorting. The selection principle is
related to the bubble sort algorithm. Examples of sorting networks created
using the two principles are shown in Figure 5.3. Observe that while physical
positions of comparators are different, their logical positions are equivalent.
Hence it is possible to re-arrange these comparators in order to obtain a sin-
gle SN (see Figure 5.4). The network contains the comparators that can be
executed in parallel. Therefore, its delay can be reduced substantially. These
comparators form the so-called parallel layers.

It is obvious that the sorting networks created using insertion or selection
principle are much larger than those networks designed for a particular N .
However, the method can be treated as a general design principle for building
arbitrarily large SNs. In the next sections, the principle will be rediscovered
firstly and then improved by means of evolutionary techniques.

5.3 Development for sorting networks

The objective of this section is to propose an application-specific development
for evolutionary algorithms, which, consequently, will be able to produce in-
novative arbitrarily large sorting networks.
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Fig. 5.3. Examples of sorting networks created using (a) insertion principle, (b) se-
lection principle

Fig. 5.4. A sorting network with parallel layers (in rectangles)

5.3.1 Basic concept

The proposed algorithm is based on Sekanina’s approach described in [Sek04].
Unlike in [Sek04] this work deals with the delay of the sorting networks. A ge-
netic algorithm is used to design a program, consisting of application-specific
instructions, that is able to create a larger sorting network from a smaller SN
(the smallest one is called an embryo). Then the program is applied on its
result in order to create a larger sorting network and so on. Algorithm 1 and
Figure 5.5 demonstrate this idea.

Algorithm 1:
Set time t = 0;
Create initial population of programs P(t);
Create SNs using programs from P(t);
Evaluate the sorting networks;
while (termination condition is false) do
{

t = t+1;
P(t) = create new population using P(t–1);
Create SNs using programs from P(t);
Evaluate sorting networks;
}

The development is realized as follows. Consider that we have a 2-input
SN (i.e. N = 2 as seen in Figure 5.5) and we are going to evolve a program
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that will create a 3-input sorting network from the 2-input SN. The same
program has to be able to create a 4-input sorting network from the 3-input
SN and so on. In general, the aim of the developmental system is to create
a larger sorting network from a smaller one. For the purposes of description
of this design process, let us introduce the following terms. A developmental
step is defined as a single application of the evolved program. A finite num-
ber of the developmental steps is denoted as a developmental sequence. Let
us define the size of a developmental step as the difference of the number of
inputs of two resulting sorting networks following immediately in the devel-
opmental sequence. For example, if a 4-input sorting network is created from
a 2-input SN network after one developmental step, the size of developmental
step possesses the value 2 that is determined as a difference of these numbers
of inputs.

Fig. 5.5. Designing larger sorting networks from smaller sorting networks by means
of a construction program K

5.3.2 Representation and the proposed developmental method

Sorting networks are encoded as sequences of pairs of integers. For instance,
as Figure 5.1 shows, the 3-input SN is represented by the sequence of pairs
(0, 1)(1, 2)(0, 1) indicating the ordering of compare–swap operations over the
inputs 0, 1 and 2. The program is a sequence of instructions, each of which
is encoded as three integers – the operation code, the first argument and the
second argument. The representation is very similar to the concept of lin-
ear genetic programming [BB07]. Only two types of instructions are utilized:
copy and modify. Table 5.2 introduces their semantics, variants, operation
codes and parameters. Note that the instructions were designed to solve the
specific task – the construction of arbitrarily large sorting networks. The Mod-
ify instructions read the indices of inputs of a comparator and add the values
of their arguments to them. Modulo-operation ensures that the created com-
parator remains inside the sorting network of a given number of inputs. This
type of instructions may be considered as a “shift” of a comparator to another
position preserving the ordering of comparators. The Copy instructions copy
some comparators (beginning from the actual one) to the next instance. The
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number of comparators to be copied depends on the instruction argument and
the number of inputs of the sorting network being created.

Instruction arg1 arg2 description

0: ModifyS a b c1 = (c1 + a) mod w, c2 = (c2 + b) mod w, cp = cp + 1,
np = np + 1

1: ModifyM a b c1 = (c1 + a) mod w, c2 = (c2 + b) mod w, cp = cp + 1,
ep = ep + 1, np = np + 1

2: CopyS k − copy w − k comparators, cp = cp + 1, np = np + w − k

3: CopyM k − copy w − k comparators, cp = cp + 1, ep = ep + w − k,
np = np + w − k

Table 5.2. Instruction set utilized in development. “mod” denotes the modulo
operation.

Let c1 and c2 (i.e. the pair (c1, c2)) denote indices of inputs of a comparator
in the embryo that is processed by an instruction from Table 5.2.

The Instructions utilize three pieces of information: (1) operation codes
and (2) argument values given by GA, and (3) w, which is the number of
inputs (width) of the currently constructed SN. This value must be inserted
into the developmental process externally. Three pointers are utilized in order
to indicate the current position in sequences:

• ep – pointer to the source sorting network (embryo pointer),
• np – pointer to the next comparator in a constructed network (next-

position pointer), and
• cp – instruction pointer.

Note that there are two different variants of the instructions. Let us denote
them as S-variant (i.e. the instructions ModifyS and CopyS) and M-variant
(i.e. the instructions ModifyM and CopyM). The instructions of M-variant
update the embryo pointer (ep) after the execution of the instruction while
the S-variant of the instructions does not influence the embryo pointer.

As Figure 5.6 shows, the instructions of the program are executed se-
quentially; each of the instructions process the comparator pointed by the
embryo pointer. The comparators of the embryo are also processed sequen-
tially. If a group of comparators are to be processed (concerning the Copy
instructions), the comparators are processed in sequence starting from the
comparator pointed by the embryo pointer. Before execution of the first in-
struction, an auxiliary variable (e end) is initialized by the value of np. This
auxiliary value marks the end of embryo and is invariable during actual appli-
cation of the program. The process of construction terminates when either all
instructions of the program are executed or the end of embryo is reached (i.e.
ep = e end). After a single application of the program the obtained sorting
network is evaluated. If the program is applied again, a larger sorting network
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is created and so on. In such case, the pointers ep and np possess their values
resulted from the previous application; only cp and e end are updated. Note
that the sorting network obtained by repeated application of the program
possesses all the comparators of its precursors.

Fig. 5.6. Initialization of the development: (a) growing sorting network, (b) chro-
mosome (i.e. instructions in the construction program)

The goal is to find such a program that will create valid sorting networks
with the minimal number of comparators and/or delay. Because the delay
of constructed SNs should be minimized, the following special condition has
to be satisfied in order to acknowledge the result of execution of the Modify
instruction: the result of the Modify instruction is valid only in case that c1 <
c2 holds for the newly created comparator. Otherwise, the new comparator
is not included in the sorting network and the instruction only updates the
embryo pointer. Figure 5.7 shows an example of the invalid result of Modify
instruction. The pointer ep determines a comparator that will be used to
create a comparator at position specified by np. However, the comparator
created at the np position does not satisfy the condition c1 < c2 because
c1 = 3 and c2 = 0. Therefore, it will not be included into the sorting network
being developed. The experiments showed that such comparators are often
redundant, i.e. they do not swap the input values for any arbitrary input vector
of the sorting network. If these comparators were accepted, the redundancy
would propagate to the larger sorting networks, which would be ineffective
too.

5.3.3 An example of two steps of development

Figure 5.8 shows an example of two steps of the construction process. The
horizontal sequence of numbers denotes the comparator positions. The ver-
tical sequence of numbers denotes the indices of inputs of sorting network.
The thin rectangle surrounds the embryo. The vertical thin line separates
the comparators created in the first and second application of the program.
ep1 = 0 denotes the comparator pointed by embryo pointer, np1 = 3 denotes
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Fig. 5.7. Example of invalid result of Modify instruction

next-position pointer and end1 = 3 denotes the end of embryo before the first
application of the program. Similarly, ep2 = 3 denotes the comparator pointed
by embryo pointer, np2 = 8 denotes next-position pointer and end2 = 8 de-
notes the end of embryo before the second application of the program. Before
any application of the program the pointers ep and np are initialized to the
values of ep1 and np1 respectively.

After execution of instructions [ModifyS 2 2] and [ModifyS 1 2], compara-
tors (2,3) and (1,3) are created in positions 3 and 4 (using the comparator
(0,1) at the position 0). The embryo pointer (ep) remains unchanged and
np = 5. Execution of the [ModifyM 0 1] results in creating comparator (0,2)
at the position 5. Now, ep = 1 and np = 6. By applying the [ModifyS 2 1]
on comparator (1,2) a new comparator (3,3) is created. However, such the
comparator does not satisfy the c1 < c2 condition and hence it will not be
included in the sorting network. ep and np remain unchanged. The [CopyM
3 1] instruction copies one comparator from the position 1 to the position
pointed by np = 6 (since a 4-input SN is being created and the first argument
of the CopyM instruction is 3, the 4–3 results in 1 comparator to be copied
– see Table 5.2). The instruction updates the pointers, so now ep = 2 and
np = 7. The [CopyM 2 4] should copy two comparators. Since there is only
one comparator before the end of embryo, only one comparator will be copied
and the pointers will be updated to ep = 3 and np = 8. Because the end of
embryo was reached and all the instructions of the program were executed,
the first application is finished.

The ep and np pointers now possess the values of ep2 and np2 and this is
the starting configuration for the second application of the program. Execution
of instructions proceeds in the same manner. Comparators will be created in
positions 8–15. Note that during the second application of the program the
result of the [ModifyS 2 1] instruction, that was applied on the comparator
(1,3) at the position 4, is valid and the comparator (3,4) will be created at
the position 11. Since we are now creating a 6-input SN, the [CopyM 3 1]
copies three comparators from the positions 4, 5 and 6. The last [CopyM 2
4] instruction copies one comparator from the position 7 before the end of
the second embryo and the second application of the program is finished. The
next applications would construct the 8-, 10-, 12-input SNs and so on.
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Fig. 5.8. Example of the construction of sorting networks by means of the program
[ModifyS 2 2][ModifyS 1 2][ModifyM 0 1][ModifyS 2 1][CopyM 3 1][CopyM 2 4]

5.3.4 Evolutionary design system

Two variants of genetic algorithm were applied during the experiments: sim-
ple GA and steady-state GA. In total three sets of experiments have been
performed: evolution of arbitrarily large sorting networks, evolution of odd-
input sorting networks and evolution of even-input networks. The utilization
of a particular variant and its parameters for a given set of experiments was
determined experimentally. For the first two sets the steady-state GA was
utilized. For the last set of experiments the simple GA was applied.

The setup of a genetic algorithm is specified by the crossover probabil-
ity, mutation probability, the number of individuals in the population (i.e.
the population size) and the maximal number of generations. In addition,
steady-state GA requires the number of overlapping individuals between the
generations to be specified. Each GA applied during the experiments works
with the chromosomes of the constant length (i.e. the constant number of in-
structions of the program to be evolved). Each instruction in the chromosome
is encoded as a triplet of integers that are interpreted as the operation code
and two arguments of the instruction. The uniform crossover and the muta-
tion operator to mutate exactly one instruction per chromosome was applied.
The mutation operator is applied on all offspring generated by the crossover.
The initial population is generated randomly. Note that the parameters of
a genetic algorithm are stated in the sections presenting the results of the
specific experiments.

The proposed developmental scheme can fully be defined using the follow-
ing parameters which will be utilized to characterize the results in Section 5.4.
Let w1 denote the number of inputs of the smallest sorting network that is
constructed from ew-input embryo in the fitness calculation process (i.e. the
SN created by the first application of the program). Similarly, w max denotes
the largest sorting network constructed during the fitness evaluation. Let dw
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be a difference between the number of inputs of neighboring networks created
by the program. In this section, dw is 1 or 2. Finally, it is useful to define
one more parameter, de, de = w1− ew. The following parameters summarize
the mentioned example: w1 = 4, w max = 7, dw = 1, and ew = 3. The
specific values of these parameters are given in the sections describing the
experimental results.

The goal is to evolve arbitrarily large sorting networks. However, because
of problems with the scalability of fitness evaluation, only several instances of
the growing SN can be evaluated in the fitness calculation process. Assume
that we will start with a 3-input sorting network and we are going to develop
larger sorting networks considering the developmental steps of size 1. Then
the candidate program is used to build a developmental sequence consisting
of a 4-input, 5-input, 6-input and 7-input SN. The fitness value is calculated
using a sorting network simulator that evaluates that developmental sequence
as follows:

fitness = f(4) + f(5) + f(6) + f(7),

where f(j) is the fitness value for a j-input SN. This value is calculated using
the zero–one principle. Hence the value 24 + 25 + 26 + 27 = 240 represents
the best possible value that could be obtained. At the end of evolution it has
to be tested whether the evolved program is general, i.e. whether it generates
infinitely large sorting networks which sort all possible input sequences. If
a program is able to create a sorting network for a sufficiently high N (N = 28
in our case) then the program is considered as general.

The experiments were conducted on common PCs running RedHat-based
Linux operating system. The hardware configuration consisted of a 2.0 GHz
processor and 512 MB RAM. Sun Grid Engine (SGE) system was utilized
so that several independent experiments could be run on different PCs in
parallel.

5.4 Experimental results

In this section the evolved programs and resulting sorting networks developed
by means of that programs are summarized. A general success rate will be
measured that is determined as the number of general programs (i.e. programs
that are able to develop theoretically infinitely large sorting network) obtained
out of 100 independent runs of the evolutionary process.

The produced sorting networks will be characterized in terms of compara-
tors count and delay. Each program will be labeled by its length (the number
of instructions), size of utilized embryo and identification. For instance, g4-
3all 2 denotes a general program consisting of four instructions that develops
from a three-input embryo sorting networks of all (i.e. odd as well as even)
inputs. The last digit 2 denotes the order of the program in the category of
presented four-instruction programs. Moreover, it was recognized that very



i
i

“bidlo-phdthesis-fitmono” — 2011/1/27 — 15:25 — page 56 — #64 i
i

i
i

i
i

56 5 Continual development of arbitrarily large sorting networks

interesting sorting networks are produced in the case that only even-input (or
odd-input) networks are required. Hence, in addition to the arbitrary number
of inputs of resulting sorting networks, the programs were evolved also for
growing sorting networks possessing only the odd or even number of inputs
which is identified in the program labels. Table 5.3 shows a general description
of how the evolved programs will be labeled in the experiments description.

Symbols Description

X program length (the number of instructions)
Y embryo width (the number of inputs)
zzz odd/even/all (possible inputs)
ID additional identification

Table 5.3. Definition of labels for the programs in the form gX-Yzzz ID

Three tables will summarize each experiment. The first table lists the best
programs. The second table gives the number of compare–swap components
and the number of redundant comparators (in parentheses). Delay and the
number of parallel layers in parentheses (that are available after removal of
redundant comparators) are given in the third table. The best solution is typed
italic. Note that due to the space reasons the longer programs will be shown
with only the operation codes of their instructions (see Table 5.2) instead
of the instruction names. Various types of embryos have been utilized in the
experiments. Figure 5.9 shows the embryos that were utilized.

Fig. 5.9. Embryos utilized: (a) 2-input, (b) 3-input, (c) 4-input, (d) 4-input –
another type

5.4.1 Evolving arbitrarily large sorting networks

In the first set of experiments, the sorting networks with the even as well as
odd number of inputs were evolved from a three-input embryo. It corresponds
to setting: ew = 3, de = 1 and dw = 1. A simple GA was used, operating with
60 individuals, with the probability of crossover pc = 0.75 and the probability
of mutation pm = 0.08. Results are summarized in Tables 5.4, 5.5, and 5.6.

The evolved programs are very simple and of the same quality as the
conventional approach produces. In fact the conventional straight insertion
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Program Instructions #general

g3-3all [ModifyS 2 2] [ModifyS 1 1] [CopyM 3 2]
g3-3all 2 [ModifyS 1 1] [ModifyM 2 2] [CopyM 0 2] 100
g3-3all 3 [ModifyS 2 2] [ModifyS 1 1] [CopyM 0 3]

g4-3all [ModifyS 3 2] [ModifyS 2 2] [ModifyS 1 1] [CopyM 3 3] 100
g4-3all 2 [ModifyM 0 0] [ModifyS 1 1] [ModifyS 1 0] [CopyM 0 2]

Table 5.4. Examples of general programs evolved for a 3-input embryo considering
the following setup of parameters: ew = 3, de = 1, dw = 1

N 4 5 6 7 8 9 10 11 12 13 14 15

conv. 6 10 15 21 28 36 45 55 66 78 91 105

g3-3all 6 10 15 21 28 36 45 55 66 78 91 105

g3-3all 2 7 12 18 25 33 42 52 63 75 88 102 117
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

g3-3all 3 8 14 21 29 38 48 59 71 84 98 113 129
(2) (4) (6) (8) (10) (12) (14) (16) (18) (20) (22) (24)

g4-3all 6 10 15 21 28 36 45 55 66 78 91 105

g4-3all 2 7 12 18 25 33 42 52 63 75 88 102 117
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

N 16 17 18 19 20 21 22 23 24 25 26 27

conv. 120 136 153 171 190 210 231 253 276 300 325 351

g3-3all 120 136 153 171 190 210 231 253 276 300 325 351

g3-3all 2 133 150 168 187 207 228 250 273 297 322 348 375
(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)

g3-3all 3 146 164 183 203 224 246 269 293 318 344 371 399
(26) (28) (30) (32) (34) (36) (38) (40) (42) (44) (46) (48)

g4-3all 120 136 153 171 190 210 231 253 276 300 325 351

g4-3all 2 133 150 168 187 207 228 250 273 297 322 348 375
(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)

Table 5.5. The number of comparators of sorting networks for programs from Table
5.4. The number of redundant comparators is given in parentheses.

algorithm has been rediscovered (see Figure 5.10). Some other examples are
given in Figure 5.11. We were not able to improve the principle of construction
in this way. Hence the parameters of the development and GA have been
changed as the next section illustrates.

5.4.2 Evolving odd-input sorting networks

The constructed sorting networks were restricted to the odd number of inputs.
Surprisingly, the most interesting odd-input sorting networks were generated
by using an even-input embryo. A 4-input embryo was chosen, ew = 4, and
parameters de = 1 and dw = 2. After some experiments, the best results were
produced by a steady-state genetic algorithm with pc = 0.74 and pm = 0.1.
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N 4 5 6 7 8 9 10 11 12 13 14 15

conv. 5 7 9 11 13 15 17 19 21 23 25 27

g3-3all 5 7 9 11 13 15 17 19 21 23 25 27

g3-3all 2 7 11 15 19 23 27 31 35 39 43 47 51
(5) (7) (9) (11) (13) (15) (17) (19) (21) (23) (25) (27)

g3-3all 3 7 11 15 19 23 27 31 35 39 43 47 51
(5) (7) (9) (11) (13) (15) (17) (19) (21) (23) (25) (27)

g4-3all 5 7 9 11 13 15 17 19 21 23 25 27

g4-3all 2 6 9 12 15 18 21 24 27 30 33 36 39
(5) (7) (9) (11) (13) (15) (17) (19) (21) (23) (25) (27)

N 16 17 18 19 20 21 22 23 24 25 26 27

konv. 29 31 33 35 37 39 41 43 45 47 49 51

g3-3all 29 31 33 35 37 39 41 43 45 47 49 51

g3-3all 2 55 59 63 67 71 75 79 83 87 91 95 99
(29) (31) (33) (35) (37) (39) (41) (43) (45) (47) (49) (51)

g3-3all 3 55 59 63 67 71 75 79 83 87 91 95 99
(29) (31) (33) (35) (37) (39) (41) (43) (45) (47) (49) (51)

g4-3all 29 31 33 35 37 39 41 43 45 47 49 51

g4-3all 2 42 45 48 51 54 57 60 63 66 69 72 75
(29) (31) (33) (35) (37) (39) (41) (43) (45) (47) (49) (51)

Table 5.6. Delay of sorting networks from Table 5.4. Parentheses show delay after
removal of redundant comparators.

Fig. 5.10. The insertion principle rediscovered using instructions: [ModifyS 2
2][ModifyS 1 1][CopyM 3 2] or [ModifyS 3 2][ModifyS 2 2][ModifyS 1 1][CopyM
3 3]
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Fig. 5.11. Examples of growing sorting networks created using the programs (a) g4-
3all 2, (b) g3-3all 2, (c) g3-3all 3

Population consists of 400 individuals with overlapping 12 individuals. Ta-
ble 5.7 shows chromosomes of some evolved programs. As Table 5.8 indicates,
it is possible to reduce the number of comparators substantially in this set of
experiments. Delays are given in Table 5.9.

If the number of comparators is measured then the best-evolved sorting
network is given in Figure 5.12. In case of minimizing the delay, the best
solution is shown in Figure5.13. However, all the SNs contain redundant com-
parators which make their delay unnecessarily long. After their removal the
quality (delay) of the conventional solution can be obtained.
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Program Instructions #general

g8-4odd [0 2 2] [0 2 3] [1 3 3] [0 1 1] [0 4 0] [3 2 3] [3 0 4] [3 1 3]
g8-4odd 2 [0 2 2] [0 2 3] [1 3 3] [0 1 1] [3 4 2] [3 2 2] [3 2 2] [3 4 4] 41
g8-4odd 3 [0 2 2] [0 2 3] [0 3 3] [1 2 0] [0 1 1] [3 0 4] [0 3 3] [3 3 3]
g8-4odd 4 [0 2 2] [0 3 3] [0 2 2] [0 1 1] [0 2 2] [3 0 0] [3 3 2] [3 0 0]

g7-4odd [0 2 2] [0 3 2] [1 2 3] [0 3 2] [0 1 1] [3 0 1] [3 0 3]
g7-4odd 2 [0 2 2] [1 2 3] [0 3 2] [0 1 1] [0 2 1] [3 0 2] [3 4 0] 62
g7-4odd 3 [0 2 2] [1 2 3] [0 1 1] [0 3 2] [0 1 1] [3 3 2] [3 2 3]

g6-4odd [0 2 2] [0 2 3] [0 3 3] [1 1 2] [3 2 1] [3 3 3] 80
g6-4odd 2 [0 2 2] [1 2 3] [0 3 2] [0 1 1] [3 1 3] [3 3 4]

Table 5.7. Evolved programs for the construction of odd-input sorting networks
using a four-input embryo. The parameters of the developmental system are: ew =
4, de = 1, dw = 2.

N 5 7 9 11 13 15 17 19 21 23 25 27

conv. 10 21 36 55 78 105 136 171 210 253 300 351

g8-4odd 14 26 41 59 80 104 131 161 194 230 269 311
(5) (8) (11) (14) (17) (20) (23) (26) (29) (32) (35) (38)

g8-4odd 2 13 24 38 55 75 98 124 153 185 220 258 299
(4) (6) (8) (10) (12) (14) (16) (18) (20) (22) (24) (26)

g8-4odd 3 13 24 39 58 81 108 139 174 213 256 303 354
(4) (6) (9) (13) (18) (24) (31) (39) (48) (58) (69) (81)

g8-4odd 4 15 30 50 75 105 140 180 225 275 330 390 455
(6) (10) (15) (21) (28) (36) (45) (55) (66) (78) (91) (105)

g7-4odd 12 22 35 51 70 92 117 145 176 210 247 287
(3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

g7-4odd 2 12 23 38 57 80 107 138 173 212 255 302 353
(3) (5) (8) (12) (17) (23) (30) (38) (47) (57) (68) (80)

g7-4odd 3 13 25 41 61 85 113 145 181 221 265 313 365
(4) (7) (11) (16) (22) (29) (37) (46) (56) (67) (79) (92)

g6-4odd 13 24 38 55 75 98 124 153 185 220 258 299
(4) (6) (8) (10) (12) (14) (16) (18) (20) (22) (24) (26)

g6-4odd 2 12 22 35 51 70 92 117 145 176 210 247 287
(3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Table 5.8. The number of comparators for odd-input sorting networks created using
programs from Table 5.7
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N 5 7 9 11 13 15 17 19 21 23 25 27

conv. 7 11 15 19 23 27 31 35 39 43 47 51

g8-4odd 11 18 25 32 39 46 53 60 67 74 81 88
(6) (12) (17) (22) (27) (32) (37) (42) (47) (52) (57) (62)

g8-4odd 2 10 16 22 28 34 40 46 52 58 64 70 76
(6) (12) (17) (22) (27) (32) (37) (42) (47) (52) (57) (62)

g8-4odd 3 10 16 22 28 37 45 53 61 70 80 90 100
(6) (12) (17) (22) (27) (32) (37) (42) (47) (52) (57) (62)

g8-4odd 4 11 19 27 35 43 51 59 67 75 83 91 99
(6) (11) (15) (19) (23) (27) (31) (35) (39) (43) (47) (51)

g7-4odd 9 14 19 24 29 34 39 44 49 54 59 64
(6) (12) (17) (22) (27) (32) (37) (42) (47) (52) (57) (62)

g7-4odd 2 9 16 23 30 37 44 51 58 65 72 79 86
(6) (12) (17) (22) (27) (32) (37) (42) (47) (52) (57) (62)

g7-4odd 3 10 17 24 31 38 45 52 59 66 73 80 87
(6) (12) (16) (20) (24) (28) (32) (36) (40) (44) (48) (52)

g6-4odd 10 16 22 28 34 40 46 52 58 65 70 76
(6) (12) (17) (22) (27) (32) (37) (42) (47) (52) (57) (62)

g6-4odd 2 9 14 19 24 29 34 39 44 49 54 59 64
(6) (12) (17) (22) (27) (32) (37) (42) (47) (52) (57) (62)

Table 5.9. Delay of odd-input sorting networks created using programs from Ta-
ble 5.7

Fig. 5.12. Comparator-efficient odd-input sorting networks created by means of the
program g6-4odd 2. The embryo is marked.
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Fig. 5.13. Delay-efficient odd-input sorting networks created by means of the pro-
gram g8-4odd 4

5.4.3 Evolving even-input sorting networks

In the previous section better programs were discovered than the conventional
approach offers for the odd-input sorting networks. This section deals with
discovered even-input SNs that are better than conventional ones.

Program Instructions #gen.

g9-2even [0 2 2] [0 1 2] [0 0 1] [1 1 1] [0 4 4] [3 3 2] [3 1 1] [1 1 2] [2 1 0] 14

g8-2even [0 2 2] [0 0 1] [0 1 2] [1 1 1] [3 0 2] [0 1 3] [3 0 0] [3 2 3] 25
g8-2even 2 [0 2 2] [0 1 2] [0 0 1] [1 1 1] [0 4 4] [3 0 1] [3 4 1] [1 2 3]

g6-2even [0 2 2] [0 1 1] [0 0 2] [0 2 2] [3 0 4] [3 0 0] 73
g6-2even 2 [0 2 2] [0 1 2] [0 0 1] [1 1 1] [3 1 2] [3 1 1]

Table 5.10. Evolved programs for the construction of even-input sorting networks
utilizing a two-input embryo. The parameters of the developmental systems are:
ew = 2, de = 2, dw = 2. #gen. denotes the number of general programs.

In contrast to the previous section, various types of embryos have been
confirmed as useful for constructing novel sorting networks. The simple genetic
algorithm that was applied in this set of experiments was specified by the
following parameters: pc = 0.7, pm = 0.023 and the population size counts 60
individuals. Tables 5.10, 5.11 and 5.12 summarize the results for the two-input
embryo.
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N 4 6 8 10 12 14 16 18 20 22 24 26 28

conv. 6 15 28 45 66 91 120 153 190 231 276 325 378

g9-2even
g8-2even 2 5 12 22 35 51 70 92 117 145 176 210 247 287
g6-2even 2

g8-2even 5 12 22 35 51 71 95 123 155 191 231 275 323
(0) (0) (0) (0) (0) (1) (3) (6) (10) (15) (21) (28) (36)

g6-2even 6 15 28 45 66 91 120 153 190 231 276 325 378

Table 5.11. The number of comparators of even-input sorting networks created
from a two-input embryo using programs given in Table 5.10

N 4 6 8 10 12 14 16 18 20 22 24 26 28

conv. 5 9 13 17 21 25 29 33 37 41 45 49 53

g9-2even
g8-2even 2 3 7 11 15 19 23 27 31 35 39 43 47 51
g6-2even 2

g8-2even 3 7 11 15 19 23 28 34 39 45 51 57 63
(3) (7) (11) (15) (19) (23) (27) (31) (35) (39) (43) (47) (51)

g6-2even 3 7 11 15 19 23 27 31 35 39 43 47 51

Table 5.12. Delay of even-input sorting networks created from a two-input embryo
using programs given in Table 5.10

As Figure 5.14 shows, the optimal 4-input sorting network was created
from a 2-input embryo after the first developmental step (it is the best pos-
sible 4-input sorting network from both the point of view of the number of
comparators and delay).

The g8-4even 2 represents one of the best programs that has ever been
evolved in this work. This program uses a four-input embryo and produces
sorting networks with a better comparator count and delay than the con-
ventional solution (the insertion principle). However, it contains redundant
comparators that have to be removed. Examples of programs evolved from
the 4-input embryo (including g8-4even 2 ) are given in Table 5.13. Other pa-
rameters are summarized in Tables 5.14 and 5.15. Sorting networks created
using the best programs are shown in figures 5.15 and 5.16.

Two interesting programs were evolved by using a three-input embryo.
They are not as good as the programs utilizing a four-input embryo. How-
ever, they still produce better results than the conventional approach (see
Tables 5.16, 5.17 and 5.18). Examples of sorting networks are given in Fig-
ure 5.17.
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Fig. 5.14. The most comparator-efficient as well as delay-efficient even-input sorting
networks created from a two-input embryo using programs g9-2even, g8-2even 2 or
g6-2even 2

Program Instructions #general

g8-4even [1 4 1] [0 0 1] [0 2 2] [0 0 1] [1 1 2] [0 3 2] [3 3 0] [3 3 2]
g8-4even 2 [1 4 4] [1 2 1] [0 4 3] [0 2 2] [0 3 3] [3 4 1] [0 2 2] [3 1 3] 41
g8-4even 3 [0 2 2] [0 4 4] [0 3 4] [1 2 3] [1 2 0] [3 4 2] [0 2 2] [3 4 4]

g7-4even [1 4 4] [1 2 2] [0 2 2] [0 3 3] [0 3 2] [3 2 0] [3 3 3] 46

Table 5.13. Evolved programs for the construction of even-input sorting networks
utilizing a four-input embryo. The parameters of the developmental system are:
ew = 4, de = 2, dw = 2.
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N 6 8 10 12 14 16 18 20 22 24 26 28

conventional 15 28 45 66 91 120 153 190 231 276 325 378

g8-4even 13 24 38 55 75 98 124 153 185 220 258 299

g8-4even 2 13 24 38 55 75 98 124 153 185 220 258 299
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

g8-4even 3 13 24 38 55 75 98 124 153 185 220 258 299
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

g7-4even 13 24 38 55 75 98 124 153 185 220 258 299
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Table 5.14. The number of comparators of even-input sorting networks created
using a four-input embryo by means of programs given in Table 5.13

N 6 8 10 12 14 16 18 20 22 24 26 28

conventional 9 13 17 21 25 29 33 37 41 45 49 53

g8-4even 9 15 21 27 33 39 45 51 57 63 69 75

g8-4even 2 6 9 14 19 23 26 31 36 41 46 51 56
(6) (9) (12) (15) (18) (21) (24) (27) (30) (33) (36) (39)

g8-4even 3 7 12 17 22 27 32 37 42 47 52 57 62
(6) (9) (12) (15) (18) (21) (24) (27) (30) (33) (36) (39)

g7-4even 7 11 16 20 24 28 33 37 41 45 49 53
(7) (11) (15) (19) (23) (27) (31) (35) (39) (43) (47) (51)

Table 5.15. Delay of even-input sorting networks created using a four-input embryo
by means of programs given in Table 5.13

Program Instructions #general

g6-3even [0 2 2] [0 1 2] [1 0 1] [0 2 1] [3 3 1] [3 2 4] 59
g6-3even 2 [0 2 2] [0 1 2] [0 0 1] [1 1 1] [3 4 4] [3 0 1]

Table 5.16. Evolved programs for the construction of even-input sorting networks
utilizing a three-input embryo. The parameters of the developmental system are:
ew = 3, de = 1, dw = 2.

N 4 6 8 10 12 14 16 18 20 22 24 26 28

Conventional 6 15 28 45 66 91 120 153 190 231 276 325 378

g6-3even 8 16 27 41 58 78 101 127 156 188 223 261 302
(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

g6-3even 2 9 18 30 45 63 84 108 135 165 198 234 273 315
(3) (5) (7) (9) (11) (13) (15) (17) (19) (21) (23) (25) (27)

Table 5.17. The number of comparators of even-input sorting networks created
using a three-input embryo by means of programs given in Table 5.16
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Fig. 5.15. Efficient even-input sorting networks created using the program g8-
4even 2

Fig. 5.16. Efficient even-input sorting networks created using the program g8-
4even 3
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N 4 6 8 10 12 14 16 18 20 22 24 26 28

Conventional 5 9 13 17 21 25 29 33 37 41 45 49 53

g6-3even 6 10 14 18 22 26 30 34 38 42 46 50 54
(5) (9) (13) (17) (21) (25) (29) (33) (37) (41) (45) (49) (53)

g6-3even 2 7 12 17 22 27 32 37 42 47 52 57 62 67
(5) (9) (13) (17) (21) (25) (29) (33) (37) (41) (45) (49) (53)

Table 5.18. Delay of even-input sorting networks created using a three-input em-
bryo by means of programs given in Table 5.16

Fig. 5.17. Even-input sorting networks created using the program g6-3even

5.4.4 Improving odd-input sorting networks

The presented evolutionary approach produced sorting networks with better
implementation cost (the number of comparators) than the conventional ap-
proach for even-input as well as odd-input SNs. Delay of even-input sorting
networks was also improved. However, in case of odd-input SNs, none of the
presented programs is better than a conventional one in terms of delay.

It is possible to show that the best-known program for even-input sorting
networks (g8-4even 2 ) can be utilized to improve delay in case of odd-input
networks. Figure 5.18 shows that by removing the bottom line together with
“connected” comparators, the odd-input sorting network is established. The
improvement of created sorting networks was verified for N ≤ 29.

5.4.5 Computational effort

More than 10,000 independent runs of evolutionary algorithm were performed.
The number of generations needed for gaining a solution varies from about 150
to many thousands. The limit of 10,000 generations showed to be sufficient to
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Fig. 5.18. Creating delay efficient odd-input sorting networks from even-input SNs
by removing the bottom line of comparators. The original six-input sorting network:
(0,1) (2,3) (0,2) (1,3) (1,2) (4,5) (4,5) (2,4) (3,5) (0,2) (1,3) (3,4) (1,2). The new five-
input SN: (0,1) (2,3) (0,2) (1,3) (1,2) (2,4) (0,2) (1,3) (3,4) (1,2).

get some solutions in a reasonable time. If the evolution does not terminate
successfully within this limit, the evolutionary process is stopped.

For instance, consider even-input sorting networks constructed from a 2-
input embryo. In this case, 58% of independent runs of evolutionary process
terminated successfully. The average number of generations is 2053. Figure
5.19 shows a typical example of the progress of average fitness of the popula-
tion along with the rise of fitness value of the best individual during evolution.
This experiment worked with a simple genetic algorithm, the crossover proba-
bility 0.7, the mutation probability 0.023 and for population size of 60 individ-
uals. The fitness function considered four developmental steps, i.e. the maxi-
mum fitness value was fmax = f(4)+f(6)+f(8)+f(10) = 24 +26 +28 +210 =
1376, where f(N) is the number of all possible binary sequences of ze of N -
input SN. As evident from Figure 5.19, there is a good level of evolvability
related to this experiment using the proposed approach. Although the success
rate was only 58%, more experiments had to be conducted in order to obtain
statistically credible results. This was not a problem because of lower time
requirements of the evolutionary runs. Similar behavior was observed also in
other sets of experiments.

5.4.6 Summary and discussion

Let us summarize the results for each category and discuss advantages and
potential problems of the proposed approach.

Sorting networks with arbitrary number of inputs

It is easy to evolve a general program in this category. The principle of the
straight insertion algorithm was rediscovered. However, sorting networks con-
structed by means of these programs are not efficient because many compara-
tors are required. The results obtained in this category confirm Hypothesis
1 because a general solution of a given problem has been evolved using the
continual development approach and partially also Hypothesis 3 because the
conventional general principle of straight-insertion sort has been rediscovered.
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Fig. 5.19. The best and average fitness value in a typical run of a simple GA for
the following settings: ew = 2, de = 2, dw = 2, pc = 0.7, pm = 0.023, 60 individuals
in population, 4 developmental steps for fitness calculation (fmax = 1376)

Odd-input sorting networks

Some programs were evolved that produce smaller sorting networks (in terms
of the comparator count) than the conventional insertion and selection method
can offer. However, the method works only using a four-input embryonic net-
work. The next improvement can be done by removing redundant comparators
that are often generated by the evolved programs. We were not able to im-
prove delay in this category – the best program has reached the quality of
the conventional methods. Surprisingly, it is possible to modify the best even-
input sorting networks in order to obtain odd-input sorting networks whose
delay is shorter than delay of conventional networks.

Even-input sorting networks

In this category various types of embryos have generated interesting results.
The usage of the two-input embryo has led to a substantial reduction of the
number of comparators and a small reduction of delay. The programs evolved
from a two-input embryo did not produce redundant comparators. On the



i
i

“bidlo-phdthesis-fitmono” — 2011/1/27 — 15:25 — page 70 — #78 i
i

i
i

i
i

70 5 Continual development of arbitrarily large sorting networks

other hand, the programs g8-4even 2 and g8-4even 3, evolved using a four-
input embryo, minimize the number of comparators as well as delay substan-
tially. However, first, it is necessary to remove redundant comparators from
the created networks. These programs represent the best solutions obtained
for this problem.

It was clearly demonstrated that the proposed evolutionary method com-
bined with the instruction-based development is able to design generic sorting
networks and in some cased it is even possible to find an improved solution
in comparison with the conventional design. Therefore, the results from the
categories of odd-input and even-input sorting networks development confirm
Hypothesis 1 and also Hypothesis 3 because, in addition to having already
rediscovered a general conventional solution, an innovative general solution
has been invented.

All candidate programs were evaluated using the zero–one principle; how-
ever, only for a limited number of inputs. We found this approach very efficient
because about 50% of the candidate programs are considered as “general” (see
the #general columns in the previous tables). Although the word “general”
is used, it is obvious that the evolved programs may not be really general –
the verification method that was applied (i.e. the evaluation of a program up
to a sufficiently high N) is not a proof. Therefore, the best evolved solution
will be analysed theoretically together with a demonstration of its generality
by the mathematical induction in Section 5.6.

The main feature of the proposed developmental approach is that a lot of
problem-domain knowledge (such as the definition and the way of execution of
the instructions, comparator definition and its utilization as a basic building
block) has been supplied to the evolutionary system by the designer. How-
ever, the innovative solutions represent a very interesting outcome. Although
they do not reach the qualities of the best known solutions for a given N ,
the best evolved program gave rise a new general sorting network construc-
tion method that exhibits substantially better properties in comparison with
the conventional approaches of the same type (i.e. the insertion or selection
principles).

Except the instructions that were designed for this particular application
manually and that GA had to put them together to make a program, the
developmental scheme has utilized another information – the size of the cur-
rently constructed network (i.e. the number of its inputs N). This information
is not a part of our artificial genetic code; it is controlled externally by the
algorithm controlling the development. Therefore, it can be understood as
a property of environment, which surrounds the growing sorting network.

The approach presented in the previous sections belongs to the first exper-
iments involving the development for the design of generic circuit structures.
It is a case of an application-specific model that is mostly inspired by the
conventional generic design. Though several innovations were discovered. The
results shows that the concept of instruction-based development applied at the
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level of circuit structure is worth of future investigation not only in the sorting
networks domain. Specifically, a research was conducted in the development
of generic circuits consisting of polymorphic gates and generic combinational
multipliers which have not been investigated so far in the evolutionary design
field (see the next chapters).

5.5 Another developmental approach to sorting networks

During the next research in the area of developmental systems for the purposes
of this work, a novel instruction-based developmental model was introduced
for the evolutionary design of generic structures of combinational multipliers
(see Chapter 6). The continuation of this kind of research led to the experi-
mentation with that concept also in other areas, including the field of sorting
networks.

This phase of research is especially motivated by the aim of advanced op-
timization of the sorting networks developed in Section 5.3. Considering the
innovative solutions obtained for size 2 of the developmental step in compar-
ison with the conventional approach, where the developmental step possesses
size 1, it suggests that by increasing the size of the developmental step more
efficient sorting networks might be developed. However, no other values of this
parameter have led to successful designs in Section 5.4 using the developmen-
tal model from Section 5.3. So that is the reason for investigation of the new
instruction-based developmental approach in the area of sorting networks.

5.5.1 Concept of an advanced developmental system

Although the developmental encoding utilized in these experiments is based
on the approach presented in Section 6.2, which is very similar, it will be
described in detail herein, adjusted for purposes of the design of generic sorting
networks. The reason is that the sorting networks possess totally different
structure which influence some key features of the developmental model. In
addition, the detailed description will make this section self-explanatory.

The proposed approach differs from the previous developmental model in-
troduced in Section 5.3 in the following aspects: (1) The form of the embryo
does not influence the form of the developed SNs. (2) An advanced concept
of instruction-based development is applied. More complex instruction set is
considered. The program to be evolved may use internal variables integrated
in the system interpreter. Loops are specified explicitly by an appropriate in-
struction. (3) The building blocks (comparators) are generated by means of
a special instruction instead of copying the existing comparators. The place-
ment of the newly created comparators is specified internally using internal
variables of the developmental system.

The construction of the circuit is performed using a single developmental
program, which is the subject of evolution. The instructions of the program
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are executed sequentially according to the program pointer (pp). In addition to
the approach introduced in Section 5.3, the instructions make use of numeric
literals 0, 1, . . . ,max value, where max value is specified by the designer at
the beginning of the evolutionary process. In addition to the numeric literals,
a set of variables integrated into the developmental system may be utilized.
The variables are denoted symbolically v0, v1, v2, . . . and their values are al-
tered by the appropriate instructions during the execution of the program.

Table 5.19 describes the instruction set utilized for the development. The
SET instruction assigns a value determined by a numeric literal or another
variable to a specified variable. Instructions INC/DEC are intended for in-
creasing/decreasing the value of a given variable (specified in first argument)
by a given numeric literal (specified in second argument). Simple loops inside
the developmental program are provided by the REP instruction whose first
argument determines the repetition count and the second argument states
the number of instructions after the REP instruction to be repeated. Inner
loops are not allowed, i.e. REP instructions inside the repeated code are inter-
preted as NOP (no operation) instructions. The GEN instruction generates
a comparator of the type specified in its argument.

Instruction Arguments Description

0: SET variable, value Assign a value to a variable.

1: INC variable, value Increase the value of a variable by a given value
specified as a numeric literal.

2: DEC variable, value If variable ≥ value, then decrease the value of vari-
able by the value specified as a numeric literal.

3: REP count, number Repeat count-times number following instructions.
count is a variable and number is a numeric literal.
REP instructions in the repeated code are interpre-
ted as NOP instructions (no inner loops allowed).

4: GEN block Generate block of type block on the actual position
(row, col); increase col by 1.

5: NOP An empty operation.

Table 5.19. Instructions utilized for the advanced development of generic sorting
metworks

The following application-specific setup was utilized for the advanced de-
sign of the sorting networks. Again, the sorting networks are intended to
develop continually (i.e. to “grow”) in developmental steps realized as iter-
ative applications of the evolved program. During each developmental step,
some comparators are generated next to the existing ones in order to create
the larger SN. There are six variables inside the developmental system which
may be utilized by the instructions during the program execution. Four types
of comparators are utilized as basic building blocks in the evolutionary pro-
cess. These comparators differ in their “width”, i.e. the number of wires of the
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sorting network they are connected over - see Figure 5.20a. The structure for
the construction of the sorting networks consists of a one-dimensional array
in which each element can contain one comparator (see Figure 5.20b). A 2-
input, 3-input or 4-input embryo will be utilized for the development of the
sorting networks as shown in Figure 5.20c). The embryo is stored in the first
e elements of the array depicted in gray. The embryo is invariable during the
evolutionary and developmental process. The position of the comparators in
the sorting network (i.e. the connection to the particular wires) is specified
by the value a given variable. For example, consider the comparator of width
2 from Figure 5.20a. Let its position be determined by the variable v0 = 1.
Then the first input of this comparator is connected to the wire 1 and the
second input to the wire 3. During the development of a sorting network the
comparators are generated sequentially into the free positions of the array
pointed by the index pointer p according to the program, which is the subject
of evolution. Note that the comparator is generated only if p does not exceed
the array boundary of L elements and the connection of the comparator does
not exceed the width (the number of inputs) of the sorting network being
developed. Before proceeding a developmental step, the values of variables
are initialized to the following values which were determined with respect to
the trait of the sorting networks design and showed to be suitable for the
development: v0 = 0, v1 = w − 2, v2 = w − 2, v3 = w − 3, v4 = w − 4, v5 = w,
where w denotes the number of inputs (width) of the sorting network to be
developed in the forthcoming developmental step. Note that the initial values
of the variables may be changed during the development (execution of the
program) by the appropriate instructions.

0

1

2

3

0 L−1e−1 e+1 e+2e

p
an embryo

(c)(b)(a)

1

2

3

4

Fig. 5.20. The concept of development of generic sorting networks: (a) The building
blocks are represented by the comparators of the width 1, 2, 3 and 4 respectively.
(b) The array where the building blocks are generated to during the development.
The gray elements denote the building blocks of the embryo. (c) The embryos of the
width 2, 3 and 4 respectively, utilized for the development.

5.5.2 Evolutionary system setup

A simple genetic algorithm was utilized in combination with the developmen-
tal model described in Section 5.5.1. The population of the GA consists of
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32 constant-length chromosomes, each of which represents a single program
possessing eight instructions. The chromosomes are initialized randomly be-
fore the evolution starts. The genetic operators of selection, mutation and
crossover are the same as described in Section 6.2.2 and illustrated by Figure
6.5.

The candidate solutions are evaluated in a simulator typically for three
developmental steps, i.e. for each chromosome in the population a finite devel-
opmental sequence is created consisting of three sorting networks of different
sizes depending on the width of the embryo and the size of the developmental
step. The principle of evaluation is the same as stated in Section 5.3.4.

5.5.3 Experimental Results and Discussion

The experiments were carried out using the same hardware configuration as
described in Section 5.3.4. Three types of experiments will be presented which
differ in the size of the developmental step and the embryo utilized.

The first type of experiments was focused on the development of arbitrary
even-input SNs from a two-input embryo when the size of the developmen-
tal step was set to 2. The 1000 of independent experiments were conducted
from which 90 % finished successfully in 40000 generations of the evolutionary
algorithm and 98 % of the evolved programs were classified as general.

Figure 5.21a shows a sequence of sorting networks developed by the three
steps of the best evolved program which is shown in Figure 5.21b. The sorting
networks have been constructed from a two-input embryo by the following
process. Let we = 2 denote the number of inputs of the embryo, s = 2 denote
the size of the developmental step and w = ve + i · s denote the width of
the sorting network to be developed in the i-th developmental step. Recall
that the values of appropriate variables involved in the evolved program are
initialized as v1 = w−2, v2 = w−2, v3 = w−3. For the first developmental step
(i = 1), w = 2 + 1 · 2 = 4, therefore, v1 = 2, v2 = 2 and v3 = 1. Considering
these initial values the first instruction 1 from Figure 5.21b generates the
comparator of width 1 labeled as a in Figure 5.21a which is connected to the
wires denoted by indices 2 and 3. The instruction 2 initiates a loop repeating 2
times (since v1 = 2) the two following instructions. During the first pass of this
loop, the instruction 3 generates comparator b whose connection to the SN is
determined by v3 = 1 and the instruction 4 decreases v3 by one, i.e. v3 = 0 at
the moment. Similarly, comparator c is generated in the second pass of the loop
considering the actual value of v3. Note that negative values are not allowed,
therefore, the execution of the instruction 4 during the second pass of the
loop has no effect in this step. Note, however, that the instruction 4 does not
represent a true intron from the point of view of LGP because this instruction
takes effect in other phases of the loop. Instruction 5 generates comparator d
with respect to the value of v2 = 2. Instruction 6 initiates a loop to be repeated
2 times (since v1 = 2) and the two following instructions 7 and 8 result in
generating comparators e, f in each pass of this loop. The first developmental
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step is now finished. At the beginning of the second developmental step the
variables are initialized to the new values with respect to actual w. During the
second developmental step comparator g is generated by the instruction 1 and
comparators from h to k are generated by the loop initiated by instruction
2. Then comparator l is generated by instruction 5 and comparators m − p
are generated by the loop initiated by instruction 6. The next developmental
steps proceed in the same way the consequence of which is the “growth” of
the sorting network. Note that this program was successfully verified for the
construction of up to 28-input sorting network, i.e. it is considered as general.
However, the analysis of the developed sorting networks indicates that there
are redundant comparators in these networks which can be removed without
the loss of its functionality. Therefore, these sorting networks are optimized
both from the point of view of the number of comparators and delay. Note
that the redundant comparators are crossed in Figure 5.21.
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Fig. 5.21. (a) Even-input sorting networks developed from a two-input embryo
using the developmental step of size 2. The crossed comparators are redundant in
the sorting network, therefore, they can be removed from the network without any
loss of its functionality. (b) The evolved general program for the development of
these SNs.

In the second type of experiments sorting networks were developed from
a three-input embryo considering the size of the developmental step s = 3.
Therefore, 6-input, 9-input, 12-input etc. sorting networks could be designed
by means of the evolved programs. From 1000 independent experiments con-
ducted, 88 % of working programs were evolved from which 99 % were classified
as general. Figure 5.22 shows the best and most interesting result obtained in
this set of experiments. The evolved program, which was classified as general,
produces sorting networks without any redundant comparators. Moreover,
there are both even-input and odd-input sorting networks in a single devel-
opmental sequence (because of the size of the developmental step s = 3).
This result represents the first case of observing such a behavior that was
not achieved in the developmental system introduced in [SB05]. Note that the
structure of the sorting networks and the evolved program is very similar in
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comparison with that shown in Figure 5.21. In addition, the algorithm from
Figure 5.21 (without any modifications) showed the ability to construct sort-
ing networks with the size of the developmental step s = 3. The only difference
is the dashed line drawn comparator shifted before its predecessor in each de-
velopmental step (caused by different variable in instruction 5 determining
the connection of the comparator to be generated, see Figure 5.22) which,
however, results in better delay in comparison with the solution constructed
by means of the program from Figure 5.21b.

GEN  C1  v2
REP  v2  2
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DEC  v3  1
GEN  C1  v0
REP  v2  4
GEN  C1  v2
DEC  v2  1
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Fig. 5.22. (a) Sorting networks developed from a three-input embryo using the de-
velopmental step of size 3. (b) The evolved general program. Note that this solution
constructs sorting networks without any redundant comparators.

The goal of the third type of experiments was to develop arbitrary even-
input sorting networks considering the size of the developmental step s = 4
and a four-input embryo. Since there are 8-input, 12-input etc. sorting net-
works in the developmental sequence considering the four-input embryo and
the developmental step of size 4, only two developmental steps were performed
for the fitness calculation because of very time-consuming evaluation of such
large sorting networks. The 500 if independent experiments were conducted
from which 34 % evolved a working general solution, i.e. 100 % successfulness
of the evolved programs. Figure 5.23 shows one of the best evolved program
together with the optimized sorting networks developed by means of it.

Tables 5.20 and 5.21 summarize the number of comparators and delay of
the developed sorting networks and their optimized variants for selected num-
bers of inputs of the sorting networks. It is evident that all the SNs presented
in this section (Figs. 5.21, 5.22 and 5.23) exhibit better properties from the
both point of view of the number of comparators and delay in comparison with
the general conventional principle of the same type (straight-insertion sort).
Note that the optimized sorting networks created using the developmental
step of size 2 corresponds to the best results developed in Section 5.4.3. More-
over, general programs were evolved herein for the developmental step of sizes
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Fig. 5.23. (a) Even-input sorting networks developed from a four-input embryo
using the developmental step of size 4. Note that only the effective (non-redundant)
comparators are shown. (b) The evolved general program.

3 and 4 that we were not able to achieved in our original approach. These
networks also exhibit better properties in comparison with the conventional
solution. In case of the step of size 3 a general program was evolved which even
constructs sorting networks without any redundant comparators. The results
presented in this section suggest that this instruction-based developmental
model is more robust and flexible in comparison to the system introduced in
the previous section.

Inputs 8 9 10 12 14 15 16 18 20 21 22 24 26 27 28

Conventional 28 36 45 66 91 105 120 153 190 210 231 276 325 351 378

Evol. step 2 31 49 71 97 126 161 199 241 287 337 391
22 35 51 70 92 117 145 176 210 247 287

Evol. step 3 29 51 79 113 153 199 251

Evol. step 4 29 69 125 197 285 389
23 53 95 149 215 293

Table 5.20. The number of comparators of the evolved sorting networks for dif-
ferent sizes of the developmental step in comparison with the conventional straight-
insertion sorting networks. The italic values represent the number of comparators of
the optimized sorting networks (after removing the redundant comparators). Note
that the sorting networks created using the developmental step of size 3 do not
contain any redundant comparators.

Despite the successful development considering the size of the developmen-
tal steps of values 3 and 4, no better solution was discovered in comparison
with the best networks obtained in Section 5.3. The best results obtained by
means of the advanced developmental model exhibit the same properties as
observed before. “Wider” comparators were included in the set of building
blocks, which were not applied very often by the developmental programs.
It is surprising, one would rather expect that these comparators will make
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Inputs 8 9 10 12 14 15 16 18 20 21 22 24 26 27 28

Conventional 13 15 17 21 25 27 29 33 37 39 41 45 49 51 53

Evol. step 2 15 20 25 30 35 40 45 50 55 60 65
9 12 15 18 21 24 27 30 33 36 39

Evol. step 3 12 17 22 27 323 37 42

Evol. step 4 14 28 46 68 94 124
9 15 21 27 33 39

Table 5.21. Delay of the evolved sorting networks for different sizes of the develop-
mental step in comparison with the conventional straight-insertion sorting networks.
The italic values represent the delay of the optimized SNs (after removing the redun-
dant comparators). Note that the sorting networks created using the developmental
step of size 3 do not contain any redundant comparators.

the development easier and will optimize the final design. However, compara-
tors arrangements similar to the sorting networks known from Section 5.3
were generated instead in many cases. Most of the developed networks con-
tains a high number of redundant comparators which is probably caused by
the generative trait of the proposed model (i.e. the comparators have been
created explicitly from the set of building blocks and placed into the circuit
by a special instruction). The amount of redundant comparators was often
several tens even for sorting networks containing less than 20 inputs.

In general, however, a progress has been observed against the previous
method. We have been able to develop sorting networks which can grow
“faster”. This has not been accomplished before. The “wider” comparators
and larger size of developmental steps lead to more combinations of the com-
parators arrangement for potentially more effective solutions (such the com-
parators are common in the best sorting networks designed for a particular
number of inputs). It is evident that further research is needed in this domain.

5.6 Theoretical understanding of the best evolved
solution

In Section 5.4.3 an evolved construction algorithm for the design of arbitrary
even-input sorting networks was presented. This results represents a rare case
in the area of evolutionary design with development when the EA has been
able to discover an innovative solution in comparison with the conventional
approach.

In this section theoretical aspects of the best evolved solution are pre-
sented. The SNs created by means of that evolved algorithm will be analysed
and their properties compared to the sorting networks constructed using the
conventional insertion/selection principle. The sorting networks will be de-
scribed mathematically and the generality of the new construction algorithm
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Fig. 5.24. 10-input instance of sorting network developed by means of the best
evolved program

will be proven formally, similarly to proving the properties of human inven-
tions in the area of theoretical computer science.

5.6.1 Invention of a new construction method for SNs

Figure 5.24 shows 10-input SN created by means of the best evolved program
from a 4-input embryo for three developmental steps. Specifically, a 6-input
sorting network was developed from a valid 4-input (embryonal) network, an
8-input SN was developed from the previously created 6-input network and
so on. However, the resulting sorting network contains redundant compara-
tors which are crossed in Figure 5.24. They can be removed from the sorting
network without any loss of its functionality. After their removal, the delay
of the sorting network decreases substantially in comparison with its original
form and, in addition, in comparison with the conventional insertion/selection
principle too. Moreover, the resulting networks possess lower number of com-
parators against the conventional solution. Since the sorting network has been
required to be fully functional after each developmental step during the evolu-
tion, the developmental process can be generalized for arbitrary even number
of inputs N . Then, each larger N + 2-input SN created by a single applica-
tion of the evolved program actually accepts an N -input sequence and two
newly added inputs. The N -input sequence has already been sorted by the
N -input network created in the previous developmental step. The values of
the new inputs have to be inserted at proper positions of that sorted sequence
which is ensured by the suitable arrangement of comparators appended to the
N + 2-input sorting network being developed.

The step of removing the redundant comparators and the concept of de-
velopment taken into account, as summarized in the previous paragraph, con-
stitute crucial issues of inventing a new construction method for arbitrarily
large sorting networks as illustrated in Figure 5.25b. For comparison, variant
(a) of this picture shows the conventional principle of the straight-insertion
sort.
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(a) (b)

Fig. 5.25. General methods of building larger sorting networks by adding some
comparators into smaller sorting networks: (a) straight-insertion method, (b) new
method based on the best solution evolved in this book

5.6.2 Analysis of the best evolved sorting networks

The evolved method is based on the same idea as the conventional insertion
or selection principle – creating a larger sorting network from a smaller SN
by appending a suitable arrangement of comparators. Unlike the insertion
or selection algorithm, the evolved program constructs (N + 2)-input sorting
network from an even-N -input SN. Thus there are some restrictions in the
design process in comparison with the conventional approaches. However, the
sorting networks obtained by means of the evolved approach exhibit better
properties in terms of both the number of comparators and delay than the
conventional sorting networks. Moreover, the evolved method allows to cre-
ate more efficient networks from existing arbitrary even-N -input network in
comparison with the case of twofold application of the conventional approach.
For example, it is possible to construct an 18-input SN from the best known
16-input SN and the resulting network will exhibit better properties than the
network created by means of the insertion or selection principle. Specifically,
consider the number comparators 60 and delay 10 of the best currently known
16-input sorting network (as stated in Table 5.1 in Section 5.2). Then the 18-
input SN constructed from this 16-input SN by means of double application of
the conventional principle will possess 93 comparators and the delay 28. How-
ever, the 18-input SN created from the same 16-input SN using the evolved
method will possess only 85 comparators and the delay 20. Therefore, the
difference of both the number of comparators and delay of these 18-input SNs
is 8.

The developed sorting networks were analysed and compared to the appro-
priate instances obtained by the conventional algorithm of the same type – the
straight insertion principle. The overview of basic parameters (the number of
comparators and delay) for up to 28 inputs of the networks are summarized in
Table 5.22. On the basis of the data from Table 5.22, the following equations
were derived which determine the number of comparators, respective delay
of sorting networks for general N ≥ 4 – see equation (5.1), respective (5.3).
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Similar formulas are known for the conventional solution – see equations (5.2),
respective (5.4)[Knu98].

C(N)evol =
3
8
N2 − 1

4
N = O(N2) (5.1)

C(N)conv =
1
2
N2 + N = O(N2) (5.2)

D(N)evol =
3
2
N − 3 = O(N) (5.3)

D(N)conv = 2N − 3 = O(N) (5.4)

The number of comparators (i.e. area complexity) and delay (i.e. time
complexity) of the sorting networks are shown in Figure 5.26. Although the
asymptotic complexities are identical in case of both evolved and conventional
solution, the evolved algorithm constructs sorting networks with better prop-
erties (the number of comparators and delay) than the conventional insertion
or selection principle.

#inputs of the SN 6 8 10 12 14 16 18 20 22 24 26 28

Evolved SN: #comparators 13 24 38 55 75 98 124 153 185 220 258 299

Evol. SN: #redund. comp. 1 2 3 4 5 6 7 8 9 10 11 12

Evol. SN: #effective comp. 12 22 35 51 70 92 117 145 176 210 247 287

Conventional SN: #comp. 15 28 45 66 91 120 153 190 231 276 325 378

Evolved SN: delay 7 12 17 22 27 32 37 42 47 52 57 62

Evol. SN: effective delay 6 9 12 15 18 21 24 27 30 33 36 39

Conventional SN: delay 9 13 17 21 25 29 33 37 41 45 49 53

Table 5.22. Analysis of the parameters of the best evolved general solution in com-
parison with the conventional insertion or selection sorting networks. Note that the
effective delay denotes delay of the SN after removing the redundant comparators.

5.6.3 Is the evolved method general?

In order to demonstrate formally that the evolved solution is really general (i.e.
it is able to create theoretically infinitely large sorting network), some defini-
tions of basic terms will be introduced which in fact constitute a mathematical
model of a sorting network. These definitions are inspired by the formal model
of the sorting network stated in [Lan06]. After that a formal proof is proposed
demonstrating the generality of the new construction method for the sorting
networks.

Definition 1 Let I = {1, 2, . . . , N} be an index set and let A be a set with
an order relation ≤. A data sequence is a mapping a : I → A. The set of all
data sequences of length N over A is denoted by AN .
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Fig. 5.26. Area complexity and delay complexity of the evolved sorting networks
in comparison with the conventional insertion/selection principle

Definition 2 The sorting problem consists of reordering an arbitrary data
sequence a1, a2, . . . , aN , ai ∈ A for i = 1, 2, . . . , N , to a data sequence
aΦ(1), aΦ(2), . . . aΦ(N) such that aΦ(i) ≤ aΦ(j) for i < j, where Φ is a per-
mutation of the index set I = {1, 2, . . . , N}.

The definition of a sorting network is based on comparator networks intro-
duced in [Knu98]. Herein a comparator [i; j] is considered as a circuit element
that sorts the i-th and the j-th element of a data sequence into the nonde-
creasing order.

Definition 3 A comparator is a mapping [i; j] : AN → AN , i, j ∈ {1, 2, . . . ,
N}, where [i; j](a)i = min(ai, aj), [i; j](a)j = max(ai, aj), [i; j](a)k = ak for
all k 6= i, k 6= j, i < j and for all a ∈ AN .

The formal notation of the comparator can be simplified as follows. Let
[i; j] be a comparator applied to a data sequence a ∈ AN . If [i; j](a)i = aj and
[i; j](a)j = ai, then it is said the comparator [i; j] swaps ai with aj in a.

Definition 4 A parallel layer, S, is a composition of comparators S = [i1; j1]·
[i2; j2]·. . .·[ik; jk], k ≥ 0 such that ir and js are distinct for all ir = 1, . . . , N−
1, js = 2, . . . , N, ir 6= js, for all r = 1, . . . , k, s = 1, . . . , k, r 6= s. Comparators
within a parallel layer are executed in parallel.

Definition 5 A comparator network is a composition of parallel layers.

Note that the orientation of a comparator in a comparator network is
important. We assume that every [i; j] satisfies i < j. That being supposed, if
ai > aj , then [i; j] swaps ai with aj in a ∈ AN . Moreover, the order of parallel
layers in a comparator network is important since it defines the reordering
algorithm. However, the order of the comparators within a parallel layer is
not important because they are independent of each other.

Definition 6 A sorting network is a comparator network that sorts all the
data sequences correctly.
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Because of uniformity in terminology with respect to the previous sections,
the term sorting network will be used in the next paragraphs even before
proving the correctness of the appropriate comparator network.

Definition 7 Let S be a sorting network with even number of inputs N , N =
2k, k ≥ 0. Let us define k to be the degree of S.

Since the zero–one principle is applied for testing the correctness of the
sorting networks, the elements of a data sequence can contain only binary
values, i.e. ai ∈ {0, 1} for all i = 1, . . . , N .

Considering the generalized approach to the development of sorting net-
works introduced in Section 5.6.1, the following theorem can be formulated.

Theorem 1

Every arbitrary k-degree sorting network can be used as a base for construct-
ing (k + 1)-degree sorting network by appending 3k + 1 comparators, specifi-
cally [2k +1; 2k +2], [2k; 2k +2], [2k−1; 2k +1], . . ., [1; 3] and [2; 3], [4; 5], . . .,
[2k; 2k + 1] (the arrangement of the comparators corresponds to the evolved
structure that is shown in Figure 5.25b).

Proof

Theorem 1 will be proven by induction on the degree of sorting network, i.
Recall that zero–one principle is applied in this proof.

Basis

Let the degree i = 0. Increasing i by one, a 2-input SN is obtained containing
just one comparator, specifically [1; 2]. The proof of its correctness follows
directly from Definition 3.

Induction hypothesis

Assume that Theorem 1 holds for all i ≤ k, where k is a positive integer.

Induction step

Consider an arbitrary k-degree sorting network and use Theorem 1 to create
(k + 1)-degree sorting network. According to the induction hypothesis, the
obtained sorting network is correct. Let z denote the number of 0’s contained
in the data sequence a1a2 . . . a2k. Since the k-degree sorting network is correct,
it produces non-decreasing data sequence of z 0’s followed by 2k−z 1’s. It has
to be proven that the comparators [2k +1; 2k +2], [2k; 2k +2], [2k−1; 2k +1],
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. . ., [1; 3] and [2; 3], [4; 5], . . ., [2k; 2k + 1] appended by the program are able
to put all the possible binary combinations of elements a2k+1 and a2k+2 of
the data sequence into their proper positions. The situation is illustrated in
Figure 5.27.
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Fig. 5.27. The principle of creating (k + 1)-degree sorting network from a k-degree
SN

a) a2k+1 = 0 and a2k+2 = 0
The situation is illustrated in Figure 5.28a. Consider 0 ≤ z < 2k. Observe
that comparators [2k; 2k + 2], [2k−1; 2k + 1], . . ., [z + 1; z + 3] successively
swap the input values processing zero-elements a2k+1 and a2k+2 of the data
sequence. There are only zero-inputs in comparators [z; z+2], [z−1; z+1],
. . ., [1; 3] so their execution has no effect. Similarly, none of comparators
[2; 3], [4, 5], . . ., [2k; 2k + 1] needs to swap its inputs. If z = 2k, then the
data sequence has been already sorted.

b) a2k+1 = 0 and a2k+2 = 1
The situation is illustrated in Figure 5.28b. Let 0 ≤ z < 2k. Comparators
[2k− 1; 2k + 1], [2k− 3; 2k− 1], . . ., [z + (z mod 2) + 1; z + (z mod 2) + 3]
successively swap the input values processing zero-element a2k+1 of the
data sequence. If z is odd and 0 < z < 2k, then the comparator [z+1; z+2]
swap its inputs to finish the resulting order of the data sequence. If z = 2k,
then the data sequence has been already sorted.

c) a2k+1 = 1 and a2k+2 = 0
Consider 0 ≤ z < 2k. Observe that after swapping a2k+1 with a2k+2 by
the comparator [2k + 1; 2k + 2], the sorting proceeds in the same way as
in the case (b); consider Figure 5.28b with a2k+1 = 1 and a2k+2 = 0.

d) a2k+1 = 1 and a2k+2 = 1
In this case, the data sequence has already been sorted.

Observe that for every combination of values a2k+1 and a2k+2, the (k +1)-
degree sorting network has processed all the data sequences correctly, i.e. the
evolved approach is general.
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Fig. 5.28. Processing data sequences: (a) a2k+1 = 0, a2k+2 = 0, (b) a2k+1 =
0, a2k+2 = 1

QED

As it has been proven, the evolved approach forms an improved general
method which is similar to the conventional insertion or selection principle.
Although it is focused primarily on the construction of even-input SNs, the
resulting circuits can be reduced to odd-input networks, which retain better
properties in comparison with conventional sorting networks as demonstrated
in Figure 5.18. The proof proposed in this section represents a formal con-
firmation of Hypothesis 3 because the innovative solution invented by the
evolution has been demonstrated to be general. Note that the same principle
(mathematical induction) can be applied to the rest of the innovative results
presented in this chapter. However, no more proofs will be stated herein be-
cause their construction is straightforward. Note that the generality of the
rediscovered conventional solutions follows from their known properties pub-
lished in the appropriate literature (e.g. [Knu98]).

5.7 Summary of the chapter

In this chapter a concept of continual development will be introduced which al-
lows the target object to “grow” while keeping its full functionality all the time
during the development. In order to demonstrate abilities of this approach,
sorting networks will be chosen as a suitable domain for the evolutionary
design combined with the continual development.

A developmental method was described that enables us to create larger
sorting networks from smaller ones by means of a developmental program
which is a subject of evolution. The sorting network can grow from a trivial
initial solution (an embryo) to theoretically arbitrary size. The approach was
inspired by the conventional construction algorithms for the arbitrarily large
sorting networks – insertion and selection principle known from the theory
of sorting. A set of experiments was performed concerning the development
of generic sorting networks based on this method. Moreover, the aim was to
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optimize the parameters of the resulting solutions (the number of comparators
and delay of the SNs).

First the conventional principle of straight insertion algorithm was redis-
covered by means of genetic algorithm endowed with the continual develop-
ment, utilizing the size of developmental step 1. Later, developmental steps of
size 2 were applied and the experiments were focused on the development of
either only even-input or odd-input sorting networks, applying different em-
bryos in each category. More efficient principles (programs) were discovered
for the development of arbitrarily large even-input and odd-input SNs from
the point of view of the number of comparators and delay in comparison with
the conventional principles of the same type (i.e. insertion or selection sort).
The best evolved solution was analyzed and a new general sorting network
construction principle was introduced. Its generality was proved formally by
means of mathematical induction.

The reported research represents the rare case in which a new scalable
principle is discovered by an evolutionary algorithm. In most cases, evolution-
ary algorithms are being used to find a single suitable solution. A method
was introduced for discovering an innovative solutions for all instances of the
problem.

Note that Hypotheses 1 and 3 have been confirmed because general solu-
tions have been generated using the continual development approach, a gen-
eral conventional solution has been rediscovered and a new innovative general
solution has been invented.
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Parametric development of generic
combinational multipliers

The objective of this chapter is to present an application-specific instruction-
based developmental model for evolutionary design of generic combinational
multipliers. While in case of the sorting networks the generic structure was
growing continually and the size of the target network was determined by the
number of developmental steps, the method of development of generic multi-
pliers is based on parametrization of the design, i.e. a parameter is specified
at the beginning of the developmental process which determines the size of
the target circuit instance that will be created after appropriate number of
developmental steps. Therefore, this approach has been called as parametric
development. Although the developmental system presented in this chapter is
also based on the instruction approach, it differs substantially from the pre-
vious one, especially in the way of generating the building blocks in order to
build the target circuit (as described in Section 6.2). Two different develop-
mental setups are presented, focusing of various aspects of the developmental
process.

In the first part of this study an initial experiment of the development of
generic multipliers will be described. In order to design irregular structures
(inspired by the irregularity observed in conventional multipliers), an artificial
environment is introduced into the system that is interpreted as an external
control of the developmental process. Moreover, the environment is intended to
demonstrate the ability of adaptation of the evolutionary process to different
development controls resulting in the circuit of the same functionality. The
results presented in this chapter represent the first case in the field of the
evolutionary design when generic multipliers have been evolved by means of
the development.

The goal of the second part of experiments (as described in Section 6.3)
is to present a modified model for the development of multipliers at a lower
level of abstraction. In particular, simplified building blocks are utilized in the
circuit development. The crucial result of this research is the finding of the
possibility to design generic multiplier structures which exhibit better delay
in comparison with the first part of this study.
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88 6 Parametric development of generic combinational multipliers

6.1 Motivation and related work

Combinational multipliers represent a class of circuits that is usually con-
sidered hard to be designed by means of the evolutionary techniques. Their
construction has been often concerned as a non-trivial task for demonstrating
the capabilities of the evolutionary design systems. In case of applying a direct
encoding (a non-developmental genotype–phenotype mapping) it is difficult
to achieve scalability of the evolved solutions, i.e. to obtain larger instances
of the circuits, for example, when the traditional Cartesian Genetic Program-
ming (CGP) is utilized [MT00]. Therefore, more effective representations have
been investigated in order to improve the scalability and evolvability of digi-
tal circuits in general. The developmental encoding may represent a promising
approach. However, most of the research deals with direct representations as
summarized in the following overview.

Miller et al. outlined the principles in the evolutionary design of digital
circuits and showed some results of evolved combinational arithmetic circuits,
including multipliers, in [MJ00a]. A detailed study of the fitness landscape
in case of the evolutionary design of combinational circuits using Cartesian
Genetic Programming is proposed in [MJ00b]. 3× 3-bit multipliers constitute
the largest and most complex circuits designed by means of traditional CGP
in these papers. Vassilev et al. utilized a method based on CGP which ex-
ploits redundancy contained in the genotypes. Larger (up to 4 × 4 bits) and
more efficient multipliers were evolved by means of this approach in compar-
ison with the conventional designs [VJM00]. Vassilev and Miller studied the
evolutionary design of 3 × 3-bit multipliers by means of evolved functional
modules rather than only two-input gates [VM00]. Their approach is based
on Murakawa’s method of evolving sub-circuits as the building blocks of the
target design in order to speed up and improve the scalability of the design
process [MYK+96]. Torresen applied the partitioning of the training vectors
and the partitioning of the training set approach (so-called increased complex-
ity evolution or incremental evolution) for the design of multiplier circuits. His
approach was focused on improving the evolution time and evolvability rather
than optimizing the target circuit. The 5× 5-bit multipliers were evolved us-
ing this method [Tor03]. Stomeo et al. devised a decomposition strategy for
evolvable hardware which allows to design large circuits [SKL06]. Among oth-
ers, the 6× 6-bit multipliers were evolved by means of this approach. Aoki et
al. introduced an effective graph-based evolutionary optimization technique
called Evolutionary Graph Generation [AHH03]. The potential capability of
this method was demonstrated through experimental synthesis of arithmetic
circuits at different levels of abstraction. 16× 16 multipliers were evolved us-
ing word-level arithmetic components (such as one-bit full adders or one-bit
registers).

The approaches for the evolutionary design of multipliers that have been
investigated so far usually dealt with a certain level of abstraction, e.g. Miller’s
CGP-based approach involved a gate-level design, Aoki et al. utilized more
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complex arithmetic components. The lower levels of abstraction usually allow
to perform optimizations of the target design (e.g. area, cost or delay of the
circuit) but the scalability of the design is limited. On the other hand, it is
difficult to perform optimizations in case of the design at a higher level of
abstraction when more complex building blocks are utilized (e.g. full adders).
However, such building blocks may easily be assembled in order to create
larger (scalable) circuits. This approach will be considered during the experi-
ments presented in the next sections because the objective of this work is to
design generic solutions rather than optimize the target circuit.

6.2 Initial concept for development of generic multipliers

This section introduces an artificial developmental model based on application-
specific instructions in connection with the genetic algorithm in order to (1) re-
duce the length of the chromosome needed for encoding the target circuits,
(2) introduce an external control of the developmental process in form of
a string of values interpreted as a biologically inspired environment for the
construction of irregular structures, (3) enable to design generic combina-
tional multipliers and (4) demonstrate the ability of the evolutionary process
to adapt to different environments retaining the capability to design generic
structures of the given functionality. A concept of environment, which is rele-
vant for this work, was proposed in [SZK01], where the environment was uti-
lized to affect the function of the circuit (co-called polymorphic electronics). In
our method, the environment is intended to influence the development of the
circuit structure. The approach presented herein differs from the former one
presented in Section 5.3 particularly in the following aspects: (1) parametriza-
tion of the design rather than continual development, (2) evaluation of only
one instance of the circuit in the fitness calculation during evolution and
(3) arrangement of the building blocks into the grid instead of linear array.
The system also introduces some new features, in particular: involving the
environment, utilization of more complex building blocks (e.g. adders) or con-
necting the inputs of the components to the primary inputs of the circuit via
built-in variables of the developmental system.

6.2.1 Instruction-based developmental system

The method of the development is inspired by the construction of conventional
combinational multipliers for which generic design algorithms exist. Figure 6.1
shows a typical 4 × 4-bit combinational multiplier designed by means of the
conventional approach [Wak01]. It is evident that the first level of AND gates
and the following sequence of adders are specific in comparison with the rest
of the circuit, which poses a kind of irregularity. However, the rest of the
circuit exhibits regular sequences which can be expressed by means of iter-
ative algorithm utilizing variables. Moreover, the whole design can be easily
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parametrized by means of the width (the number of bits) of the operands.
Therefore, this concept is assumed to be convenient for the design of generic
multipliers using development and evolutionary algorithm.

FA FA

0 1 2 3 0 1 2 3

0 1 2 3P P P P 4 5 6 7P P PP

FA FA

FA

FA FA FA

A A A B B B BA

HA HA

HA

HA

Fig. 6.1. A 4 × 4-bit conventional combinational multiplier. A0 . . . A3, B0 . . . B3

represent the bits of the operands, P0 . . . P7 denote the bits of the product.

A system is introduced for the development of generic multipliers which
operates with building blocks inspired by the conventional combinational mul-
tipliers. A simple two-dimensional grid consisting of a given number of rows
and columns was chosen as a suitable structure for the development of the
target circuits. The building blocks are placed into this grid by means of
a developmental program.

A building block represents the basic component of the circuit to be de-
veloped. The general structure of the block is shown in Figure 6.2a. Each
building block contains three inputs from which one or two may be unused
depending on the type of the block. There are two outputs at each building
block from which one may be meaningless, i.e. permanently set to logic 0,
depending on the block type. The outputs are denoted symbolically as out0
and out1. In case of the block containing only one output, out0 represents the
effective output and out1 is permanently set to logic 0. The circuit is devel-
oped inside a grid (rectangular array) which proved to be a suitable structure
for the design of combinational multipliers (see Figure 6.2b). Figure 6.3 shows
the set of building blocks utilized for the experiments presented in this sec-
tion. For the interconnection of the blocks the position (row, col) in the grid
is utilized. The inputs of the blocks are connected to the outputs of the neigh-
boring blocks by referencing the symbolic names of the outputs or via indices
to the primary inputs of the circuit, depending on the block type. Feedback is
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not allowed. For example, out1(row, col−1) means that the input of the block
at the position (row, col) in the grid is connected to the output denoted out1
of the block on its left-hand side. The connections to the primary inputs are
determined by the indices v0 and v1. Let A = a0a1a2, B = b0b1b2 represent
the primary inputs (operands A and B) of a 3×3-bit multiplier. For instance,
the AND gate with v0 = 1 and v1 = 2 has its inputs connected to the second
bit (a1) of operand A and the third bit (b2) of operand B. In case of the
building blocks at the borders of the grid (when row = 0 or col = 0), where
no blocks with valid outputs occur (for row − 1 or col − 1), the appropriate
inputs of the blocks at (row, col) are set to 0. In this way, for example, full
adder (Figure 6.3f) at (0, 0) is degraded to AND gate, the buffer (Figure 6.3b)
at (1, 0) becomes the source of logic 0 etc.

position in the grid
(row, col)

block type

ro
w

colinputs

outputs

out0 out1

(0,0)

(m−1,n−1)

(a) (b)

Fig. 6.2. (a) Structure of a building block. (row, col) determines the position of
the block in the grid – see part (b). The connection of the inputs depends on the
type and position of the block. (b) Grid of the building blocks with m rows and n
columns for the development of generic multipliers.
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Fig. 6.3. Building blocks for the development of combinational multipliers. (a, b)
buffers, (c) AND gate, (d, e) half adders, (f) full adder. (row, col) denotes position in
the grid. v0 and v1 determine indices of primary input bits. Connection of different
inputs of the blocks are shown. Unused inputs and outputs are not depicted (they
are considered as logic 0).

The development of the circuit is performed by means of a developmental
program. This program, which is the subject of evolution, consists of simple
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application-specific instructions. The instructions make use of numeric liter-
als 0, 1, . . . ,max value, where max value is specified by the designer at the
beginning of evolution. In addition to the numeric literals, a parameter and
some variables of the developmental system can be utilized. The parameter
represents the width (the number of bits) of the operands – inputs of the
multiplier. The parameter is referenced by its symbolic name w, whose value
is specified by the designer at the beginning of the evolutionary process. For
example, in case of designing a 4 × 4-bit multiplier, the parameter possesses
this value, i.e. w = 4. The values of parameter is invariable during the evo-
lutionary process. There are four variables integrated into the developmental
system that will be denoted v0, v1, v2 and v3. These variables can be utilized
in the evolving programs as a simple data structure — storage elements for
integer values — and involved during the program execution (developmental
process). For instance, loops can utilize variables to count a sequence of val-
ues. The values of variables can be altered by the appropriate instructions.
Table 6.1 describes the instruction set utilized for the development. The SET
instruction assigns a value determined by a numeric literal, parameter or an-
other variable to a specified variable. Instructions INC, respective DEC are
intended for increasing, respective decreasing the value of a given variable. The
difference can be specified only by a numeric literal. Simple loops inside the
developmental program are provided with the REP instruction whose first
argument determines the repetition count and the second argument states
the number of instructions after the REP instruction to be repeated. Inner
loops are not allowed, i.e. REP instructions inside the repeated code are inter-
preted as NOP (no operation) instructions. The GEN instruction generates
a building block of the type specified in the argument. Note that, if a block
containing the AND gate is generated (e.g. the AND gate itself or FA), the
inputs of the AND gate are connected to the primary inputs indexed by the
values of variables v0, v1 as shown in Figure 6.3. In case when v0 or v1 exceeds
the correct values, the appropriate input of AND gate is connected to logic
0. If (row, col) do not exceed the grid boundaries, the block is generated at
that position, otherwise no block is generated. After executing GEN, col is
increased by one.

In fact, the developmental program may consist of several parts (or sub-
programs), which may consist of different number of instructions. Let us define
the length of a program (or a part of a program) as the number of instruc-
tions it is composed of. These parts are executed on demand with respect
to an external information that is called an environment. A single execution
of a part of program is referred to as a developmental step. The meaning of
the environment is to enable the system to develop more complex structures
which may not be fully regular. The environment is represented by a finite
sequence of values specified by the designer at the beginning of the evolution,
e.g. env = (0, 1, 2, 2). The number of different values in the environment usu-
ally equals the number of parts of the developmental program. In addition,
there is an environment pointer (let us denote it enp) determining a particular
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Instruction Arguments Description

0: SET variable, value Assign value to variable. variable ∈ {v0, v1, v2, v3},
value ∈ {0, 1, . . . , max value, w, v0, v1, v2, v3}.

1: INC variable, value Increase variable by value. variable ∈ {v0, v1, v2, v3},
value ∈ {0, 1, . . . , max value}.

2: DEC variable, value If variable ≥ value, then decrease variable by value.
variable ∈ {v0, v1, v2, v3}, value ∈ {0, 1, . . . , max v.}.

3: REP count, number Repeat count-times number following instructions.
All REP instructions in the repeated code are consi-
dered as NOP instructions (no inner loops allowed).

4: GEN block Generate block on the actual position (row, col) and
then increase col by 1.

5: NOP An empty operation.

Table 6.1. Instructions utilized for the development

value in the environment during the development time. Each subprogram is
executed deterministically, sequentially and independently on the others ac-
cording to the environment values. However, the parameter and the variables
of the developmental system are shared by all the parts of the program. The
concept of development described in this paragraph is illustrated in Figure
6.4.

(a) (b)

subprogram 1 subprogram 2 subprogram k

1 3 k 1

enpip

Fig. 6.4. The concept of instruction-based developmental encoding controlled by
the environment: (a) a set of subprograms, each of which is identified by a unique
index. The instructions of a subprogram are executed sequentially according to the
instruction pointer ip. (b) The environmental vector of subprogram indices for the
additional control of the development. The environment is scanned sequentially ac-
cording to the environment pointer enp.

At the beginning of the evolutionary process the value of the parameter
w and the form of the environment env are defined by the designer. By the
inspiration from conventional multipliers the number of developmental steps
needed for creating a working multiplier and the length of the environment
will correspond to w. The developmental program, whose number of parts and
their lengths are also specified a priori by the designer, is intended to operate
over these data in order to develop multiplier of a given size. As evident,
the different sizes of multipliers are created by setting the parameter and
adjusting the environment. Hence the circuit of a given size is always developed
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from scratch; it is a case of parametric developmental design. The following
algorithm will be defined in order to handle the developmental process.

1. Initialize row, col, v0, v1, v2, v3 and e to 0.
2. Execute env(e)-th part of program.
3. Increase e and row by 1, set col to 0.
4. If neither e, nor row exceed, go to step 2.
5. Evaluate the resulting circuit.

6.2.2 Evolutionary system setup

For the experiments presented in this section a simple genetic algorithm was
utilized in combination with the developmental system described in Section
6.2.1.

A chromosome consists of a linear array of the instructions, each of which is
represented by the operation code and two arguments (the utilization of the ar-
guments depends on the type of the instruction). The array contains n parts of
the developmental program stored in sequence, whose lengths (the number of
instructions) correspond to l0, l1, . . . , ln−1. The number of the parts and their
lengths are determined by the designer. In general, the structure of a chro-
mosome can be expressed as i0,0i0,1 . . . i0,l0−1; . . . ; in−1,0in−1,1 . . . in−1,ln−1−1,
where ij,k denotes the k-th instruction of j-th part of program for k =
0, 1, . . . , lj − 1 and j = 0, 1, . . . , n − 1. During the application of the genetic
operators the parts of the program are not distinguished, i.e. the chromosome
is handled as a single sequence of instructions. The chromosomes possess con-
stant length during the evolution. The population consists of 32 chromosomes
which are generated randomly at the beginning of evolution. Tournament se-
lection operator of base 2 is utilized.

Mutation of a chromosome is performed by a random selection of an in-
struction followed by a random choosing a part of the instruction (operation
code or one of its arguments). If the operation code is mutated, entire new
instruction will replace the original one, otherwise one of its arguments is
mutated. The mutation algorithm ensures that proper values of arguments
will be created depending on the instruction type. The mutation is performed
with the probability 0.03, only one instruction per chromosome is mutated.

A special crossover operator was applied during the experiments (see Fig-
ure 6.5). Two parent chromosomes are selected and an instruction is selected
randomly in each of them (i1, i2). A position (index) is chosen randomly in
each of the two offspring (c1, c2). After the crossover, the first, respective the
second offspring contains the original instructions from the first, respective
the second parent with the exception of i1, respective i2, which is put at the
position c2 in the second offspring, respective c1 in the first offspring. The
crossover occurs with the probability 0.9.

The fitness function is calculated by means of a circuit simulator as the
number of output bits calculated correctly by the multiplier developed by the
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Fig. 6.5. Crossover of two chromosomes. i1, i2 denote the instructions to be crossed,
c1, c2 pose the offspring positions the instructions will be placed to.

program stored in the chromosome. The experiments were conducted with the
evolution of programs for the construction of 4×4 multipliers, i.e. the param-
eter w = 4. There are 24+4 = 256 possible test vectors and the multipliers
produce 8-bit results. Therefore, the maximum fitness representing a work-
ing solution equals 256 · 8 = 2048. If a working solution is not evolved in 2
millions of generations in case of the first set of experiments, possibly in 1 mil-
lion of generations in the second set of experiments (see the next section), the
evolution is restarted with the new (randomly generated) population. After
the evolution the resulting program is verified in order to determine whether
it is able to create larger multipliers, typically up to the size 14 × 14 bits.
This size of circuit was determined experimentally, allowing to perform a suf-
ficient number of developmental steps for demonstrating the correctness of
the evolved program and keeping a reasonable verification time. If a program
shows this ability, it will be considered as general.

Two different sets of experiments were performed for demonstrating the
adaptation.

1. Evolution of 3-part developmental programs with the lengths of the parts
6, 12 and 12 instructions that are executed according to the environment
env = (0, 1, 2, 2). This form of environment is inspired by the structure
of the conventional multipliers – see Figure 6.1. In fact, the multiplier is
composed of several “levels” (or rows if the grid structure is considered the
building blocks are generated into), each of which is able to generate sep-
arately using a specific program. If the 4x4-bit multiplier from Figure 6.1
is considered, the first row consists of only basic AND gates whose inputs
are connected to the primary inputs of the circuit. These AND gates can
be generated by means of the program denoted as 0 in the environment.
The second row consists of half adders and full adders combined with ba-
sic AND gates. Similarly, the inputs of the AND gates are connected to
the primary inputs and the interconnection of the adders is well defined.
This row can be generated using another program denoted by 1 in the
environment. The structure of the third and fourth row differs from the
structure of the first and second row. However, the third and fourth row
(if compared to each other) exhibit a regular structure. Therefore, they
can be generated using the same program that is denoted by 2 in the en-
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vironment. The number of the AND gates, the number of adders in each
rows, the “shift” of the rows containing adders against the first column
of the grid as well as the number of rows of the multiplier can be deter-
mined by the number of bits (width) of the multiplicands as a parameter.
Moreover, the index of the row is also considered during the circuit devel-
opment. Starting by the third row of the circuit, the structure is regular
for all instances (widths of the operands) of the multiplier. Therefore, the
first two rows can be generated by the programs 0 and 1 and the rest of
the circuit can be generated by repeated application of the program 2.
Note that the first row represents an irregularity of the circuit in compar-
ison with the rest of the multiplier structure. The number of applications
of the program 2 is determined by the width of the multiplicands. There-
fore, the environment can be specified for arbitrarily large instance of the
multiplier; the environment will possess the form (0, 1, 2, . . . , 2), where the
number of 2s is determined as the width of the operand minus 2. The to-
tal number of rows, which equals to the total length of the environment
and the total number of applications of the programs needed to develop
a working multiplier, corresponds to the width of the operand. Note that
only the operands of the same size are considered in this work.

2. Experimental design of 1-part developmental programs consisting of 10
instructions using the environment env = (0, 0, 0, 0). In general the length
of the environment corresponds to the width of the multiplicand (sim-
ilarly to the principle described in the item 1). It is expected that the
multipliers developed by means of this approach will exhibit a regular
structure. Because of the reduced search space in comparison with the
item (1), the maximal number of generations was decreased to one mil-
lion. In both cases the system is to perform four developmental steps to
design a solution which is evaluated by the fitness function. The goal is
to evolve a program that is able to create generic multipliers.

The experiments were conducted on common PCs running RedHat-based
Linux operating system. The hardware configuration consists of a 2.0 GHz
processor and 512 MB RAM. The SGE system was utilized so that several
independent experiments could be performed on different PCs in parallel. The
evolution of a single solution required 15–20 minutes in average.

6.2.3 Experimental Results and Discussion

In the first set of experiments 3-part programs (6+12+12 instructions) were
evolved utilizing the environment env = (0, 1, 2, 2) for controlling the develop-
ment. 1000 independent experiments were conducted from which 67% working
solutions (i.e. the programs for constructing 4×4-bit multipliers) were evolved
and 18% of them were classified as general programs.

Figure 6.6 shows one of the multipliers designed by the evolution together
with detailed logic schemes of the building blocks utilized (half adder from
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Figure 6.3e and full adder from Figure 6.3f). This multiplier was constructed
by means of one of the most efficient programs that were evolved in this set of
experiments. The program, that demonstrated the ability to construct generic
multipliers, is shown in Table 6.2. Let us go through the program in order to
understand the developmental process.
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Fig. 6.6. A 4 × 4-bit multiplier created by means of evolved program shown in
Table 6.2 using the environment env = (0, 1, 2, 2). A0 . . . A3, B0 . . . B3 represent the
bits of the operands, P0 . . . P7 denote the bits of the product. Logic schemes of the
half adder- and full adder-based building blocks utilized by the evolved program are
shown. M1 and M2 denote the multiplicands whose partial product represents the
first operand of the full adder, B denotes the second operand, Cin poses the input
carry, Sum and Cout represent the resulting sum and output carry.

At the beginning of the development, the following setup is specified by
the designer: w = 4, env = (0, 1, 2, 2). The following initialization is performed
by the system: v0 = 1, v1 = 0, v2 = 0, v3 = 0, row = 0, col = 0, e = 0.

At this point env(e) = 0, therefore, Part 0 of the program will be executed.
The instruction 0 should repeat zero times instructions 1 and 2 (because v1 =
0), therefore, this code has no effect. Since part 0 of the program is executed
only once at the beginning of the development according to the environment
and the value of v1 is always 0 during the execution, the instructions 0, 1 and
2 constitute an intron in this part of the program. Therefore, they might be
removed without any loss of its functionality. The instruction 3 will repeat
the instructions 4 and 5 four times (because w = 4). These instructions create
row 0 of the multiplier (blocks HA-2) with the inputs of AND gates of these
blocks connected to the primary inputs (operands of the multiplier) specified
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Line Part 0 Part 1 Part 2
0: REP v1 2 GEN FA REP v1 2
1: GEN FA SET v3 0 REP v0 2
2: INC v0 1 SET v0 v3 GEN ID-1
3: REP w 2 INC v1 1 GEN ID-1
4: GEN HA-2 REP w 2 INC v0 1
5: INC v0 1 GEN FA INC v1 1
6: INC v0 1 REP w 1
7: SET v1 0 SET v0 v2

8: GEN FA REP w 2
9: DEC v1 0 GEN FA
10: INC v1 1 INC v0 1
11: REP v0 2 GEN FA

Table 6.2. Evolved general program by means of which the multiplier from Figure
6.6 was created. In this case (w = 4), the program consists of 3 parts executed
according to the environment env = (0, 1, 2, 2).

by the actual values of v0 and v1. While v1 retains 0, v0 is increased by 1 by
instruction 5 and col is increased by 1 automatically by the system in each
pass (in general, after executing a GEN instruction). Since there are no more
instructions to be executed in Part 0, the system increases row and e by 1
and the construction of row 0 of the circuit is finished. Note that the variables
hold their current values after finishing the execution of the program 0, i.e.
v0 = 4 and the others equal 0.

Now, env(e) = 1 for e = 1, therefore, Part 1 of the program will be
executed in order to develop row 1 of the multiplier. The instruction 0 of
Part 1 generates the full adder (FA block), where the inputs of AND gate of
this block should be connected to bits 4 and 0 of the operands (according to
the variables v0 = 4, v1 = 0). Note, since v0 exceeds the operand width, the
first input of AND gate of this FA block will be considered as logic 0 causing
permanent logic 0 at the output of the AND gate, i.e. the AND gate of this
block is meaningless (see Figure 6.6). Instructions 1 and 2 actually set v0 to
0. Then, v1 is increased by 1 by instruction 3. Instructions 4, 5 and 6 generate
four FA blocks with the inputs of AND gates of these blocks connected to
the appropriate operand bits. Note that instruction 7 sets v1 to 0 which, in
fact, voids the result of instruction 3 (i.e. instruction 3 can be considered as
intron). An FA block is generated by instruction 8 (again, its AND gate is
meaningless). Instruction 9, decreasing v1 by 0, has no effect, v1 is increased
by 1 by instruction 10 and instruction 11 represents an intron since there is
no code to repeat. Row 1 is completed with the actual values of v0 = 4, v1 = 1
and other variables possessing zeros.

The row 2 of the circuit will be constructed using Part 2 of the program
according to the next environment value env(e) = 2 for e = 2. Instruction 0
initiates a loop repeating once instructions 1 and 2. Instruction 1 is interpreted
as no operation because inner loops are not allowed and instruction 1 generates
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an ID-1 block. In addition, instruction 3 creates one more ID-1 block in the
next column. Value of v0, respective v1 is increased by one by instruction 4,
respective 5. In fact, the only effect of the loop initiated by instruction 6,
repeating instruction 7, is to set v0 to 0 (according to v2 which equals 0).
This operation actually voids the result of instruction 4. Four FA blocks are
generated by instruction 9 inside the loop started by instruction 8. Instruction
9, which is also a part of the loop body, determines the connection of the inputs
of AND gates generated inside these blocks. The last instruction 11 generates
an FA block with a redundant AND gate. Now row 2 is finished. The variables
v0 = 4, v1 = 2 and the other ones equal 0.

According to env(e) = 2 for e = 3 the last row of the circuit will be
generated by executing Part 2 of the program. The development proceeds in
the same way as described in the previous paragraph, considering the values
of variables resulted from the previous developmental step.

It is evident that the multiplier shown in Figure 6.6 could be optimized
considering the inputs of the building blocks. For instance, half adders in row 0
of the circuit can be replaced by simple AND gates since the first input of each
of these adders is permanently connected to logic 0. Similarly, full adders at
positions (1, 1), (1, 4), (2, 2) and (3, 3) actually represents half adders and full
adders at positions (1, 0), (1, 5), (2, 6) and (3, 7) can be replaced by identity
functions. In fact, the circuit corresponds to the conventional multiplier after
performing this optimization (compare with Figure 6.1).

The second set of experiments was devoted to the evolutionary design
of single developmental programs consisting of 10 instructions. A new form
of the environment was specified in order to demonstrate the adaptation of
the program being evolved to the new conditions of creating generic multi-
pliers. Again, 1000 independent experiments were conducted from which 97%
working solutions were obtained. 85% of the evolved programs were classified
as general. An evolved 4 × 4-bit multiplier adapted to the new environment
env = (0, 0, 0, 0) is shown in Figure 6.7. Table 6.3 shows the appropriate de-
velopmental program. This program showed the ability to construct generic
multipliers. Note that, in general, for w-bit operands the environment possess
the form env = (0, . . . , 0) whose length corresponds to w, i.e. w developemntal
steps is needed in order to develop a working multiplier.

0: REP v1 1 4: INC v0 1 8: SET v0 v2

1: GEN ID-1 5: INC v3 0 9: GEN ID-2
2: REP p1 2 6: INC v1 1
3: GEN FA 7: SET v3 v0

Table 6.3. Evolved general program by means of which the multiplier from Figure
6.7 was created. In this case (w = 4), there is only one program part operating in
the environment env = (0, 0, 0, 0).
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Fig. 6.7. A 4×4-bit multiplier created by means of evolved program shown in Table
6.3 adapted to the environment env = (0, 0, 0, 0). A0 . . . A3, B0 . . . B3 represent the
bits of the operands, P0 . . . P7 denote the bits of the product. Logic scheme of the
fundamental full adder-based building block (see Figure 6.3f) utilized by the evolved
program is shown. M1 and M2 denote the multiplicands whose partial product
represents the first operand of the full adder, B denotes the second operand, Sum
and Cout represent the sum and output carry of the full adder.

The results presented in this section confirms Hypothesis 2 because general
solutions have been generated using the parametric development and partially
also Hypothesis 3 because the conventional general principle of constructing
common combinational multipliers has been rediscovered. The results are pre-
sented without proofs because of known properties of the conventional solu-
tions (e.g. see [Wak01]).

Experiments for the evolution of 3×3 multipliers were conducted, however,
no general solution was obtained. Although basic AND gates and ID functions
were available in the set of building blocks, they were rarely used in the design
and adders were generated instead. This behavior could be explained by pre-
dominating occurrence of adders which pushes the evolution to design regular
structures, utilizing the properties of the building blocks and their intercon-
nection. The evolved programs exhibit certain degree of redundancy, which is
caused by the determination of the program length based on the conventional
design. Therefore, there is an additional possibility for reducing the search
space. Despite the worse level of evolvability as seen in the progress of the
average population fitness shown in Figure 6.8, a very good success rate was
observed both in the case of the evolution of initial solutions and the occur-
rence of general programs among these solutions after verification especially in
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the second set of experiments, which indicates the suitability of the proposed
representation to evolve generic structures. However, the selection of building
blocks represent a crucial issue for successful evolution of this kind of circuits.
Both the programs presented herein showed the ability to construct generic
multipliers, which has never been seen before in the field of the evolutionary
design.
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Fig. 6.8. A typical progress of the fitness during the evolution of multipliers using
the proposed developmental system

An environment was integrated into the developmental model in order to
allow the system to construct irregular structures (inspired by the conven-
tional multipliers). Several general programs were evolved that construct the
multipliers that correspond to the structure of the conventional combinational
multipliers. Moreover, a single program was evolved that is executed repeat-
edly in order to develop a working circuit (the evolutionary design process has
been adapted to another environment). The multipliers developed by means
of this program exhibit fully regular structure.

Note that the feature of adaptation observed in the evolutionary devel-
opmental system is significantly influenced by the general properties of the
building block and the grid structure the building blocks are generated into.
In particular, the facility of degradation of more complex blocks (e.g. full
adders) to simpler blocks (e.g. AND gates, ID functions etc.) according to the
input values of the blocks represents the key feature that enables to develop
fully regular multiplier structure considering the grid representation of the
circuit and the interconnection of the building blocks in the regular manner.
However, the results of adaptation represent significant findings with respect
to the future research. For example, the development of generic combinational
multipliers possessing exactly that structure shown in Figure 6.1 would not be
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possible without applying the environment. A variety of building blocks exist
which could be involved in the design process in order to develop more com-
plex generic circuits exhibiting irregularities. Therefore, the approach utilizing
a form of environment suggests an extensive area deserving of subsequent in-
vestigation.

6.3 Advanced development of generic multipliers

The experiments conducted under the initial research demonstrated (1) a suit-
ability of the instruction-based developmental model to design generic mul-
tiplier structures using a parametric approach, (2) a possibility of the devel-
opment of irregular structures by introducing an environment which is con-
sidered as an external control of the developmental process – inspired by the
structures of conventional multipliers and (3) an adaptation of the develop-
ing structures to the different environments by utilizing the properties of the
building blocks. These results indicate that the area of evolutionary develop-
ment of multipliers is worth of future investigation. Therefore, an improved
developmental system was proposed that is based on the approach introduced
in Section 6.2.1.

The original developmental model utilized complex building blocks which
were inspired by the elements present in the structure of the common com-
binational multipliers. Specifically, the basic component of adder (half adder
and full adder) was combined with an AND gate in order to create a functional
building block. However, the complexity of those building blocks may restrict
the evolution in finding effective solutions. As the results showed, there is no
innovation in comparison with the conventional design. Therefore, the objec-
tive of the next research was to introduce simplified building blocks and to
modify the developmental system in order to develop more effective generic
multipliers.

6.3.1 Concept of improved developmental system

In order to reach the objective described in the previous paragraph, the fol-
lowing aspects were introduced to the developmental system. The inspiration
for the development of more efficient multipliers was taken from the principle
of carry-save multipliers which exhibit shorter delay in comparison with the
common combinational multipliers as described, for instance, in [Wak01]. The
experiments presented herein are devoted to design this kind of circuits.

To clarify the developmental process and to decrease the restriction of
evolutionary process caused by the complexity of the building blocks in the
initial approach, the building blocks are split to pure half and full adders and
basic AND gates. These components represent elementary building blocks of
the circuit in the modified developmental model. Sample instances of common
and carry-save 4 × 4-bit multipliers composed of these building blocks are
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shown in Figure 6.9. Considering this circuit representation, the first level
(“row”) of AND gates occurring in both multipliers and the last level of adders
occurring in the carry-save multiplier (Figure 6.9b) constitute irregularities
that have to be taken into account during the developmental process (similarly
to the initial experiments presented in Section 6.2.3). The rest of the circuits
exhibits regular structure; the number of bits of the operands can be used
to determine the number of AND gates and adders in the appropriate circuit
level and also the number of levels of the multiplier. Therefore, it may be
assumed that the representation utilizing the new concept will be suitable for
development by means of similar instruction-based approach. Again, several
forms of environment will be considered in the evolution of both types of
multipliers.
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Fig. 6.9. 4× 4-bit conventional multipliers: (a) common combinational multiplier,
(b) more efficient carry-save multiplier possessing shorter delay in comparison with
the common one. a0, . . . , a3, respective b0, . . . , b3 denote the bits of the first, respec-
tive the second operand, p0, . . . , p7 represent the bits of the product.

6.3.2 Differences in the developmental models

The model of development utilized for the experiments presented in this sec-
tion is based on the principles introduced in Section 6.2.1. However, several
differences have to be considered in order to enable the system to deal with the
issues stated in Section 6.3.1. The differences are summarized in the following
paragraphs.

For the development of more efficient generic multipliers, simplified build-
ing blocks (in comparison with those shown in Figure 6.3) have been intro-
duced. Figure 6.10 shows the new set of building blocks. As evident, the adder
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constitutes the crucial element of the circuit (similarly to the design of con-
ventional multipliers). Moreover, the basic AND gate was separated from the
adders, i.e. only pure half and full adders and a standalone AND gate consti-
tute the new set of building blocks utilized for this kind of development. The
consequence of this modification is that all the AND gates are represented in
separate positions of the grid during the circuit development (see Figure 6.9).
Therefore, it is needed to introduce a more general interconnection pattern of
the elements in order to be able to create a working multiplier. To satisfy this
requirement, new types of half and full adders have been included in the set
of building blocks whose appropriate inputs can be connected to the second
neighbouring row in the grid relatively to the actual position of the adder.
These new adders are shown in Figure 6.10 under the variants (d), (f) and
(g). Moreover, a new type of full adder (Figure 6.9h) has been introduced
possessing another prescription for the connection of its inputs. The modifi-
cations performed in the new developmental system is primarily inspired by
the aim to design carry-save multipliers (a sample instance is shown in Fig-
ure 6.9b). The grid utilized for the circuit development and the new building
blocks keep their original features (i.e. the principle of their interconnection
and the rules according to which the multipliers are developed) as described
in Section 6.2.1.
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Fig. 6.10. Building blocks for the development of generic multipliers. (a, b) buffers
– identity functions, (c) AND gate, (d, e) half adders, (f, g, h) full adders. (row,
col) denotes the position in the grid. v0 and v1 determine indices of primary input
bits. Connection of different inputs of the blocks are shown. Unused inputs and
outputs are not depicted (set to logic 0). Note that the full adders (g, h) are new
to the advanced developmental model that has been introduced (inspired by the
conventional approach) in order to design carry-save multipliers.

The instruction set utilized in the modified developmental model is the
same as summarized in Table 6.1 with the only difference related to the GEN
instruction. In the new setup, the GEN instruction may generate one or two
building blocks at a time. Note that only one building block could be generated
by means of the original developmental model. The types of the building blocks
to be generated are specified by two arguments of the GEN instruction. In case
of generating two blocks, the second one is placed to the position (row+1, col)
in the grid. This variant of circuit development has been chosen in order
to reduce the complexity of the design process when the simplified building
blocks have been utilized. Note that this approach does nowise restrict the
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capabilities of the construction algorithm because the number and types of
the blocks to be generated are determined independently by means of the
evolutionary algorithm. Note that the evolutionary system setup is identical
as described in Section 6.2.2

The following developmental algorithm has been defined in order to handle
the design process by means of the modified model.

1. Initialize row, col, v0, v1, v2, v3 and e to 0.
2. Execute env(e)-th part of program.
3. If a GEN instruction was executed, increase row by 2 in case of generat-

ing two building blocks simultaneously or by 1 if only single blocks were
generated. Increase e by one and set col to 0.

4. If neither e, nor row exceed, go to step 2.
5. Evaluate the resulting circuit.

6.3.3 Experimental Results and Discussion

The evolutionary design process was devoted especially to the design of carry-
save multipliers which exhibit better properties in comparison with the com-
mon multipliers. In addition, the adaptation was involved by considering dif-
ferent environments in order to investigate the ability of the design system to
develop the common multipliers as well by means of the modified representa-
tion. The selection of the evolved programs and resulting circuits presented
in this section is based on their generality (i.e. the ability to construct generic
multipliers) and the resemblance to the carry-save multiplier structure with
respect to the circuit delay and the number of building blocks the developed
multipliers are composed of.

In the first set of experiments, a subset of the building blocks from Figure
6.10 was chosen for the design of the carry-save multipliers (see Figure 6.9b).
Therefore, only the blocks (a, b, c, d, g, h) were involved in the design process.
Considering the irregular structure of the conventional carry-save multiplier,
a program consisting of four parts is to be evolved. The parts of the program
are executed according to the environment env = (0, 1, 2, 2, 3), which is spec-
ified a priori with respect to the structure of carry-save multiplier. Therefore,
the construction of the circuit is performed as follows. Considering Figure
6.9b, the first level of the AND gates is created using part 0. The second
level of AND gates together with the following level of adders are constructed
by means of part 1. According to the environment, the next levels of AND
gates and adders are created by means of double application of part 2. Fi-
nally, part 3 is utilized to design the last level of adders. Two hundreds of
independent runs of the evolutionary algorithm were conducted from which
18% evolved a correct program for the construction of 4 × 4-bit multipliers.
60% of the evolved programs were classified as general, i.e. able to create arbi-
trarily large multiplier. Figure 6.11 shows (a) one of the best evolved general
program and (b) a 4×4-bit multiplier constructed by means of that program.
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Fig. 6.11. (a) An evolved general program, (b) 4 × 4 multiplier exhibiting the
carry-save structure created by means of this program. Note that blank rectangles
represent empty blocks (not generated by any instruction) whose outputs are con-
sidered as logic 0.

At the beginning of the development, the system is initialized: the variables
are set to 0, the parameter is set to 4, row and column positions are initialized
to 0 and the number of rows and columns is limited to 8 – no gate may be
generated behind the grid boundaries. According to the first element of the
environment (0), part 0 of the evolved program is executed (see Figure 6.11a).
The first REP instruction initiates a loop repeating 4 times (because w = 4
for designing a 4×4 multiplier) two instructions after the REP instruction. In
each pass, an AND gate (code 2 in the argument of GEN instructions at line
2) is generated with its inputs connected to the primary inputs of the circuit
indexed by the values of variables v0, v1. Moreover, v0 is increased by 1 (line 3)
so that the AND gates generated in different passes possess the different first
input. After executing a GEN instruction, the column position is increased by
1. After finishing part 0, the row position is increased by 1 and the column
position is set to 0. According to the next element of the environment (1),
part 1 will be executed. Note, however, that the GEN instruction at line 2
of part 1 generates two building blocks into the actual column, the second
block “under” the first one: full adder is generated into the second row of the
first column (code 5 in the first GEN argument) and the identity function
is generated into the third row of the first column (code 0 in the second
argument). Since there have been building blocks generated into two rows,
the row position is increased by 2 after finishing part 1. In case of executing
part 3, only the full adders are generated (code 5 of the GEN instructions at
lines 4 and 5) as there is no space left in the grid for the second level of blocks
specified by the second argument of the GEN instructions – the number of
rows of the grid was limited to 8 for this experiment.



i
i

“bidlo-phdthesis-fitmono” — 2011/1/27 — 15:25 — page 107 — #115 i
i

i
i

i
i

6.3 Advanced development of generic multipliers 107

It is evident that the multiplier shown in Figure 6.11 could be optimized
with respect to the inputs of some building blocks (e.g. adders possessing only
one non-zero input could be replaced by the identity functions as demon-
strated in Section 6.2.3). After this optimization the circuit corresponds to
the carry-save multiplier shown in Figure 6.9b.

The second set of experiments was devoted to the design of multipliers
using the full set of building blocks shown in Figure 6.10 and the same form
of environment like in the previous experiment. Therefore, this setup corre-
sponds to both variants of the multipliers from Fig 6.9. The prefix (0, 1, 2,
2) of the environment may be utilized for the evolution of common multiplier
structures shown in Figure 6.9a. Again, 200 independent experiments were
conducted from which 37% of working programs were obtained and 54% of
them were classified as general. However, the experiments showed that the
evolution of efficient carry-save multipliers is difficult using this setup. Al-
though there are all the resources available as in the first set of experiments,
no valid carry-save structure was obtained. The evolution generated the carry-
save components very rarely and not to the positions at which they could be
usefully utilized during the circuit operation. The common structures (Figure
6.9a) were evolved instead. An example of a general program together with
a 4× 4-bit multiplier is shown in Figure 6.12 which represents the same type
of the common multiplier structure that was evolved in Section 6.2.3.
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Fig. 6.12. (a) An evolved general program, (b) a 4 × 4-bit multiplier based on
the structure of the common combinational multiplier. Blank rectangles represent
empty blocks with the outputs possessing logic 0.

The experiments presented in this section represent a continuation of the
successful research in the field of the evolutionary design of generic multipliers
using development introduced in Section 6.2.

The phenomenon of adaptation of the developmental process to different
environments during the evolution enabled us to design various multiplier
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structures. In particular, the carry-save structure was rediscovered in these
experiments, exhibiting shorter delay in comparison with the common multi-
pliers, which was the main goal of experiments using the modified developmen-
tal model. Note that these results confirm Hypothesis 2 (generating general
solutions using parametric development) and partially also Hypothesis 3 (re-
discovering a general conventional solution). Again, the results are presented
without proofs because of known properties of the conventional carry-save
multipliers (e.g. see [Wak01]).

Although the carry-save multipliers showed to be very hard to evolve, the
evolutionary developmental system demonstrated the ability to design this
class of multipliers using a reduced set of building blocks. Moreover, simplified
building blocks were introduced in this section together with an improved
developmental model in comparison with the initial experiments presented
in Section 6.2. Therefore, there is a smaller limitation of the evolutionary
process which, however, leads to more difficult evolution because of lower
level of abstraction in the circuit representation. The success of the evolution
of carry-save multipliers demonstrates an ability of the experimental system
to design different circuit structures with more complex interconnection of
their components which represents a promising area for the next research.

6.4 Summary

In this chapter, an original developmental approach to the automatic evolu-
tionary design of arbitrarily large combinational multipliers was introduced.
Since the size of the target multiplier to be developed is specified explicitly
by the number of bits of the operands as a parameter and the working circuit
is every time constructed from scratch by means of the evolved program, it is
a case of parametric developmental design. In total, two systems of develop-
ment were presented, each of which works with a different representation of the
circuits. Both models demonstrated the ability to design generic multipliers.

In the first developmental model that was used to conduct the initial exper-
iments of this kind, a specific form of an external information, that was called
the environment, was integrated into the design system. The environment,
representing an additional control of the developmental process, is intended
as a tool enabling to design irregular structures that are observable in the
conventional structures of combinational multipliers. Moreover, the environ-
ment was utilized in order to demonstrate adaptation of the design process,
retaining its ability to design generic multipliers. The experiments confirmed
the capability of adaptation in connection with the proposed circuit repre-
sentation. General programs were evolved for the construction of multipliers
which exhibit a high degree of regularity in the circuit structure. This ap-
proach represents the first case in the area of the evolutionary design when
arbitrarily large combinational multipliers were constructed by means of the
development.
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The interesting results obtained from the initial experiments indicated that
this area of evolutionary design may be worth of future research. Therefore,
an advanced developmental system was designed that has been primarily in-
tended to design more effective multipliers. The inspiration was taken from the
principle of carry-save multipliers which exhibit shorter delay in comparison
with the common ones. Simplified building blocks were introduced in order to
clarify the design process and to enable the evolutionary algorithm to explore
a wider design space. The new set of building blocks led to different circuit
representation for which the developmental system had to be adjusted. The
phenomenon of adaptation to the different environments was utilized for the
design of common as well as carry-save multipliers and their potential variants
using the modified representation of the circuit structures. Although the ex-
periments showed a substantial difficulty of designing the efficient carry-save
multipliers, several general programs were evolved that construct this class of
circuits using a reduced set of building blocks which represents a contribution
of this dissertation.

In view of the experiments conducted in this domain, it is evident that
there may be a big potential for the application of this model to other classes
of well-scalable circuits, in particular, sorting networks. In general, the rectan-
gular structure introduced for the circuit representation can be easily adjusted
to the requirements of other applications. For instance, a linear array was uti-
lized for an advanced development of generic sorting networks as described in
Section 5.5.

Despite the successful results presented in this chapter, the evolved solu-
tions are expectable because the circuit representation was inspired by the
conventional design and the concept of the developmental process was mostly
adjusted to the known features of the conventional approach. However, the re-
sulting programs were discovered completely automatically and exhibits more
complexity in comparison with the case of continual development of the sort-
ing networks. Although there are less results presented in this chapter, it is
influenced by the fact that most of them was monotonous, inefficient and
therefore not so interesting for future investigation.

Note that Hypotheses 2 and 3 have been confirmed because general solu-
tions have been evolved using the parametric development approach and the
general conventional solution of carry-save principle has been rediscovered.

The instruction-based development approach is also applicable to the evo-
lutionary design of generic adders. However, it is a trivial task because the
basic (regular) adder structures (e.g. ripple carry adder or carry skip adder)
constitute only simple chain of gates or half/full adder modules. Therefore,
no such experiments will be presented herein.
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Development of generic polymorphic circuits

In Chapter 6 an instruction-based developmental model was introduced that
utilized an external information (which was called the environment) allowing
us to control the developmental process. It was shown that the evolution
can adapt to different environments while preserving the ability to design
programs for the construction of the circuit with a given functionality. In
fact, this kind of environment (more precisely, its interpretation) is aimed to
influence the physical structure of the circuit to be developed. For instance, for
some environments, a functional unit, say X, is created, for other environments
functional unit X is not created. Therefore, the evolution must adjust the
program to be designed in order to develop the desired function of the target
circuit for the different environments.

In this chapter it will be shown that there is an other option for providing
external information for growing digital circuits. In general, this information
need not to be provided in the digital form; rather it may influence the system
in an analogue (and perhaps non-electrical) form, for example, as temperature,
light, radiation, specific voltage etc. The motivation for this approach is that
every electronic circuit operates in a real physical environment and “good”
physical environment is crucial for the correct behavior of the resulting system
(similarly, cells survive and divide only in a “good” environment).

In this approach the growing circuits should inherently be able to inter-
act with the physical environment. Technology, which, in principle, allows
engineers to build such systems, is called polymorphic electronics [SZG+04,
SZKL02, SZK01]. It was shown that it is possible to create digital gates whose
functionally can be controlled in a non-traditional way: by temperature, power
supply voltage (Vdd), some external signals etc. For example, the polymor-
phic (i.e. multifunctional) NAND/NOR gate operates as NOR in the case that
Vdd=1.8V and as NAND in the case that Vdd=3.3V. Polymorphic gates do
not influence the physical structure of the growing circuit, i.e. the circuit topol-
ogy is independent of the environment. However, because the circuit contains
polymorphic gates, its behavior depends on the environment, i.e. the circuit
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is inherently multifunctional. For instance, it can operate as the adder in low
temperatures and as the sorter in high temperatures.

If some gates of a growing circuit are polymorphic then the function of
the circuit to be developed can be controlled by the mentioned external sig-
nals (in addition to controls derived from expressed genetic information). The
objective of this chapter is to propose a simple example of a developmental
electronic system which consists of polymorphic gates and so which can be
influenced by an external control signal.

The proposed research is also based on our previous work presented in
Chapter 5 in which arbitrarily large sorting networks were evolved using an
application specific instruction-based developmental model. In particular, pro-
grams were evolved which are able to construct an N +1-input or N +2-input
sorting networks from an existing N -input SN. Here a modified developmen-
tal system is presented that is able to work with polymorphic gates which are
considered as basic building blocks of the growing circuits. Therefore, the tar-
get circuit can specialize its functionality according to the environment which
is sensed through polymorphic gates. In this stage of research it is assumed
that arbitrary polymorphic gates exist; however, only bi-functional (polymor-
phic) gates are considered in the current phase of our research. The results are
presented on growing even/odd parity circuits and sorting/median networks.
Since the circuits are able to “grow” and preserve their required function dur-
ing the development, it is a case of continual approach similarly to that in
Chapter 5.

7.1 Polymorphic electronics

Polymorphic circuits, introduced by Stoica’s team at JPL, are in fact mul-
tifunctional circuits. The change of their behavior comes from modifications
in the characteristics of components (e.g. in the transistor’s operation point)
involved in the circuit in response to controls such as temperature, power
supply voltage, light, etc. [SZKL02]. Polymorphic circuits are able to work in
several modes of operation corresponding to different operational conditions.
Table 7.1 gives examples of the polymorphic gates reported in literature. Most
of them have been designed by means of evolutionary techniques. The men-
tioned NAND/NOR gate is the most famous example [SZG+04]. The circuit
consists of 6 transistors and was fabricated in a 0.5-micron CMOS technology.
The circuit is stable for ±10% variations of Vdd and for temperatures in the
range 20◦C – 200◦C.

Potential applications are discussed in [SZKL02]. Polymorphic electron-
ics should allow engineers to build inherently adaptable digital circuits. By
changing the temperature, Vdd or some other conditions a circuit can change
its functionality immediately, with no reconfiguration overhead. The poten-
tial applications include: special circuits that are able to decrease resolution
of digital/analog converters or speed/resolution of a data transmission when
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Gate Control values Control method Reference

AND/OR 27/125◦C temperature [SZK01]
AND/OR/XOR 3.3/0.0/1.5V external voltage [SZK01]

AND/OR 3.3/0.0V external voltage [SZK01]
AND/OR 1.2/3.3V Vdd [SZKL02]

NAND/NOR 3.3/1.8V Vdd [SZG+04]
NAND/NOR 5.0/3.3V Vdd [RSP08]

Table 7.1. Examples of existing polymorphic gates

a battery voltage decreases, circuits with a hidden/secret function that can
be used to ensure security, intelligent sensors and novel solutions for reconfig-
urable cells and function generators in reconfigurable devices (such as FPGA
and CPLD) [SZKL02].

The design of polymorphic circuits is considered as main problem because
these circuits typically utilize normally unused characteristics of electronic
devices and working environment; conventional design techniques are usually
not able to deal with that. Therefore, the current research of the polymor-
phic circuits design methods often deals with the simulated polymorphic gates
(that may even not have to exist physically) rather than working only with the
existing polymorphic gates directly in hardware. For example, Sekanina has
proposed a method for the evolutionary design of gate-level digital polymor-
phic circuits by means of cartesian genetic programming. Polymorphic gates
have been considered as basic building blocks [Sek05]. For instance, a circuit
was evolved operating as 2-bit adder in environment E1. This circuit can also
work as 2-bit multiplier in environment E2. A typical feature of polymorphic
gate-level circuits is that their topology (i.e. connection of components) is
fixed; however, the components can change the functionality.

Code Gate Code Gate Code Gate Code Gate

0 AND/I 5 OR/I 10 XOR/I 15 NOT/I

1 AND/AND 6 OR/AND 11 XOR/AND 16 NOT/NOT

2 AND/OR 7 OR/OR 12 XOR/OR 17 I/NOT

3 AND/XOR 8 OR/XOR 13 XOR/XOR 18 I/I

4 I/AND 9 I/OR 14 I/XOR

Table 7.2. List of gates. Some of them are polymorphic. “I” denotes the identity
function (a buffer).
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7.2 Development of polymorphic circuits

All the approaches to development of digital circuits, mentioned in the previ-
ous chapters, can be enriched by using polymorphic gates. Again, the aim is
to develop arbitrarily large circuits.

Since the polymorphic gates are to be present in the circuits, causing
multifunctional (bi-functional) trait of their operation, the development is
much more difficult because it must design a proper circuit topology with
respect to the polymorphic gates. Moreover, the requirement of generality
(i.e. ability of the circuit to develop to theoretically arbitrary size) makes this
process a challenging task.

In this section, a genetic algorithm is combined with the continual de-
velopment using the instruction-based approach to design arbitrarily large
polymorphic circuits, in particular, polymorphic odd/even parity circuits and
polymorphic sorting networks (with increasing/decreasing order of the sorted
sequences and median networks).

Similarly to the approach described in Section 5.3, the GA is utilized to
design a program by means of which arbitrarily large polymorphic circuit
can be developed. Genetic algorithm is employed to evolve a sequence of
instructions (a program), by means of which an initial simple instance of the
problem (an embryo) will grow to form a more complex circuit.

Again, each instruction of the program consists of three integers (opcode,
arg1, arg2), where opcode represents the operation code of the instruction and
arg1 and arg2 denote its arguments. The meaning of arguments depends on
the type of the instruction (instructions with no operands are allowed; then
arg1 and arg2 are not interpreted). A developmental step is understood as
a single application of the program on a circuit created in the previous devel-
opmental step to construct more complex circuit. After each developmental
step the number of circuit inputs increases according to the size of the devel-
opmental step that is determined as the difference of the number of inputs
of two subsequent circuits. The size of developmental step is specified by the
designer before the evolution is executed.

Figure 7.1 shows the structure of a basic building block utilized in the
developmental system. Each building block consists of two gates, g1 and g2,
representing logic functions performed in the gates and indices of inputs of
the gates i1 and i2. Note, however, that each gate may perform two functions
because it is a case of polymorphic gates. Each building block is then encoded
using a 4-tuple (i1, i2, g1, g2). The target circuit is represented as a sequence
of building blocks. Table 7.2 shows the list of gates that have been utilized for
the development and their integer codes. Standard (non-polymorphic gates)
are represented by a pair of identical functions (e.g. 1 – AND/AND for a com-
mon AND gate). Polymorphic gates consist of two different functions (e.g. 2
– AND/OR). A model of wire was also included representing the identity
function (e.g. 18 – I/I). The wire can also be present in polymorphic gates
as it is suppose that arbitrary polymorphic gate exists. All the polymorphic
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gates considered for the development are bi-functional. For instance, the gate
AND/OR operates as a common AND in environment (value of the control
signal) E1 and function OR is performed in environment E2.

g1

g2

g1

g2

i1

i2

(b)(a)

Fig. 7.1. The basic building block: (a) logic structure, (b) symbolic notation. g1
and g2 represent logic functions performed in the gates. i1 and i2 denote the input
indices.

Fig. 7.2. Configuration of developmental system for a polymorphic circuit: (a) the
growing circuit, (b) the program which is represented by a chromosome

A sample configuration of the proposed developmental system is shown
in Figure 7.2. The embryo pointer (ep) indicates the building block that is
actually processed by the instruction selected through the instruction pointer
(cp). As the result of application of the instruction new gates will be placed on
the position denoted by the next-position pointer (np). This pointer denotes
the first empty position where the circuit will grow to. The instructions of the
program are processed sequentially. The process of construction terminates
when either all the instructions of the program are executed or the end of
embryo is reached. After executing an instruction the pointers ep, cp and np
are updated. An “empty” embryo is used at the beginning of the develop-
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mental process, i.e. no particular information is known about the structure of
the initial circuit, which is, therefore, considered as a 4-tuple (0, 0, I/I, I/I).
Considering that, there must be instructions in the instruction set that are
able to set the input signals of the polymorphic gates and their functions
(e.g. instruction MODIS and MODFS). These so-called modify-instructions
only modify the gates denoted by the embryo pointer (ep) without copying
them and hence the next-position pointer (np) remains unchanged after their
execution. The instructions which are responsible for growing the circuit are
of the types copy or copy-and-modify (e.g. instructions CPOS or CPMIS).
Every instruction is used in two variants (e.g. CPMIS and CPMIN), whose
difference lies in updating strategy of the embryo pointer (ep) after execution
of the instruction. Table 7.3 lists all the utilized instructions. For example,
CPOS copies a pair of gates from position given by ep to the position given by
np; the embryo pointer remains unchanged in this case. The position (indices
of inputs) of the newly created or modified gates depends on the position of
the gates being processed and the number of inputs of currently constructed
circuit (w).

7.3 Evolutionary system setup

A simple genetic algorithm is utilized to find a program whose repeated ap-
plication on an existing circuit will create a larger circuit. All the experiments
were performed with the following settings: standard one-point crossover with
the probability 0.55, the probability of mutation 0.04, population size 40,
tournament selection mechanism with the base 3, the maximal number of
generations 20,000.

The genetic algorithm works with chromosomes of constant length. The
number of instructions in a chromosome was determined experimentally dur-
ing our previous research. Note, that all the evolved programs work only with
either even or odd number of inputs, i.e. the developmental steps of size 2 is
considered.

The objective is to develop arbitrarily large circuits; however, only four
developmental steps are considered in the fitness calculation in order to make
the time of evolution reasonable. For a single environment the fitness value
is determined as f = f(2) + f(4) + f(6) + f(8) for even-input circuits and
f = f(3) +f(5) +f(7) +f(9) for odd-input circuits, where f(i) is the number
of correctly processed testing sequences by the circuit with i inputs. Therefore,
the maximum fitness value that is possible to reach is fmax = 22+24+26+28 =
340 for even-input circuits and fmax = 23 + 25 + 27 + 29 = 680 for odd-
input circuits. For the second environment the fitness value is calculated in
the same way. A software simulator is utilized for the circuits evaluation. At
the end of evolution it has to be verified whether the resulting programs are
general, i.e. able to produce arbitrarily large circuits (typically the verification
is performed for up to 28 inputs).
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Op. code Name Arg1 Arg2 Meaning

0 CPOS − − copy the pair of gates from ep to np;
cp = cp + 1, np = np + 1

1 CPON − − copy the pair of gates from ep to np;
cp = cp + 1, np = np + 1, ep = ep + 1

2 CPNS p − copy w − p pairs of gates; cp = cp + 1,
np = np + w − p

3 CPNN p − copy w − p pairs of gates; cp = cp + 1,
np = np + w − p, ep = ep + w − p

4 CPMIS p q copy the pair of gates from ep to np and do
i1 = (i1 + p) mod w, i2 = (i2 + q) mod w,
cp = cp + 1, np = np + 1

5 CPMIN p q copy the pair of gates from ep to np and do
i1 = (i1 + p) mod w, i2 = (i2 + q) mod w,
cp = cp + 1, np = np + 1, ep = ep + 1

6 CPMFS p q copy the gates from ep to np and do
f1 = p, f2 = q, cp = cp + 1, np = np + 1

7 CPMFN p q copy the gates from ep to np and do f1 = p,
f2 = q, cp = cp + 1, np = np + 1, ep = ep + 1

8 MODIS p q modify inputs of the gates at ep as follows:
i1 = (i1 + p) mod w, i2 = (i2 + q) mod w,
cp = cp + 1

9 MODIN p q modify inputs of the gates at ep as follows:
i1 = (i1 + p) mod w, i2 = (i2 + q) mod w,
cp = cp + 1, ep = ep + 1

10 MODFS p q modify functions of the gates at ep
as follows: f1 = p, f2 = q; cp = cp + 1

11 MODFN p q modify functions of the gates at ep as follows:
f1 = p, f2 = q; cp = cp + 1, ep = ep + 1

12 NOP − − an empty instruction: cp = cp + 1

Table 7.3. The instruction set for development of polymorphic circuits. p and q
represent the arguments of the instruction; i1 and i2 denote the indices of inputs of
the polymorphic gates; f1 and f2 are functions of the gates and w is the number of
inputs of the circuit being created.

The experiments were conducted on common PCs running RedHat-based
Linux operating system. The hardware configuration consists of a 2.0 GHz
processor and 512 MB RAM. The SGE system was utilized so that several
independent experiments can be executed on different PCs in parallel.

7.4 Experimental results

Two sets of experiments were conducted: (1) the development of polymorphic
even/odd parity circuits and (2) the development of polymorphic sorting net-
works and medians. In each experiment the objective was to evolve a program
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for the construction of arbitrarily large polymorphic circuit of the given class.
The circuits are intended to grow continually and theoretically infinitely. The
experimental results of each category are summarized in the next sections.

7.4.1 Polymorphic parity circuits

The parity problem (i.e. the decision if the number of boolean variables with
assignment true from a set of boolean variables is even or odd) has emerged
from the genetic programming framework as a difficult problem for program
induction [J. 92]. For instance, the following works were focused on investi-
gating general solutions for the parity problem. Wong et al. evolved recursive
functions for the even-n parity problem from noisy training examples [WL96].
They utilized logic grammars specifically devised to solve the parity problem.
Huelsbergen presented general solutions to the parity problem by evolving
machine-language representations [Hue98]. His approach considered a set of
boolean variables represented as a string interpreted by means of an integer
of appropriate size. Although the approaches to the parity problem solving
often do not consider XOR gate (that represents a typical function for the
straightforward effective parity computation), the goal is usually to design
non-polymorphic parity circuits.

In this section, a general approach is introduced using an evolved program
for the construction of generic even/odd parity circuits at the gate level em-
ploying polymorphic gates. Since the development of polymorphic circuits is
difficult due to the limited circuit topology, the entire set of building blocks
shown in Table 7.2 will be utilized for the development.

Some general programs were successfully evolved for this class of circuits.
According to the environment the circuits calculate either even or odd parity.
The solution is usually based on the conventional XOR gate (no. 13 in Table
7.2) and a polymorphic NOT switch (no. 17 in Table 7.2). Its structure is not
surprising; however, the structure was designed fully automatically without
any supporting domain knowledge (the design started with the empty embryo
(0, 0, I/I, I/I)). Figure 7.3 shows two instances of polymorphic circuits calcu-
lating even/odd parity functions. 35 general programs have been gained out of
200 independent runs of the evolutionary design process for a five-instruction
chromosome. 42 programs consisting of six instructions were evolved out of
200 independent runs of the evolutionary process from which 36 were recog-
nized as general.

7.4.2 Median and sorting networks

The evolutionary process has succeeded in the design of structurally variable
median circuits. These circuit structures, considered as polymorphic circuits,
do NOT compute different functions in different environments. However, the
way in which the median is calculated depends on the environment. Therefore,
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(a) (b)

Fig. 7.3. Examples of evolved generic polymorphic odd/even parity circuits. Only
even-input circuits have been considered. (a) A circuit developed by means of 5-
instruction program [MODIS 4 3] [MODFS 13 17] [CPMIS 0 1] [MODIS 0 2] [CPOS
3 1]. (b) A circuit developed using 6-instruction program [MODFS 17 13] [MODIS
2 3] [CPMIS 2 2] [CPMIS 2 0] [CPMIN 1 2] [MODIN 0 3].

the environment determines, through polymorphic gates, physical implemen-
tation of median circuit.

In addition, the mentioned polymorphic circuits can also work as sorting
networks. It is interesting that they sort the input sequences in increasing
or decreasing order according to the environment. Figure 7.4 shows evolved
polymorphic median and sorting network circuit built by means of a seven-
instruction program. Unfortunately, this program is not general. Median net-
works can be constructed only up to 13 inputs and sorting networks only up
to 11 inputs. However, these circuits exhibit better properties (the number
of comparators) than the conventionally constructed circuits (e.g. bubble-sort
network) [Knu98]. The evolutionary process has succeeded 68 times in 200 in-
dependent runs, from which eight programs are able to build fully functional
median circuits up to 13 inputs.

Figures 7.5 and 7.6 show polymorphic median and sorting networks cre-
ated by means of a seven- and eight-instruction program. These programs
are general. 45 programs were obtained out of 200 independent runs of the
evolutionary process, from which 5 programs are general.

The evolved circuits use gate 2 (AND/OR) and 6 (OR/AND) which means
that they sort the input sequences in increasing order in the first environment
and in decreasing order in the second environment. As the median value is
taken from the middle output, it does not depend on signals coming from the
environment.
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Fig. 7.4. Evolved polymorphic median and sorting network created by means of
the program [MODFS 2 6] [CPMIS 2 2] [CPMIS 1 2] [CPMIS 3 2] [CPMIS 0 1]
[CPMIN 1 1] [CPNN 0 2] (a 7-instruction program, odd number of inputs)

Fig. 7.5. Evolved polymorphic median and sorting network created by means of
the program [CPMIS 2 2] [MODFS 2 6] [CPMIS 1 2] [CPMIS 3 2] [CPMIS 0 1]
[CPMIS 1 1] [CPNN 2 4] [CPNN 4 4] (a 8-instruction general program, odd number
of inputs)

Fig. 7.6. Evolved polymorphic median and sorting network created by means of
the program [MODFS 2 6] [CPMIS 2 2] [CPMIS 1 2] [CPMFS 6 2] [CPMIS 0 1]
[CPNN 3 0] [CPMIS 4 2] [CPNN 1 2] (a 8-instruction general program, odd number
of inputs)

7.5 Discussion

General programs for the continual development of polymorphic parity cir-
cuits were evolved. Considering the conventional design of this class of circuits
a tree-based topology of XOR gates is typically implemented. The results
obtained from our system are area inefficient compared to the conventional
solutions. This can be explained by the encoding that was used. The design
of generic parity circuits using the conventional topology would evidently
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be very difficult with the proposed developmental encoding. Though the key
component of the evolved design is a common (non-polymorphic) XOR gate.
Therefore, the evolution utilized the same elements as the conventional de-
sign uses. Some of them are meaningless regarding the topology caused by the
developmental encoding and the structure of the building blocks. Finally, the
effective output is switched by the polymorphic I/NOT gate which is prob-
ably the simplest solution – there is no innovation in this case against the
conventional principle.

In case of sorting networks, evolution has discovered that by exchanging
AND–OR gates for OR–AND gates, the ordering of sorted sequence can be
changed. There is no innovation; human designer would construct the circuit
in the same way. Although the evolution could use many types of gates, it
has utilized the same gates as a human designer uses. The implementation of
AND as well as OR gate costs 6 transistors in the standard CMOS technology.
Surprisingly, the cost of polymorphic AND/OR gate controlled by tempera-
ture is also 6 transistors [SZK01]. If one were able to build OR/AND gate
with the same cost, the resulting polymorphic sorting network would consist
of the same number of transistors as the original one whose behavior cannot
be changed.

The results presented in this chapter confirm Hypothesis 1 because generic
solutions are possible to be generated by means of continual development and
partially also Hypothesis 3 because more effective general polymorphic sorting
networks have been developed in comparison with the case if the conventional
insertion or selection sort would be utilized for their construction using the
polymorphic gates applied by the evolution (note that only even-input circuit
have been investigated).

Despite a big effort was put into the development of other types of poly-
morphic circuits (such as adder/sorting network and parity/Boolean symme-
try circuits etc.), no functional result has been obtained yet. The explanation
could be as follows. The number of correct suitable topologies which perform
the required behavior is very limited with the proposed encoding. Therefore,
the probability is very low that a single topology can represent two different
behaviors (e.g. n-bit adder and n-bit multiplier) in two different environments.

Of course, because of the utilized representation, it is always possible to
manually merge two different circuits into a single working polymorphic cir-
cuit. The method is as follows: Construct the resulting circuit from left to
right. If the first circuit requires logic function L1, create polymorphic gate
L1/I. If the second circuit requires logic function L2, create polymorphic gate
I/L2. Then the resulting circuit (consisting of polymorphic gates) will per-
form the first function in the first environment and the second function in the
second environment. However, we are not interested in this type of solution,
since there is no innovation visible.

In real biological systems as well as in some artificial developmental sys-
tems (e.g. in [Gor03]) the interplay between a growing solution and its envi-
ronment is very complex. In the proposed developmental system the interplay
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practically does not exist; this kind of interaction with the environment was
not the goal in this work. This chapter was especially to demonstrate an-
other possibility of introducing an external information to the growing digital
circuit that can alter its behavior. Some of the experiments were successful
and the results represent the first case of automatic evolutionary design of
polymorphic circuits by means of the development. The emerging concept of
polymorphic electronics was involved.
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Conclusions

Computational development represents a new area of computational intelli-
gence, serving as a tool for evolutionary techniques to overcome the problem
of scale. This book have proposed a contribution related to a limited subset
of computational development. The research was focused to the developmen-
tal encodings based on simple application-specific instructions. Therefore, our
approach was termed as instruction-based development.

Although the concept of instruction-based development is based on a very
simple principle — applying evolving computer programs to construct struc-
ture — we believe that it can be used generally. In this research the application
of the instruction-based development was presented demonstrating the possi-
bilities of the design of generic circuit structures. The development was applied
at the structural level. The instructions have been intended to create or pos-
sibly manipulate the building blocks of the structure under development. It
represents the significant difference from the traditional genetic programming
approach. Though the developmental genetic programming works in the sim-
ilar way (i.e. building electronic circuits using building blocks), the construc-
tion of arbitrarily large, scalable objects was not its main goal. Moreover the
DGP approach was performed at a lower level of abstraction. Our approach,
utilizing the instruction-based development, have worked with more complex
building blocks, therefore more complex and extensive (generic) structures
could be designed.

Two different approaches to performing the instruction-based development
were identified (1) the continual development and (2) the parametric devel-
opment. The experimental results have demonstrated capabilities of these
approaches to develop generic (i.e. arbitrarily large and scalable) structures
of digital circuits of different classes. Both the concepts utilize application-
specific programs consisting of the simple instructions, which are the subject
of evolution, to realize the development of generic structures.
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8.1 Continual development

The continual development approach has been applied to the evolutionary
design of generic sorting networks. This class of circuits has shown to be suit-
able for demonstrating abilities of continual instruction-based development
because of the structure of the sorting networks. If a comparator is chosen
as a building block, the development of sorting networks can be performed
by means of the iterative process (in this case on the basis of repeated ap-
plication of the evolved program). This is possible as the comparators do not
alter the result of a sorting network if inserted into (or appended to) an exist-
ing working circuit. This feature was exploited in order to perform continual
development of this class of circuits in the same way as some conventional gen-
eral approaches do. For instance, the straight-insertion principle known from
the theory of sorting allows to create larger sorting network from a working
smaller sorting network by appending a suitable arrangement of comparators
to the existing network. This approach has been utilized in our developmental
systems.

In contrast to the straight-insertion algorithm, which can develop sort-
ing networks possessing one more input in comparison with the preceding
instance in each developmental step, this work was focused on the design of
either odd-input or even-input sorting networks (i.e. the number of inputs has
been increased by two in each developmental step starting from an embryo of
suitable size). Moreover, the developmental steps of sizes three and four were
involved during advanced experiments conducted in this domain. It has been
supposed that this modification in the development will enable us to develop
more efficient generic sorting networks in comparison with the conventional
principle.

This assumption has been confirmed. Several general programs were
evolved that can develop generic sorting networks applying the mentioned
restrictions to the number of inputs. The best solution has been discovered
for even-input sorting networks when the developmental step of size two has
been applied. On the basis of this result a new general construction algorithm
for the sorting networks was invented. The generality of the new principle has
been proved by mathematical induction. The properties of the sorting net-
works created by means of the new approach (i.e. the number of comparators
and delay) are substantially better if compared with the conventional princi-
ple. However, no better solution (with respect to the evolved best one) has
been obtained for larger developmental steps. Therefore, our next presump-
tion emerged from the ongoing research — the larger developmental step the
better sorting networks could be developed — has not been able to confirm
yet.

It is true that the innovative solutions have been obtained using the devel-
opmental system that relatively much domain-specific information has been
supplied to. However, the new approaches to the design of generic sorting
networks have not been known before. The best evolved solutions represent
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a significant outcome as the innovation discovered automatically by means of
evolutionary techniques is a rare case in the evolutionary design field espe-
cially in the situation when a solution to all instances of the given problem
has been found instead of discovering a single solution.

Next, the concept of the continual development was applied on the design
of generic polymorphic circuits. Solutions to polymorphic even/odd parity cir-
cuits and polymorphic sorting and median networks, that differ in the algo-
rithm for obtaining the results (either increasing or decreasing sorting process
depending on the control signal) have been evolved. If one assumes that arbi-
trary two-function polymorphic gate could exist, the evolution, in principle,
discovered multifunctional behavior of the resulting polymorphic sorting and
median networks totally for free in comparison with the case when such the
circuits would be created conventionally using common logic gates. Only ei-
ther even or odd numbers of inputs were considered during these experiments.
In case of the polymorphic sorting networks, the evolution has found programs
that can construct solutions with reduced number of comparators and delay if
compared to the generic conventional approach (e.g. straight insertion sort),
similarly to the development of non-polymorphic sorting networks. Although
no other significant innovation has been discovered, our approach represent
the first case when generic polymorphic circuits are designed using evolution-
ary techniques combined with the development.

8.2 Parametric development

Parametric development represents an alternative approach to the continual
approach discussed in the previous section. Instead of developing the target
object by iterative applications of the evolved program, the construction of
a specific instance (size) of the circuit is always developed from the start.
A parameter is involved to specify the size of the circuit; it influences the
developmental program and determines the number of developmental steps
needed to be performed for creating a working circuit. An external information
was introduced (that was called the environment) for an additional control of
the developmental process. In the experiments conducted the environment is
primarily intended to enable the design system to develop generic structures
which may contain irregularities.

The parametric development approach was applied to the design of arbi-
trarily large combinational multipliers. In general the evolution of multipliers
is considered as hard problem because of typically rugged fitness landscape
in case of the gate-level representations. The method for constructing generic
multipliers was inspired by the structures of the conventional circuits of this
class for which general construction algorithms exist. More complex building
blocks have been involved in our system. In addition, an advances instruction-
based developmental system has been introduced that is able to tackle the
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increased complexity of the target structures in comparison with the previous
research related to sorting networks.

The initial experiments have shown that the new developmental system is
able to design generic combinational multipliers by means of developmental
programs that are the subject of evolution. The best resulting circuit are iden-
tical to the common combinational multipliers composed of AND gates and
adders as basic building blocks. The ability of adaptation of the evolutionary
process to different environments was demonstrated. It means that different
external control of the developmental process can lead to the construction of
the circuits of the same functionality while retaining the ability of the sys-
tem to design arbitrarily large instances of the target object. Although no
innovation has been discovered in this case, these experiments represent the
first case when generic multipliers were designed automatically by means of
genetic algorithm combined with the development.

In order to improve the efficiency of the initial results, the developmental
system has been modified taking inspiration from the concept of carry-save
multipliers which exhibit shorter delay in comparison with the common multi-
pliers. Simplified building blocks have been considered in comparison with the
approach discussed in the previous paragraph and the developmental system
has been modified in order it could work with that building blocks. Although
some limitations have been introduced into the developmental process related
to the requirement of developing generic multiplier structures, the develop-
mental encoding has been kept at the level which restrict the evolution as
little as possible against the initial approach.

The evolution has succeeded in the automatic design of generic multipliers
using the improved developmental model. However, this design process has
been much more difficult. Although some general programs have been evolved
that are able to construct effective carry-save multipliers, most of the results
have tended to the development of common multipliers structures. Similarly
to the approach discussed in the initial experiments, no innovation has been
discovered in this set of experiments. However, the objective of developing
effective generic carry-save multipliers has been fulfilled.

The crucial issue related to the development of combinational multipliers is
the circuit representation with respect to the requirement of producing generic
solutions. In fact, the obtained results are expectable because the develop-
mental model has been devised with the high inspiration by the conventional
solutions. For the successful development of generic multipliers relatively com-
plex building blocks had to be involved. This evidently limits the evolution
in finding more effective results that would be, for example, achievable at the
gate-level representation. However, the design of a generative encoding that
would be evolvable for the development of generic multipliers at that level of
abstraction.
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8.3 Findings from experimental results

The principle of instruction-based development can be viewed as the linear
genetic programming approach applied at the structural level. It is possible
to introduce a general computational model into the developmental system
with respect to the instructions chosen. Therefore, countless numbers of appli-
cations might be considered in various domains, where the instruction-based
development could be utilized, regardless of whether generic solutions are re-
quired or not.

Two different concepts of the instruction-based development were pro-
posed: the continual development and the parametric development. In both
categories it was demonstrated that many solutions (programs) can be evolved
which are able to construct generic structures. Three hypotheses have been for-
mulated in Introduction with respect to the proposed developmental schemes.
All of them have been confirmed because (1) generic solutions have been
generated using continual development, (2) generic solutions have been gen-
erated using parametric development and (3) generic conventional solutions
have been rediscovered and innovative generic solution have been invented.

It was shown that the instruction-based development, in general, is possi-
ble to use to generate scalable solutions. In the applications presented, a so-
lution was found not to a single instance of the given problem but for all the
instances considering only a finite number of evaluations during the evolu-
tionary process. Note that the generic developmental design was, in fact, the
crucial issue of our research. However, what really does the term “scalable”
mean in context of this work? Let us go back to this question in the next
section.

The automatic discovery of an innovative solution by means of the evolu-
tionary algorithm represents a difficult task. To make the evolution to discover
innovative result in the generic scope is much more difficult. However, what
really does the term “generic innovative solution” mean in context of this
work? Again, let us leave this question unanswered before the next section.
Meanwhile, the obtained results have shown that the instruction-based devel-
opment is (at least partially) capable of discovering generic innovations (or
developing a structure that has not been seen so far). In this case, the inno-
vative solution evolved by the genetic algorithm provided an inspiration of
inventing a new general construction algorithm that was, in addition, proved
formally.

Finally, the concept of both continual and parametric development has
been successfully applied to the design of totally different structures (which
is dependent on the circuit representation). For instance, the sorting net-
works were developed in a one-dimensional array while the multipliers were
developed inside a rectangular grid. These results suggest that the proposed
approach and the representation of the given problem in particular may be
adjusted to potentially arbitrary structure that is possible to describe algorith-
mically and subsequently to evolve effectively. However, what actually means
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“to adjust to” or, more precisely, how could one adjust a developmental system
to satisfy the needs of a specific problem for effective evolution?

8.4 Common problems and open questions

In the previous section, a discussion was proposed considering the findings
obtained from the outcomes of the research performed in this work. Several
questions have arisen which we will try to answer in this section together with
other crucial issues related to the developmental evolutionary design.

The scalability of the evolved solutions has been mentioned. In general,
a specific form of developmental mappings was investigated in this book rep-
resenting a potential solution to overcome the problem of scale in the evolu-
tionary design. As stated in Introduction, two different views of the scalability
problem have to be distinguished: (1) the problem of scale at the structural
level and (2) scalability of the level of fitness function calculation. In this case,
mainly the second variant had to be taken into account.

Since the time complexity of the fitness evaluation grows exponentially
as the number of inputs of the developing circuit increases, a limitation was
needed to introduce in order to fulfil the objective of designing generic circuit
structures. This issue has been tackled by evaluating only a finite number of
solutions created by the development during the evolutionary process. Then
the generality of the resulting programs were verified. Although the verifi-
cation process is also time-consuming, it represents a reasonable part of the
design process because only a limited subset of the evolved solutions have been
verified. From this point of view it may be evident that that the scalability
of the fitness calculation has been overcome in this case. However, most of
the evolved structures do not allow the resulting circuits to operate effectively
enough.

This issue can be explained as follows. If the building blocks utilized for
the development are complex (i.e. a large amount of domain-specific infor-
mation is supplied to the system), it may lead to evolvable representation
which, however, limit the evolution in exploring promising parts (i.e. parts
containing effective solutions) of the search space. In fact, the effective solu-
tions may not even be achievable using the complex building blocks. On the
other hand, if simple building blocks are considered (providing small amount
of domain-specific information), a complex structure needs to be developed
which is difficult to evolve (the problem of scale at the level of structure).
Unfortunately, there is no general prescription for the problem encoding in
order to evolve effective solutions.

As it was mentioned in the previous paragraph, an “innovative generic
solutions” have been discovered during the experiments. However, the problem
is the rate of innovation in comparison with the best conventional solutions. Of
course, a direct encoding can evolve much more effective solutions but only for
limited sizes. Several representations were proposed that are able to generate
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continually innovative solutions in comparison with the conventional generic
solution of the same type. Therefore, the innovation obtained is needed to
consider with respect to the generic design. The reduction in the genome size,
search space and the time needed to evolve a solution are the main advantages
of the proposed approaches. As will be discussed in the next paragraph, the
effective problem encoding represents the common issue in the evolutionary
design and in the developmental evolutionary design in particular. However,
any result may suggest ideas for future research that may potentially move
the know edge in a given area.

Different generative encodings were introduced for the developmental evo-
lutionary design of generic circuit structures. All of them have led to successful
design with respect to the main objective of this work. However, it is in no case
possible to claim that they are the best for the given problems. Moreover, one
can ask how to design a developmental system for other problems if there ever
are any that would be easily evolvable using the common technology. A re-
lated question is the selection of building blocks and the amount of domain
knowledge needed to successful evolution. As the experiments showed all these
aspects of a design system may be crucial. However, it seems that designing an
efficient developmental system and the representation of candidate solutions is
at least as difficult as to design an evolutionary algorithm for a given problem
working with direct encoding. Unfortunately, there is no definite instruction
of how to do this. Therefore, the area of developmental systems will rather
exhibit features of experimental work and will require research specialists for
various domains also in the future.

8.5 Possibilities of future research

A limited subset of the computational development area has been covered
by the experiments. Though the results have shown a promising potential
of applying the instruction-based developmental design in combination with
the artificial evolution. Advantages and disadvantages of the evolved solu-
tions were discussed and some problems related to the applied approaches
were mentioned which represent a basis for possible directions of the future
research.

The experiments have shown that more efficient generic sorting networks
in comparison with the appropriate conventional approach can be developed
if larger developmental step is considered. This capability was demonstrated
for developmental steps of sizes two, three and four. However, in the last
two cases no optimization has been observed in comparison with size two
of the developmental step. Since much more effective sorting networks are
known than that were obtained by our approach, it could be interesting to
investigate more methods of evolutionary development of this class of circuits.
The present experiments have not provided better solutions.
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The outcomes in the combinational multipliers area represent rather initial
results in this field. The developmental model which was utilized has shown
the potential of designing more complex generic structures in comparison with
the sorting networks. However, more complex building blocks had to be uti-
lized together with relatively large amount of domain-knowledge in order to
evolve a successful generic solution. Moreover, an external information for an
additional control of the developmental process was introduced that enabled
do develop generic structures possessing irregular parts. The next research in
this field could be focused on the applications of the developmental system
to other problems with simpler building blocks (e.g. adders) and to investi-
gate advanced methods and possibilities of applying external control of the
development.

In general, the proposed concept of instruction-based continual and para-
metric development has provided an overall insight on the possibilities of
generic evolutionary design. We do believe that the idea of evolving programs
for infinitely growing objects is generally applicable. The key issues of the
problem representation and design of the developmental encoding will consti-
tute the main directions of our future research.
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