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Preface 

This thesis describes the technique of the evolutionary design aimed at sched-
uling of collective communications on interconnection networks of parallel 
computers. In order to avoid contention for links and associated delays, collec-
tive communications proceed in synchronized steps. A minimum number of 
steps is sought for the given network topology, wormhole (pipelined) switching, 
minimum routing and given sets of sender and/or receiver nodes. The proposed 
technique is not only able to re-invent optimum schedules for known symmetric 
topologies like hypercubes, but it can find schedules even for any asymmetric, 
irregular, multistage and fat topologies in case of general many-to-many collec-
tive communications. In most cases, the number of steps reaches the theoretical 
lower bound for the given communication pattern; if it does not, non-minimum 
routing can provide further improvement. Optimal schedules may serve for 
writing high-performance communication routines for application-specific net-
works on chip or for the development of communication libraries in the case of 
general-purpose interconnection networks.  
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1  

Introduction 

A recent trend in high performance computing (HPC) has been towards the use 
of parallel processing to solve computationally-intensive problems. Several 
parallel architectures, which offer corresponding increases in performance as the 
number of processors is increased, have been designed in the last few years. 
Nowadays, with the enormous transistor budgets of 45-nm and 32-nm technolo-
gies on a silicon die, large CPU clusters are feasible to place on a single chip 
(System on Chip, SoC) allowing both large local memories and the high band-
width of on-chip interconnection. Using this chip-scale multiprocessing, the 
number of processors on a chip may in the near future scale to dozens or hun-
dreds, depending on their complexity. The basic requirement for building such a 
SoC has turned out to be the low power consumption, in order that system parts 
could be close together and communication time would be thus minimized. For 
the same reason, the CPU cores should be simple and processing nodes should 
be interconnected as effectively as possible. 

Buses and point-to-point connections are the main means to connect the 
components. Buses can efficiently connect 3-10 communication partners but 
they do not scale to higher numbers. Even worse‚ they behave very unpredict-
ably, as seen from an individual component‚ because many other components 
also use them. A second problem comes from the physics of deep submicron 
technology. Long‚ global wires and buses become undesirable due to tight tim-
ing constraints and skew control‚ high power consumption and noise phenome-
non  [86],  [96]. 

As a consequence‚ in 1999 several research groups started to investigate 
systematic approaches to the design of the communication part of SoCs. This 
research area has been called Network on Chip (NoC). NoCs  [38],  [81],  [110] 
are constructed from multiple point-to-point data links interconnected by 
switches (routers), so that messages can be relayed from any source module to 
any destination module over several links by making routing decisions at the 
switches. Although NoCs can borrow concepts and techniques from the well-
established domain of computer networking, it is impractical to blindly reuse 
features of "classical" computer networks and symmetric multiprocessors. In 
particular, NoC switches should be small, energy-efficient, and fast. The routing 
algorithms should be implemented by a simple logic, and the number of data 
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buffers should be minimized. These requirements have converged on the use of 
pipelined, distance-insensitive wormhole (WH)  [146] message switching and 
source-based routing algorithms  [39]. 

There are several examples of NoCs that have found applications in the 
commercial sphere at the present time. One of the leaders in this area is Tilera 
Corporation that has introduced Tilera Tile-Gx processor family with 16 to 100 
full-featured processing cores interconnected by a 2D mesh  [199]. Other com-
pact high performance systems have been produced by SiCortex, Inc. This ven-
dor has offered highly compacted systems based on unidirectional Kautz 
networks and scalable up to 5832 cores with only 20kW of power consumption 
 [184]. Also IBM has brought its solution called IBM Cell broadband engine on 
the market. This multimedia chip integrates a Power PC processor and eight 
SPE elements interconnected by a ring NoC called Element Interconnection 
Bus. The chip has found many commercial applications not only in the gaming 
industry (Sony Playstation 3)  [186], but also in the second most powerful super-
computer in the world called Roadrunner  [202]. Similarly, Intel is working on 
its own NoC solution under the Intel Tera-scale research project (also called 
Larabee). The goal of the project is to design a NoC with 1TFLOP performance 
composed of about 80 cores interconnected by either a mesh or a hierarchical 
ring topology  [94]. The small scale systems can be also based on common AMD 
Opteron and Intel Nehalem architecture processors. The Network on Board is 
then created using HyperTransport or QuickPath links organized into bidirec-
tional rings (Intel Nehalem Ex)  [93] or hypercubes (AMD Direct Connect Inter-
connection  [4]). And this is only the beginning of the NoC area. Many other 
implementations will certainly come into existence in a few years.  

In order to be able to utilize the performance of such a SoC, the parallel 
programming paradigms have to be taken into account. Provided that computa-
tion times of executed tasks are known, as is usually true in case of application-
specific systems, the only thing that matters in obtaining the highest perform-
ance are durations of various collective communications. Some embedded par-
allel applications, such as network or media processors, are characterized by 
independent data streams or by a small amount of inter-process communications 
 [98]. However, many general-purpose parallel applications display a bulk-
synchronous behavior: the processing nodes access the network according to 
a global, structured communication pattern. Examples of collective communica-
tion (CC) patterns include broadcast, in which a message is sent from one proc-
ess to all the other processes in a group; global combine, in which a global 
operation, such as maximum or sum, is performed on a distributed set of data 
items; and barrier synchronization, in which every member of a set of processes 
must reach a given point in its execution before any member can proceed  [111]. 
The growing interest in the use of collective routines is evidenced by their inclu-
sion in the Message Passing Interface (MPI) standard  [131] and by their increas-
ing role in supporting data-parallel languages  [83]. Many existing SoCs do not 
support collective operations in hardware. In these environments, collective 
operations must be supported in software by sending multiple point-to-point 
messages. Such implementations are termed unicast-based  [130] and typically 
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are implemented as a sequence of synchronized steps, each of which involves 
the sending of one or more messages among processes. However, in situations 
where many messages exist in the network concurrently, a large internode dis-
tance can lead to contention among messages. Therefore, unicast-based collec-
tive operations, which typically involve many messages, should be designed so 
that they not only minimize the number of message-passing steps, but also 
minimize or eliminate contention among the constituent messages  [129]. The 
achievement of this goal depends on additional architectural characteristics 
which is the main goal of this thesis. 

At present, many different universal topologies of interconnection networks 
are in use and other application-specific ones can be created on demand. While 
the time complexity of a certain communication pattern has a lower bound given 
by a particular interconnection, finding a sequence of communication steps 
(a schedule) approaching this limit is more difficult, and in some cases, such 
schedules are not known as of yet. 

Naturally, many projects have addressed the design of fast collective com-
munication algorithms for wormhole-switched systems in recent years. Since 
any data loss is not acceptable in NoC, the deadlocks, livelocks and starvations, 
even links/node overloads, have to be prevented in such schedules. Hence, many 
approaches have analyzed the structure and properties of the underlying NoC 
topology and communication pattern with the aim of designing contention-free 
communication schedules that attain the lower bound of time complexity of 
given CC patterns  [1],  [120],  [174]. Unfortunately, these schedules are not gen-
eral at all, and only work for a few regular topologies such as hypercube or 
square mesh/tours even then in only a couple of possible instances. Another idea 
is to design some families of parameterized algorithms that can be tuned to 
perform well on different architectures under various system conditions  [15]. 
Unfortunately, this kind of CC schedules is not optimal in most cases, and 
moreover they are restricted by other parameters of the NoC such as port model, 
minimal routing strategy, symmetry of the network and so on.  

With an increasing number of novel NoC topologies (e.g. spidergon, Kautz, 
fat topologies) desire for a general technique capable to produce optimal or near 
optimal schedules for an arbitrary network topology and a given CC pattern 
steadily grows. The designed schedules could serve for writing high-perform-
ance communication functions for a concrete topology. Consequently, these 
functions could be included into, for example, the well-known OpenMPI library 
 [92] to accelerate given CCs and prevent data losses. 

Due to the complexity of this task and lack of suitable conventional 
techniques, evolutionary algorithms (EA) are going to be employed in this work. 
Since EAs were introduced in 1960s  [87], several researchers have demon-
strated that EAs are effective and robust in handling a wide range of difficult 
real-world problems such as optimization, decomposition, scheduling and 
design  [25],  [33],  [65],  [122].  

This thesis deals with the experimental confirmation of this hypothesis: 
Evolutionary design is able to produce optimal or almost optimal communica-
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tion schedules comparable or even better than which have been obtained by a 

conventional design for the networks sizes of interest. Moreover, evolutionary 

design will reduce many drawbacks of present techniques and invent still un-

known schedules for an arbitrary topology and scatter/broadcast communica-

tion patterns.  

1.1 Thesis Structure 

This thesis describes the universal technique that is able to design optimal or 
near optimal communication schedules for an arbitrary network topology and an 
arbitrary distribution of communicating nodes. Moreover, this technique will 
overcome many bottlenecks of traditional techniques like port-model restriction, 
minimal routing restriction, regularity and symmetry of the network. Thereupon, 
it will be able to design schedules for general many-to-many communication 
patterns, fat and multistage networks and even deal with the problem of the 
faulty topologies.  

The thesis is structured into nine chapters describing the theoretical back-
ground, the analysis of the state of the art, the description of the proposed 
method, the experimental validation of the method and the contributions of the 
thesis.  

Chapter 2 describes the interconnection networks basis. The chapter starts 
with the description of the graph structure and the parameters of NoC topolo-
gies. Then, the switching techniques and their influences on the network per-
formance are discussed. Next, the chapter summarizes the principles of routing 
mechanisms used in NoCs. Finally, the problems of deadlock and livelock are 
introduced. 

Chapter  3 deals with the definition of collective communications in worm-
hole networks. First, the model of communication is introduced, and then, the 
CCs are classified into several classes according to the distribution of transmit-
ters and receivers. The estimation of the lower bounds on time complexity and 
examples of optimal schedules are given for investigated CC patterns. Finally, 
the general many-to-many CC are examined.  

Chapter 4 explores in depth the state of the art in the area of NoC and col-
lective communication scheduling. There are several promising NoC architec-
tures described in the first subsection. The rest of the chapter addresses the issue 
of optimal CC scheduling. The best known approaches are introduced for all 
communication patterns, and their pros and cons are then discussed. The 
knowledge in the area is concluded and the outstanding problems are identified 
at the end of the chapter. 

Chapter  5 provides the detailed description of principles of evolutionary 
algorithm, their classification, capabilities and drawbacks. In addition, all the 
parts of evolutionary algorithms are examined in depth and designers’ hints are 
provided.  
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The technique of evolutionary design of CCs on wormhole networks is in-
troduced in chapter  6. First, the input data structure and their preprocessing are 
described. After that, the structure of schedules encodings into chromosomes is 
introduced. The mathematical definitions are completed by simple graphic visu-
alizations for both scatter and broadcast based CCs. The definition of the fitness 
function follows in succession. Next, the acceleration and restoration heuristics 
are investigated. These heuristics exploit the search space restriction and take 
the evolution into more promising areas. On the other hand, the restorations 
heuristic repairs the illegal solutions and allows evolution to operate in the 
strongly restricted search space of broadcast based CCs. 

The goal of chapter  7 is the selection of the most suitable evolutionary 
optimization tool. Three potential candidates are chosen and their optimal 
parameters are searched for in the first part of the chapter. Next, the quality of 
obtained solutions is investigated and compared with each other. The compari-
sons of optimization speed and optimization scalability for given tools follow. 
Finally, the most suitable optimization tool is elected and used for other work.  

Chapter  8 provides a comprehensive study of the capabilities of the pro-
posed technique. The technique is applied to a lot of kinds of interconnection 
networks and the time complexities of the evolved schedules are compared with 
the mathematically derived lower bounds. Moreover, the most interesting 
schedules are provided in the tabular form. The networks of interest in this 
chapter cover common topologies such as hypercube, ring, mesh and torus, 
special diameter degree networks and novel application-specific networks. An-
other effort is devoted to the multistage, fat and faulty topologies that have not 
been studied before. Finally, the basic results for general many-to-many com-
munications are given. 

Chapter  9 concludes the thesis, identifies the main contributions of the pro-
posed technique and outlines the most promising direction for future work. 

 





 

2  

Interconnection Networks 

Digital electronic systems of all types are rapidly becoming communication 
limited. Movement of data, not arithmetic or control logic is the factor limiting 
cost, performance, size and power in these systems. At the same time, buses, 
long the mainstay of system interconnect, are unable to keep up with increasing 
performance requirements.  

Interconnection networks offer an attractive solution to this communication 
crisis and are becoming pervasive in digital systems. A well-designed inter-
connection network makes efficient use of scarce communication resources - 
providing high-bandwidth, low-latency communication between clients with 
a minimum of cost and energy  [98]. 

Historically used only in high-end supercomputers and telecom switches, 
interconnection networks are now found in digital systems of all sizes and types. 
They are used in systems ranging from large supercomputers to small embedded 
systems-on-a-chip (SoC)  [3] and in applications including inter-processor com-
munications, processor-memory interconnect, input/output and storage switches, 
router fabrics, and to replace dedicated wiring.  

Indeed, as system complexity and integration continues to increase, many 
designers are finding it more efficient to route packets, not wires  [38]. Using an 
interconnection network rather than dedicated wiring allows scarce bandwidth 
to be shared so it can be used efficiently with a high duty factor. In contrast, 
dedicated wiring is idle much of the time. Using a network also enforces 
a regular, structured use of communication resources, making the system easier 
to design, debug, and optimize. 

2.1 Network Basics 

In order to meet the performance specifications of a particular application, the 
network designer must work within topology constraints to implement the 
topology, routing and flow control of the network. A key to the efficiency of 
interconnection networks comes from the fact that communication resources are 
shared. Instead of creating a dedicated channel between each terminal pair, the 
interconnection network is implemented with a collection of shared router nodes 
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connected by shared channels. The connection pattern of these nodes defines the 
network’s topology. A message is then delivered between terminals by making 
several hops across the shared channels and nodes from its source to its 
destination terminal.  

Once a topology has been chosen, there can be many possible paths 
(sequences of nodes and channels) that a message could take through the 
network to reach its destination. Routing determines which of these possible 
paths a message actually takes. A good choice of paths minimizes their length, 
usually measured as the number of nodes or channels visited (hops), while 
balancing the demand placed on the shared resources of the network. The length 
of a path obviously influences the latency of a message through the network, 
and the demand or load on a resource is a measure of how often that resource is 
being utilized. If one resource becomes over-utilized while another sits idle, 
known as a load imbalance, the total bandwidth of messages being delivered by 
the network is reduced. 

Flow control dictates which messages get access to particular network 
resources over time. This influence of flow control becomes more critical as the 
utilization of resource increases and good flow control forwards packets with 
minimum delay and avoids idling resources under high loads. 

2.2 Topology 

Network topology refers to the static arrangement of channels and nodes in an 
interconnection network - the roads over which packets travel. Selecting the 
network topology is the first step on designing a network because the routing 
strategy and flow-control method depend heavily on the topology.  

Selecting a good topology is largely a job of fitting the requirements of the 
network into the available packing technology. We can choose a topology based 
on its cost and performance. The cost is determined by the number and com-
plexity of the chips required to realize the network, and the density and length of 
interconnections between these chips on boards or over cables. Performance has 
two components: bandwidth and latency. Both of these measures are determined 
by factors other than topology (flow control, routing strategy and traffic pat-
tern). In order to evaluate just the topology we develop measures, such as bisec-
tion bandwidth, channel load, and path delay. They reflect the impact of the 
topology on performance. 

Figure  2.1 shows the basic interconnection network topologies: (a) and (b) 
show 16 nodes orthogonal topologies, 2D torus  [223] and 4D hypercube  [222] 
while (c) and (d) show another commonly used network topologies based on 
ring: corodal ring known also as K-Ring  [112], and hierarchical rings  [94]. 
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Figure  2.1. Four examples of interconnection network topologies. 

2.2.1 Channels and Nodes 

The topology of an interconnection network is specified by a set of nodes V* 
connected by a set of channels C. Messages originate and terminate in a set of 
terminal nodes V where V ⊆ V*. In networks where all nodes are terminals, we 
simply refer to the set of nodes as V. Each channel c = (x, y) ∈ C connects 
a source node x to a destination node y, where x, y ∈ V*. We denote the source 
node of a channel c as sc and the destination as dc. This definition of a topology 
is equivalent to a directed graph  [211]. Not surprisingly, much of the terminol-
ogy used to describe a topology borrows heavily from graph theory. Note that 
each link (edge) can consist of two unidirectional channels considering full-
duplex links or only one channel in the case of half-duplex or simplex link. 

A channel c = (x, y) is characterized by its width wc or wxy, the number of 
parallel signals it contains; its fc or fxy, the rate at which bits are transported on 
each signal; and its latency tc or txy, the time required for a bit to travel from 
x to y. 

In direct networks, besides external channels (simply called channels) 
connecting particular switches/routers, we also introduce internal channels 
(simply called ports) to connect local processor/memory to the switch. Although 
it is common to provide only one port (one pair of internal channel, k = 1), some 
systems use more ports (k ≤ d) in order to avoid a communication bottleneck 
between the local processor/memory and the switch  [22].  

(a) 2D torus (b) 4D hypercube 

(c) corodal ring   (d) hierarchical of rings   
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The architecture of a generic one-port router with four input/output links is 
shown in Figure  2.2. The packets arrive at input link controllers and are stored 
in buffers. Routing and arbitration are responsible for the next cannel selection 
and the switching fabric allocation. The packets can be either forwarded to one 
of the output buffers or consumed by a local ejection channel. The output link 
controllers dispatch the packets from the output buffers as soon as their output 
links are free. New messages are injected into the network using a local 
injection channel.  

2.2.2 Direct and Indirect Networks 

A network node can be a terminal node that acts as a source and destination for 
packets, a switch node that forwards packets from input ports to output ports, or 
both. In a direct network  [146], such as the 2D mesh in Figure  2.3a, every node 
in the network includes both a terminal and a switch/router. On the other hand, 
in an indirect network, such as the 2D coated mesh in Figure  2.3b, a node can be 
either a terminal (rectangular nodes) or a switch (round nodes). It cannot serve 
both functions. In direct networks, packets are forwarded directly between 
terminal nodes, while in an indirect network they are forwarded indirectly by 
means of dedicated switch nodes. Some networks, like the random network in 
Figure  2.3c, are neither direct nor indirect. Every direct network can be redrawn 
as an indirect network by splitting each node into separate terminal and switch 
nodes. The distinction between direct and indirect networks is largely academic 
with such networks.  

One potential advantage of a direct network is that resources of a terminal 
(which usually include a computer) are available to each switch. In some early 
networks, the switching function was implemented in software running on the 
terminal CPU, and buffering was performed using the terminal computer’s 
memory  [181]. Software switching is, however, both very slow and demanding 
of the terminal’s resources. Thus, it is rarely used today.  

2.2.3 Cuts and Bisection 

A cut of network C(V1, V2) is a set of channels that partitions the set of all nodes 
V* into two disjoint sets, V1 and V2. Each element of C(V1, V2) is a channel with 
a source in V1 and destination in V2, or vice versa. The number of channels in 
the cut is |C(V1, V2) |. 

A bisection of a network is a cut that partitions the entire network nearly in 
half, so that |V2| ≤ |V1| ≤ |V2| + 1, and also partitions the terminal nodes nearly in 
half, so that|V2 ∩ V| ≤ |V1 ∩ V| ≤ |V2 ∩ V| + 1. The channel bisection of a net-
work BC is the minimum channel count over all bisections of the network  

|),(|min 21 VVCB
bisection

C = . ( 2.1) 
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Figure  2.2. Generic one-port router model (LC = link controller). 

 

 

 

Figure  2.3. Direct, indirect and random network topologies. 
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2.2.4 Paths 

A path in a network is an ordered set of channels l = {c1, c2,..., cL}, where for 
i = 1...L –1. Paths are also referred to as routes. The source of a path is sl =sc1. 
Similarly, the destination of a path is dl = dcL. The length or hop count of a path 
is h = |l|. If, for a particular network and its routing function, at least one path 
exists between all source-destination pairs, it is said to be connected.  

The minimal (shortest) path from node x to node y is a path with the 
smallest hop count connecting these two nodes. The set of all minimal paths 
from node x to node y is denoted Rx,y. H(x, y) is the hop count of minimal path 
between x and y. The diameter of a network D is the largest, the minimal hop 
count over all pairs of terminal nodes in the network being 

Vyx

yxHD
∈

=
,

),(max . ( 2.2) 

A network with multiple shortest paths between most pairs of nodes, 
|Rx,y| > 1 for most x, y ∈ V is more robust than a network with only a single route 
from node to node |Rx,y| = 1. This property, which is called path diversity, adds 
to the robustness of our network by balancing across channels and allowing the 
network to tolerate faulty channels and nodes. 

2.2.5 Symmetry 

The symmetry of a topology plays an important role in load-balance and 
routing. A network is vertex-symmetric, as in Figure  2.4a, if there exists an auto-
morphism that maps any node x into another node y. Informally, in a vertex-
symmetric network, the topology looks the same from the point-of-view of all 
the nodes. This can simplify routing because all nodes share the same roadmap 
of the network and, therefore, can use the same directions to route to the same 
relative position. In an edge-symmetric network, as in Figure  2.4b, there exists 
an automorphism that maps any channel a into another channel b. Edge symme-
try can improve load balance across the channels of the network since there is 
no reason to favor one channel over another.  

2.3 Switching 

Inter-processor communication can be viewed as a hierarchy of services starting 
from the physical layer that synchronizes the transfer of bit streams to higher-
level protocol layers that perform functions such as packetization, data encryp-
tion, data compression, etc. We find it useful to distinguish between three layers 
in the operation of the interconnection networks: the routing layer, the switching 
layer and the physical layer  [95]. The physical layer refers to link-level proto-
cols for transferring messages and otherwise managing the physical channels 
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Figure  2.4. Vertex and edge symmetric networks. 

between adjacent switches/routers. The switching layer utilizes these physical 
layer protocols to implement mechanisms for forwarding messages through the 
network. Finally, the routing layer makes decisions to determine candidate 
output channels at the intermediate router node and, thereby, establish the path 
through the network. The design of routing protocols and their properties (e.g. 
deadlock and livelock freedom) are largely determined by the services provided 
by the routing layer. 

Switching techniques employed in multiprocessor networks initially fol-
lowed those techniques employed in local and wide-area networks. However, as 
the application of multiprocessor systems spread into increasingly compute-
intensive domains, the traditional layered communication designs borrowed 
from LANs became a limiting performance bottleneck. New switching tech-
niques and implementations evolved that were better suited to the low latency 
demands of parallel programs. 

In order to traverse an interconnection network, a message must be allo-
cated resources: channel bandwidth, buffer capacity, and control state. In order 
to improve efficiency of this resource allocation, we divide a message into 
packets for the allocation of control state and into flow control digits (flits) for 
the allocation of channel bandwidth and buffer capacity.  

2.3.1 Messages, Packets, Flits and Piths 

Figure  2.5 shows the units in which network resources are allocated  [113]. At 
the top level, a message is a logically contiguous group of bits that are delivered 
from a source terminal to a destination terminal. Because messages can be arbi-
trarily long, it is necessary to break them into one or more packets that have 
a restricted maximum length.  

A packet is a basic unit of routing and sequencing. A packet consists of 
a segment of a message to which a packet header is pretended to exist. The 
packet header includes routing information and, if needed, a sequence number. 
The routing information is used to determine the route taken by the packet from 
source to destination. The sequence number is needed to reorder the packets of 
a message if they can get out of order in transit (transmitting via different paths).  

     (a) vertex-symmetric                (b) edge-symmetric 
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Figure  2.5. Units of resource allocation (message, packet, flit and phit). 

A packet can be further divided into flow control digits or flits. A flit is the 
basic unit of bandwidth and storage allocation used by most flow control 
(switching) techniques. Flits carry no routing and sequencing information and 
thus must follow the same path and remain in order. The position of a flit in 
packet determines whether it is a head flit, body flit, tail flit, or a combination of 
these. A head flit is the first flit of a packet and carries the packet’s routing 
information. A head flit is followed by zero or more body flits and a tail flit. In 
a very short packet, there can be no body flits, and in the extreme case where 
a packet is a single flit, the head can also be a tail flit. As the packet traverses 
the network, the head flit allocates a channel state for the packet and the tail flit 
deallocates it.  

A flit is itself subdivides into one or more physical transfer digits or phits. 
A phit is the unit of information that is transferred across a channel in a single 
clock cycle. Although no resources are allocated in units of phits, a link level 
protocol must interpret the phits on the channel to find the boundaries between 
flits. 

For purposes of comparison, for each switching technique we will consider 
the computation of the base latency of an m-bit message in the absence of any 
traffic. The pith size and the flit size are assumed to be equivalent and equal to 
the physical data channel width of W bits. The routing header is assumed to be 1 
flit; thus the message size is m + W bits. A router can make a routing decision in 
tr seconds. The physical channel between two routers operates at B Hz: that is, 
the physical channel bandwidth is B·W bits per second. In this work, we assume 
that channel wires are short enough to complete a transmission in one clock 
cycle. Therefore, the propagation delay across this channel is denoted by 
tw = B−1. Once a path has been set up through the router, the intra-router delay or 
switching delay is denoted by ts. The source and destination terminal nodes are 
assumed to be h link apart. 

message 

packet  head flit 

flit 

 tail flit  body flit 

phit 

 packet 
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2.3.2 Circuit Switching 

In circuit switching (CS), a physical path is reserved from source to destination 
before the transmission. A header of the message is injected into the network, 
and when it reaches the destination, the complete path has been set up and an 
acknowledgment is sent back to source so that message contents may be trans-
mitted at the full bandwidth of the hardware path (telephone system). The circuit 
may be released by the destination or by the last few bits of the message  [187].  

Circuit switching is advantageous when messages are infrequent and long 
(i.e. when the transmission time is long compared to the path setup time). On the 
other hand, the physical path is reserved for the duration of the message and can 
block other messages.  

The base latency of a circuit-switched message is determined by the time to 
set up a path and the subsequent time the path is busy transmitting data. For 
circuit-switching we can write an expression for the base latency of a message 
as follows: 

tcircuit = tsetup + tdata  

tsetup = h [tr + 2(ts + tw)] ( 2.3) 






=
W

m
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tdata
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    . 

Actual latencies clearly depend on a myriad of implementation details. In 
particular, it is assumed that once the circuit has been established, propagation 
delay through the entire circuit is negligible compared to clock cycle. Hence, 
tdata does not depend on that delay. The factor of 2 in the setup cost represents 
the time for the forward progress of the header and the return of the acknowl-
edgement. The use of B Hz as the channel speed represents the transition across 
a hardwired path from source to destination.  

Figure  2.6 presents the time-space diagram showing transmission of one 4-
data flit packet over 5 hops using circuit switching under congestion (blocked 
channel 3). The request flit allocates the path and the tail flit deallocates it.  

2.3.3 Store-and-Forward Switching 

If the size of the message is not much greater than the size of the routing header, 
it becomes advantageous to partition and transmit the message as fixed-length 
packets. The first few bytes of a packet contain routing and control information 
stored in the packet header. Every packet is individually routed from source to 
destination. This is the reason why this switching technique is called as store-
and-forward switching (SF)  [180]. The header information is extracted by the 
intermediate router and used to determine the output link over which the packet 
is to be forwarded. A time-space diagram is shown in Figure  2.7. From this 
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Figure  2.6. Time-space diagram showing circuit switching under congestion(R - request, 
A - acknowledgement, B - body flit, T - tail flit).  
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Figure  2.7. Time space diagram showing store-and-forward switching without congestion 
(H - head flit, B - body flit, T - tail flit). 

figure we can see that the latency experienced by the packet is proportional to 
the distance between the source and destination nodes.  

Store-and-forward switching is advantageous when messages are short and 
more frequent, so that full utilization of the communication link can be realized. 
Many packets belonging to a message can be in the network simultaneously, 
even if the first packet has not arrived to the destination yet. In this switching 
mechanism every node must buffer every incoming packet, consuming memory 
space. In multidimensional, point-to-point networks it is evident that the storage 
requirements at the individual router nodes can become extensive if packets can 
become large and multiple packets must be buffered at a node. 

The base latency of the store-and-forward switching and other packet 
switched messages can be computed as follows: 













 +

++=
W
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This expression follows the router model in Figure  2.2 and, as a result, includes 
a factor to represent the time for the transfer of a packet of length m + W bits 
across the channel (tw) as well as from the input buffer of the router to the output 
buffer (ts). The important point to note is that the latency is directly proportional 
to the distance (hop count) h between the source and destination node. 
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2.3.4 Virtual Cut-Through Switching 

In order to decrease the amount of time spent transmitting data and full buffer 
requirement, a virtual cut-through method  [45] is introduced in which a packet 
is stored at an intermediate node, only if the next required channel is busy. As 
soon as enough information is available in the intermediate nodes, forwarding 
begins even before the entire message has been received. At high network loads 
virtual cut-through (VCT) behaves like packet switching.  

Figure  2.8 illustrates the time-space diagram of a message transferred using 
VCT switching where the message is blocked after the first link waiting for an 
output channel to become free. In this case we can see that the complete packet 
has to be transferred to the first router where it remains blocked waiting for the 
free output port. However, from the figure we can see that the message is suc-
cessful in cutting through the second router and across the third link. 

The based latency of a message that successfully cuts-through each inter-
mediate router can be computed as follows: 






+++=
W

m
tttttht wswsrvct ),max()( . ( 2.5) 

As we can see from this formula, the first addend is not a function of the mes-
sage size and the transmition delay is not a function of the hop count. Consid-
ering tr, ts and tw insignificant and no congestion, the virtual cut-through is often 
distinguished as distance insensitive. 

2.3.5 Wormhole Switching 

Wormhole switching (WH)  [146] is a special case of the cut-through switching. 
Instead of storing a packet completely in a node and then transmitting it to the 
next node, wormhole switching operates by advancing the head of a packet 
directly from incoming to outgoing channels of the routing chip. A packet is 
divided into a number of flits (flow control digits) for transmission. The size of 
a flit depends on system parameters, in particular, the channel width W. The 
header flit (or flits) governs the route. As soon as a node examines the header 
flit(s) of a message, it selects the next channel on the route and begins 
forwarding flits down that channel. As the header advances along the specified 
route, the remaining flits follow in a pipeline fashion. Because most flits contain 
no routing information, the flits in a message must remain in contiguous 
channels of the network and cannot be interleaved with the flits of other 
messages. The time-space diagram of wormhole-switched message is shown in 
Figure  2.9. 

Wormhole switching avoids memory bandwidth in the nodes through which 
messages are routed. Only a small FIFO (First-In-First-Out) flit buffer can be 
used. It also makes the network latency largely insensitive to path length. The 
blocking characteristics are very different from VCT. If the required output 
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Figure  2.8. Time-space diagram of virtual cut-through switching under congestion (H - 
head flit, B - body flit, T - tail flit). 
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Figure  2.9. Time-space diagram of wormhole switching under congestion (H - head flit, 
B - body flit, T - tail flit). 

channel is busy, the message is blocked “in place”. The particular flits of 
a blocked message are stored along a part of a path from the source to the 
blocking node. In order to reduce the effect of message blocking, physical chan-
nels can be split into virtual channels and these will be used to increase the total 
throughput of the physical channel  [37]. Virtual channels are logical entities 
associated with a physical link used to distinguish multiple data streams 
traversing the same physical channel. They are multiplexed over a physical 
channel in a demand-driven manner, with bandwidth allocated to each virtual 
channel as needed. 

The base latency of a wormhole-switched message can be computed as 
follows: 
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This expression assumes flit buffers at the router inputs and outputs. Note that in 
the absence of contention, VCT and wormhole switching show the same packet 
latency.  
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2.4 Routing 

Routing involves selecting a path from the source node to the destination node 
in a particular topology. The routing algorithm used for a network is critical for 
several reasons. A good routing algorithm balances a load across the network 
channels, even in the presence of a non-uniform traffic pattern such as perm-
utation traffic  [205]. The more balanced the channel load, the closer to ideal is 
the throughput of the network.  

A well-designed routing algorithm also keeps path lengths as short as possi-
ble, reducing the number of hops and the overall latency of a message. Algo-
rithms exploiting only the minimal, or shortest paths, from the set of Rx,y are 
very often referred to as minimal. What might not be immediately obvious is 
that routing minimally (always choosing the shortest path) is often at odds with 
a balancing load and maximizing throughput. Therefore, routing functions are 
often allowed to choose paths from the set of all minimal and non-minimal 
routes R’xy. Such algorithms are referred to as non-minimal  [127],  [143]. 

Another important aspect of routing algorithms is their ability to work in the 
presence of faults in the network. If a particular algorithm is hardwired into the 
routers and a link or node fail, the entire systems fails. However, if an algorithm 
can be reprogrammed or adapt to the failure, the system can continue to operate 
with only a slight loss in performance  [144]. 

We classify routing algorithms in terms of how they choose between possi-
ble paths of Rx,y from source node x to destination node y. Deterministic routing 
 [114] algorithms always choose the same path between x and y, even if there are 
multiple possible paths (|Rx,y| >1). These algorithms ignore path diversity of the 
underlying topology and hence do a very poor job of balancing load. Despite 
this, they are quite common in practice because they are easy to implement and 
easy to make deadlock-free. Oblivious routing algorithms  [205] choose a route 
without considering any information about the network’s present state. For ex-
ample, random algorithm that uniformly distributes traffic across all of the paths 
in Rx,y is an oblivious algorithm. Adaptive routing algorithms  [51] adapt to the 
state of the network using this state information in making routing decisions. 
This information can include the status of a node or channel, length of queries 
for network resources, and historical channel load information. Adaptive routing 
algorithms can be classified as progressive or backtracking. Progressive routing 
algorithms move the header forward, reserving a new channel at each routing 
operation. Backtracking algorithms allow to the header to backtrack, releasing 
previously reserved channels. 

Routing algorithms can also be classified according to the place where 
routing decisions are taken. Basically, the path can be either established by 
a centralized controller (centralized routing)  [161] at the source node prior to 
packet injection (source routing)  [39] or determined in a distributed manner 
while the packet travels across the network (distributed routing)  [97].  

Routing algorithms can be implemented in different ways. Many routers use 
routing tables either at the source or at each hop along the route to implement 
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the routing algorithm  [26]. With a single entry per destination, a table is 
restricted to deterministic routing, but oblivious and adaptive routing can be 
implemented by providing multiple table entries for each destination. An 
alternative to tables is algorithmic routing  [2], in which specialized hardware 
computes the route or next hop of a packet at runtime. However, algorithmic 
routing is usually restricted to simple routing algorithms and regular topologies. 

2.4.1 Deterministic Routing 

Deterministic routing algorithms establish the path as a function of destination 
address, always supplying the same path between every pair of nodes. A lot of 
earlier networks adopted deterministic routing because of being simply inexpen-
sive to implement. Simple deterministic approaches actually load balance ones 
for some topologies as well as other minimal routing algorithms, including 
adaptive.  

Determinist routing is especially used with topologies which can be decom-
posed into several orthogonal dimensions (e.g. hypercubes and meshes). Deter-
ministic algorithms are easy to compute the distance between current and des-
tination nodes as the sum of the offsets in all of the dimensions. These routing 
algorithm route packets by crossing dimensions in strictly increasing (or de-
creasing) order, reducing to zero the offset in one dimension before routing in 
the next one. This type of routing is known as dimension-ordered routing  [172].  

For n-dimensional meshes and hypercubes, dimension-ordered routing pro-
duces deadlock-free routing algorithms. These algorithms are very popular and 
are given several names, like XY routing (for 2D meshes)  [190] or e-cube (for 
hypercubes)  [44]. Figure  2.10 shows an example of dimension-order e-cube 
routing. The digits of the destination address, interpreted as a radix-k number, 
are used one at a time to direct the routing. Each digit is used to select a node in 
a given dimension.  

2.4.2 Oblivious Routing 

Oblivious routing, where packets are routed without regard for the state of the 
network, is simple to implement and analyze. While adding information about 
network state can potentially improve routing performance, it also adds con-
siderable complexity and, if not done carefully, can lead to performance degra-
dation.  

The main trade-off with oblivious routing is between locality and load 
balance. Load can be balanced for any traffic pattern on almost any topology 
using Valiant’s algorithm  [216], in which a packet sent from x to y is first sent 
from x to a randomly chosen intermediate terminal node z and then from z to y. 
An arbitrary routing algorithm can be used for each of two phases, but in 
general a routing algorithm that balances load under uniform traffic works best. 
So, for orthogonal networks, dimension-order routing is an appropriate choice. 
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Figure  2.10. An example of dimension-ordered routing in 4-ary 2-cube (4×4 torus). 
A packet is routed from node 02 to node 31 by first routing in the x dimension and then 
in y dimension. 

However, this load balance comes at the expense of destroying any traffic 
pattern  [205]. 

Figure  2.11 shows an example of using Valiant’s algorithm to deliver 
a packet from node x = 00 to node y = 12. The packet is routed via randomly-
selected intermediate node z = 21. In the first phase, the packet employs 
dimension-order routing to travel from x to z, taking 3 hops as shown in the blue 
bold arrow. In the second phase, the packet routes from z to y taking an 
additional 2 hops. Randomized routing takes 5 hops to reach the destination that 
could have been realized in 3 hops by a minimal routing algorithm. 

Minimal oblivious routing attempts to achieve the load balance of random-
ized routing without giving up the locality by restricting routes to be minimal 
(shortest). While a non-minimal oblivious routing algorithm can exploit any 
path in R’xy to route a packet form x to y, minimal oblivious routing restrict its 
choice to paths in Rx,y.  

A minimal version of Valiant’s algorithm  [169] can be implemented on k-
ary n-cube topologies by restricting the intermediate node z to lie in the minimal 
quadrant between x and y. The minimal quadrant is the smallest n-dimensional 
subnetwork that contains x and y as corner nodes. Once the minimal quadrant 
has been identified, an intermediate node z is selected from within the quadrant. 
The packet is then routed from x to z and then from z to y using e-cube routing. 

Figure  2.12 shows minimal oblivious routing from x = 00 to y = 12. The 
route is restricted to remain within the minimum quadrant (shown shaded). 
There are ten possible routes, corresponding to the six possible intermediate 
nodes (yellow nodes), with x-first routing or y-first routing. 
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Figure  2.11. An example of randomized routing (Valiant’s algorithm) on 4-ary 2-cube 
(4×4 torus). The message is routed to a randomly chosen node before it is transmitted to 
the destination. 

 

 

Figure  2.12. An example of minimal oblivious routing on 4-ary 2-cube (4×4 torus) 
showing minimal quadrant and six possible intermediate nodes. 
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2.4.3 Adaptive Routing 

An adaptive routing algorithm uses information about the network state, typi-
cally queue occupancies, to select among alternative paths to deliver a packet 
and therefore should theoretically outperform an oblivious routing algorithm
with no available information about network state. In practice, however, many 
adaptive routing algorithms give poor worst-case performance. This is largely 
due to the local nature of most practical adaptive routing algorithms  [61].  

Almost all adaptive routers use flit-based or packet-based flow control and 
use the state of the flit or packet queues at the present node to estimate conges-
tion on local links. They have no direct information on the state of links else-
where in the network. On the other hand, routers are able to indirectly sense 
congestion elsewhere in the network through backpressure  [51]. When the 
queues on one node fill up, a backpressure signal stops transmission from the 
preceding node and hence cause the queues on that node to fill as well. Back-
pressure propagates backward through the network in the direction opposite 
traffic flow. However, backpressure propagates only in the presence of traffic 
routing into the congestion. In the absence of traffic, there is no propagation of 
backpressure and hence no information on remote congestion. 

A minimal adaptive routing algorithm chooses among the minimum (short-
est) routes from source x to destination y, using information about the network 
state in making the routing decision at each hop. At each hop, a routing function 
identifies which output channels of the current node will move the current 
packet to its destination. Network state, typically queue length, is then used to 
select one of the output channels to the next hop. 

Minimal adaptive routing is good at locally balancing channel load, but 
poor at a global load balance. The route from 00 to 21 in Figure  2.13 illustrates 
how local congestion, channel (10, 20) is avoided by adaptive routing. As with 
any minimal routing algorithm, minimal adaptive routing algorithms are unable 
to avoid congestion for a source-destination pair with no minimal path diversity 
(|Rx,y| = 1). This situation is illustrated in the route from 02 to 32 in Figure  2.13. 
We can see below how non-minimal adaptive routing avoids such bottlenecks. 

With non-minimal, or fully adaptive, routing, we no longer restrict packets 
to travel along the shortest path to the destination. Packet can be directed over 
channels that increase the distance from the destination to avoid a congested or 
failed channel. For example, Figure  2.14 shows how adaptive routing can avoid 
congestion on the route from 02 to 32 from Figure  2.13. At node 12, the packet 
is directed to node 13, increasing the distance to the destination from 2 to 3 
hops, to avoid a congested channel (12, 22). Directing a packet along the chan-
nel which increases distance is often called misrouting  [123].  

A typical fully adaptive routing algorithm gives priority to an output chan-
nel which does not increase the path, so packet are routed toward the destination 
in the absence of congestion, but allows misrouting to increase path diversity. 
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Figure  2.13. Two examples of minimal adaptive routing behavior under congestion.  

 

 

Figure  2.14. An example of fully adaptive routing under congestion. 

While fully adaptive routing provides more additional path diversity it can 
lead to livelock unless measures are taken to guarantee progress. Livelock 
occurs when a packet travels indefinitely in the network without ever reaching 
its destination (travels along a closed loop)  [204].  

2.4.4 Deadlock and Livelock 

Deadlock occurs in interconnection networks when a group of agents, usually 
packets, are unable to make progress because they are waiting for one another to 
release resources, usually buffers or channels  [37]. If a sequence of waiting 
agents forms a cycle, the network is deadlocked. As a simple example, consider 
the situation shown in Figure  2.15. There are four diagonal communications 
(cyclic shift over one neighbor) in the figure. The packets cannot advance;
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Figure  2.15. Deadlock in communication with four transfers waiting for each other. 

queues at all outputs channels determined by a routing function are full. How-
ever, neither connection can release the channel needed by the other until it 
completes its transmission. The connections are deadlocked and will remain in 
this state until some intervention. Deadlock can occur over various resources. In 
this example, the resource is a physical channel. It can also be a virtual channel 
or a shared packet buffer. 

Deadlock is catastrophic to a network. After a few resources have been oc-
cupied by the deadlocked packet, other packets block these resources, paralyz-
ing network operation. In order to prevent this situation, a network must use 
either deadlock avoidance (methods that guarantee that a network cannot dead-
lock) or deadlock recovery (in which deadlock is detected and corrected)  [105]. 
Almost all modern networks use deadlock avoidance, usually by imposing an 
order on the resources in question and insisting that packets acquire these re-
sources in order. 

Unlike deadlock, livelocked packets continue to move through the network, 
but never reach their destination  [204]. This is primarily a concern for non-
minimal routing algorithms that can misroute packets. If there is no guarantee 
on the maximum number of times a packet can be misrouted, the packet can 
remain in the network indefinitely. Dropping flow control techniques can also 
cause livelock. If a packet is dropped every time it re-enters the network, it can 
never reach its destination. Figure  2.16 illustrates an example of livelock. 
A packet from 00 to 30 encounters congestion at 20 and is misrouted to 21, 
where it encounters more congestion and is misrouted again to 11. This starts 
a cycle where the packet takes two steps forward from 11 to 20, followed by 
two steps back, from 20 to 11. 
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Figure  2.16. An example of livelock caused by misrouting and congested links. 
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3  

Collective Communications in 

Wormhole Networks  

Besides pair-wise communications (unicasts), we often find certain communi-
cation patterns in many parallel algorithms which are regular in time, space, or 
in both time and space; by space we understand spatial distribution of processes 
on processors. These communication patterns that involve global data move-
ment and global control are known as collective communications (CCs) as many 
processes are collectively involved in performing such operations. As indicated 
in  [54], many scientific applications exhibit the need for such communication 
patterns, and providing collective communication services can simplify the 
programming of multicomputers. Such operations include, for example, replica-
tion, reduction, segment scan and permutation, etc. Data movement operations 
are often applied to different dimensions of data arrays.  

Collective communication  [129] is often also the most efficient way to carry 
out a communication operation on a parallel computer. The reason is that if 
many nodes need to communicate with other nodes at the same point in the 
algorithm, a specialized communication operation in which the nodes coopera-
tively participate in the communication operation clearly has the opportunity for 
using the communication network more effectively, thus giving higher perform-
ance. Such specialized collective communication operations can and should thus 
be written so that they cause as little overhead as possible. 

In this work, we have focused only on wormhole (WH) interconnection net-
works for their advantages like distance insensibility, small latency and buffer 
requirements which predestined them to high-speed system on chip (SoC) and 
high-performance multicomputers. 

3.1 Model of Communication 

Performance of CCs is closely related to their time complexity. The simplest 
time model of point-to-point communication in direct WH networks takes the 
communication time composed of a fixed start-up time start-up at the beginning 
(SW and HW overhead), a serialization delay – transfer time of m message units 
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(words or bytes), and of a component that is a function of distance h (the num-
ber of channels on the route or hops a message has to do), see section  2.3.5: 






+++=
W

m
tttttht wswsrwormhole ),max()( . ( 3.1) 

The dependence on h is rather small, so that WH switching is considered 
distance-insensitive, h(tr + ts + tw) ≈ 0. Possible synchronization overhead in-
volved in this communication step, be it hardware or software-based, should be 
included in the start-up time start-up. For simplicity, we have assumed no conten-
tion (and therefore congestion, too) for channels and no associated delays (tw).  

We will also assume that the CC in WH networks proceeds in synchronized 
steps. In one step of CC, a set of simultaneous packet transfers takes place along 
complete disjointed paths between source-destination node pairs. If the source 
and destination nodes are not adjacent, the messages go via some intermediate 
nodes, but processors in these nodes are not aware of it; the messages are routed 
automatically by the routers attached to the processors.  

Complexity of collective communication will be determined in terms of the 
number of communication steps (time slots) or equivalently by the number of 
“start-ups”. There are two figures - theoretical lower bound τCC(G) and upper 
bound τCC(G) that can be achieved in a real application. These figures of merit 
do not take into account the message length or its variations from one step to 
another. For example, let a simple CC on the 8-node bidirectional ring requires 
s = 8 communication steps. Provided that a message has m = 1024 byte, time per 
byte t1 = 0.5ns and start-up time start-up = 1µs (typical NoC parameters from  [82]) 
and by neglecting insignificant parameters, we get the total time: 

smttsring startupAAS µτ 1.12)5.010241000(8)()( 1 =⋅+⋅=+= . ( 3.2) 

The port model of the SoC/NoC defines the number k of CPU ports that can 
be engaged in communication simultaneously. This means that there are 2k 
internal unidirectional (DMA) channels, k input and k output channels, connect-
ing each local processor to its router that can transfer data simultaneously. 
Always k ≤ d, where d is a node degree; a one-port model (k = 1), and an all-
port router model (k=d) are most frequently used  [215].  

Figure  3.1 shows a one-port and an all-port router in a 3-regular network 
(e.g. 3D hypercube). In a one-port system, a node has to transmit (and/or 
receive) messages sequentially. Architectures with multiple ports alleviate this 
bottleneck. In an all-port router, every external channel has a corresponding 
port. The port model is important in designing collective operations as it 
determines the number of required start-ups and thus the CC performance. 

Moreover, the CC performance is influenced by the fact on whether or not 
the nodes can combine/extract partial messages with negligible overhead 
(combining model) or can only re-transmit/consume original messages (non-
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Figure  3.1. Port models for 3-regular networks. 

combining model)  [152]. Finally, the lower bound on number of steps τCC(G) 
depends on a link type and we have to distinguish between unidirectional (sim-

plex) links and bi-directional (half-duplex HD, full-duplex FD) links. Typically 
τCC(G) will be twice as large for HD links as for the FD ones. Later on we will 
consider only FD channels. 

Summarized, lower bounds τCC(G) for the network graph G depend on node 
degree d, port model k, the number of terminal nodes P, bisection width BC, 
cumulative inter-nodes distance Σ, and communication patterns (see following 
subsections), as shown in Table  3.1. Let’s note, the lower bound cannot be 
exactly derived for irregular topologies. It follows from inconstant node degree 
d. The lower bound can only be estimated taking into account the lowest and 
highest node degree in such a topology  [111],  [212] .  

3.2 Classification of Collective Communications 

Collective communications involve communication among subsets or among all 
processors. Provided that there is 1:1 mapping between processors (terminal 
nodes) and processes, we can equivalently talk about communicating process 
groups. Generally we have two process groups: T - the subset of transmitters 
(senders) and R - the subset of receivers. The subsets T and R can be over-
lapping and can be as large as the full set of P processes (P = |V|). We can 
distinguish three classes of CCs: 

(1) T ∩ R = Ø, non-overlapping sets of processes 

(a) One-to-All, | T | = 1, | R | = P – 1, e.g. One-to-All Broadcast 
(OAB) or One-to-All Scatter (OAS). 

(b) One-to-Many, | T | = 1, | R | < P – 1, e.g. Multicast (MC). 

(c) All-to-One, | T | = P – 1, | R | = 1, e.g. All-to-One Gather (AOG) 
or All-to-One Reduce (AOR). 

(d) Many-to-Many, | T | = M, | R | = N; M, N < P, e.g. non-
overlapping sets of processes such as Many-to-Many Broadcast 
(MNB) or Many-to-Many scatter (MNS). 

 

local CPU ports local CPU ports 

(a) one-port model (b) all-port model 
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Table  3.1. Lower complexity bounds of selected CCs in terms of communication steps 
for any regular topology.  

CC WH, k-port, FD links, non-combining model 

OAB/AOR log k+1 P  = (log P)/log ( k+1) 
AAB/AAR max ( log k+1 P , (P – 1)/k ) 
OAS/AOG (P – 1)/k 
AAS/AAG max[ (P2/2+2∆)/BC), Σ/(Pd) ] 

 

(2) | T ∩ R | ≥ 1, Many-to-Many communication with overlapping sets of 
processes.  

(3) | T ∩ R | = P, All-to-All communications such as permutation, All-to-
All Scatter (AAS), Broadcast (AAB), Reduce (AAR), etc. 

3.3 One-to-All and All-to-One Communications 

In one-to-all communications, one process is identified as a sender (called also 
the root or initiator), and all other processes in the group are receivers. There 
are some variations. In some designs, the root can or cannot be a member of the 
process group. Also, if the root is a member of the process group, it can or 
cannot be a receiver. Here we assume that the root is a member of the process 
group and itself it is also a receiver, however, the transfer is not done by means 
of message sending, but only by local memory-to-memory copy. There are two 
distinct services in this category: 

• One-to-All Broadcast. The same message is delivered from the root to 
all receivers. 

• One-to-All Scatter. The root delivers different messages to different re-
ceivers. This is also referred to as personalized broadcast. 

In All-to-One communications, all processes in a process group act as send-
ers and only one process (called the root) is identified as the sole receiver. There 
are again two distinct services: 

• All-to-One Reduce. Different messages from different senders are com-
bined together to form a single message for the receiver (root). The 
combining operator is usually commutative and associative, such as ad-
dition, multiplication, maximum, minimum, and the logical AND, OR 
and exclusive OR operators. This service is also referred to as person-
alized combining or global combining. 

• All-to-One Gather. Different messages from different senders are con-
catenated together for the receiver (root). The order of concatenation is 
usually dependent on the ID of the sender. 
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3.3.1 Broadcast and Reduce Communications 

OAB (One-to-All Broadcast)  [10] is a collective communication pattern where 
the root (initiator) distributes the same message to all other processes (nodes) in 
the interconnection network. If only a subset of nodes takes part in communica-
tion, we talk about a multicast communication pattern (MC). The basic idea of 
the OAB communication pattern is shown in Figure  3.2. 

A naive way how to perform broadcast is to sequentially send P–1 messages 
from the root to the other P–1 processes. However, this is inefficient because the 
root process becomes a bottleneck. Moreover, the communication network is 
underutilized because only a small number of channels along the paths between 
k root-destination pairs is used at anyone time. A better broadcast algorithm can 
be designed based on a technique commonly known as recursive doubling 
 [128]. The root process sends the message to other k processes at first. Now, 
each of these processes can simultaneously distribute the message to other k 
processes that are still waiting for the message. By continuing this procedure 
until all the processes have received the data, the message can be broadcast in  

τOAB(G) =  logk+1 P ( 3.3) 

communication steps.  

An optimal OAB communication schedule on the bidirectional 8-node ring 
topology is shown on the left side of the Figure  3.3. There is a corresponding 
broadcast tree shown on the right side of the figure. The root (node no. 0) is 
distributing its message to nodes no. 3 and 6 via completely edge (channel) 
disjointed paths during the first communication step (black solid arrows). Since 
the broadcast message is the same for all the processes, these three nodes can 
become subroots for the second step. Consequently, nodes no. 7 and 5 are 
receiving the message from node no. 6, nodes no. 2 and 4 form node no. 3, and 
finally node no. 1 from node no. 0 (red dotted arrows). 

The AOR (All-to-One Reduce)  [72] communication pattern is a comple-
mentary operation to OAB. In AOR, each participating process starts with its 
own message. The messages of the size of m from all processes are combined 
through an associative operator and accumulated at a single destination process 
(root) into one message with the same size m. AOR can be performed in the 
same way as OAB, but in the opposite path direction, and the reversed sequence 
of communication steps. 

These two CC patterns are used in several important parallel algorithms 
including matrix-vector multiplication, vector inner product, Gaussian elimina-
tion, and etc.  [214]. Moreover, these patterns have a hardware support in certain 
networks on chip  [120]. 
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Figure  3.2. The basic idea of one-to-all broadcast communication pattern. 

 

 

Figure  3.3. An example of optimal OAB schedule on the bidirectional 8-node ring topol-
ogy and the corresponding broadcast tree. 

3.3.2 Scatter and Gather Communications 

In the OAS (One-to-All Scatter)  [12] collective communication pattern, a single 
node (root) distributes a unique message to each other node. This operation is 
also known as one-to-all personalized communication  [125]. OAS differs from 
OAB in that the root node starts with P−1 unique messages, one destined for 
each node. Unlike OAB, OAS does not involve any duplication of data (see 
Figure  3.4). 

The lower bound of this CC can be formulated as 

τOAS(G) = (P−1)/k ( 3.4) 

steps, hence the root process can inject into the network no more than 
k messages in one step. The optimal schedule of communication consists of P−1
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Figure  3.4. The basic idea of one-to-all scatter communication pattern. 

 

 

Figure  3.5. An example of optimal OAS schedule on the bidirectional 8-node ring. 

point-to-point communications, all originating in the root process, packed into 
the lowest number of steps in such a way that there are only edge-disjoint paths 
in a single step.  

An optimal OAS communication schedule is displayed in Figure  3.5. In 
each step, two scattered messages are delivered to two different destination 
nodes. This OAS communication finishes in four communication steps. 

The dual role of OAS is the AOG (All-to-One Gather) communication, in 
which a single node (root) collects unique messages from all nodes. A gather 
operation is different from an AOR operation in that it does not involve any 
combination or reduction of data, so the same schedule as for OAS can be 
employed  [111].  

OAS and AOG communication is often used in Divide-and-Conquer 
techniques to distribute particular tasks and collect their results  [198]. 
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3.4 All-to-All Communications 

In all-to-all communication, all processes in a process group perform their own 
one-to-all or all-to-one communication. Thus, each process will receive P mes-
sages from P different senders in the process group. There are again two distinct 
services: 

• All-to-All Broadcast. All processes perform their own broadcast. This 
service is also referred to as gossiping or total exchange. 

• All-to-All Scatter. All processes perform their own scatter. This service 
is also referred to as personalized All-to-All broadcast, index, or com-

pete exchange. 

3.4.1 All-to-all Broadcast Communication 

In AAB (All-to-All Broadcast)  [179], all processes have a unique message to 
share with everyone. Usually, P received messages are concatenated together 
based on the ID of the senders in receiving nodes. Thus, all processes have the 
same set of received messages. This communication is illustrated in Figure  3.6. 

In the case of AAB communication, since each node has to accept P−1 dis-
tinct messages, the lower bound can be formulated as  

τAAB(G) = (P−1)/k or τAAB(G) = logk+1 P ( 3.5) 

communication steps, whichever is greater. The first bound has also been 
applied to OAS communication and will be greater in the event that an 
interconnection network has a low node degree, or if only a small number of 
inner channels k can be employed. On the other hand, the second bound, derived 
from OAB communication, will outbalance it if a network is highly connected. 

An example of optimal AAB communication schedule is shown in Figure 
 3.7. In the first communication step, all nodes inform some of their neighbors. 
In the second step, the messages are propagated further through the network to 
other nodes, in which the messages have not been delivered to yet.  

All-to-all broadcast is used, for example, in matrix operations including 
matrix multiplication and matrix-vector multiplications or barrier synchroniza-
tions  [214],  [72]. 

3.4.2 All-to-all Scatter Communications 

In the AAS (All-to-All Scatter)  [171] communication pattern, each P process 
sends an individual message to each of the P–1 partners. This CC is also known 
as all-to-all personalized broadcast or complete exchange  [57]. Typically, this 
operation is used for parallel matrix transposition operation. Before AAS, each 
process keeps one row of the original matrix. During AAS communication all 
the processes exchange their rows elements with each other. Each process only
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Figure  3.6. The basic idea of all-to-all broadcast communication pattern. 

 

Figure  3.7. An example of optimal AAB schedule on the 8-nodes AMP topology. The 
AAB communication takes two steps. 

obtains one element from each partner. Thus, after the completion of the com-
munication, all processes have a column of the transposed matrix. The basic 
principle of this communication is shown in Figure  3.8. 

A lower bound for AAS can be obtained considering that one half of the 
messages from each process crosses the bisection and the other half does not. 
There will be altogether 2(P/2)(P/2) such messages in both ways and up to BC 
messages in one step, where BC is the network bisection width. In cases of full
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Figure  3.8. The basic idea of all-to-all scatter communication pattern. 

duplex links, BC is taken as (double) the number of (un)directed edges crossed 
by the bisection. However, some ∆ messages originating and terminating in 
either half of a network cross the bisection as well. This gives the lower bound 
(P2/2 + 2∆)/BC communication steps, since ∆ messages cross the bisection 
twice. Another bound that concerns AAS is used to be applied to SF routing 
only. If Σ denotes the sum of all shortest paths in a graph (from any source to 
any destination node) and if we can utilize only Pd channels in one step to avoid 
conflicts, then we cannot schedule AAS in less than Σ/Pd steps. We have 
found that for many interconnection networks of interest this latter bound is 
sharper, even for WH routing. 

Finally, we can write the formula for the lower bound of AAS as follows: 
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Let us note this form of the lower bound has not been known up to now. It 
is one of the contributions of the thesis, summarized in the conclusions. 

An example of optimal AAS communication schedule is shown in Figure 
 3.9. The optimal schedule can be executed in three communication steps. Let us 
note that there is no regularity or symmetry in the schedule. Simply said, it is 
a composition of point-to-point transfers that satisfy the condition of conflict 
freedom. 

The AAS communication is used in a variety of parallel algorithms such as 
fast Fourier transform (FFT), matrix transpose, sample sort, and some parallel 
database join operations  [224] 
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   message transfers (src→dest)        message transfers (src→dest)    

       
      step 1                          step 2 

 
message transfers (src→dest) 

 
        step 3 

Figure  3.9. An example of optimal AAS schedule on the 8-nodes AMP topology. The 
AAS communications takes 3 steps 
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3.5 General Many-to-Many Communications 

Many-to-many collective communications are the generalizations of all previ-
ously presented CCs. The classes of M-to-N broadcast and scatter communica-
tion that we are going to analyze are represented in Figure  3.10. The sets of 
transmitting nodes T and receiving nodes R can be: 

(1) overlapping, T ∩ R = Q ≥ 1, T ∪ R = P. 

(2) some nodes can be only transmitters, | T \ T ∩ R | = M − Q, T = P. 

(3) some nodes can be only receivers | R \ (T ∩ R) | = N − Q, T = P. 

(4) some node can be only receivers, some nodes can be only transmitters, 
some nodes can act in both function and some nodes can be only 
switches.  

The lower bounds τCC(G) for M-to-N communications are not known, but 
can be estimated as follows in Figure  3.10. 

3.5.1 Overlapping Many-to-Many Communications 

First, M-to-N broadcast is limited by OAB or AAB bound from Table  3.1, 
whichever is greater: 

τMNB = max (log k+1 N, M/k) ( 3.7) 

because some nodes have to absorb M (a node is not a transmitter), and not only 
M−1 (a node is also a transmitter) messages as in AAB and some nodes have to 
distribute N messages using k ports as in OAB.  

Second, M-to-N scatter communication can be divided into four groups of 
communication that have related bisection widths available, see Figure  3.10a: 

T \ (T ∩ R) → (T ∩ R)                       b1,  

(T ∩ R) → R \ (T ∩ R)                       b2,  
T \ (T ∩ R) → R \ (T ∩ R)            min (b1, b2), ( 3.8) 
(T ∩ R) → (T ∩ R)                             b0.  

Now the first two groups can proceed simultaneously (overlapped),  

T \ (T ∩ R) → (T ∩ R) || (T ∩ R) → R \ (T ∩ R) ( 3.9) 

and so could the other two: 

T \ (T ∩ R) → R \ (T ∩ R) || (T ∩ R) → (T ∩ R). ( 3.10) 
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Figure  3.10. General M-to-N communication (a) T ⊄ R and R ⊄ T, (b) R ⊂ T, (c) T ⊂ R. 

Time for communication specified in (3.9) is thus 
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and for communication described in (3.10) is 
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The total lower bound is thus 

τMNS (G) = τ1 + τ2. ( 3.13) 

3.5.2 Many-to-Many Communications with R⊂⊂⊂⊂T 

Similarly as in case from Figure  3.10a for broadcasting we have  

τPNB (G)= max (log k+1 N, (P−1)/k) ( 3.14) 

and for scatter 
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where b1 is the number of channels from T to R and b0 is a bisection width 
of sub-network R. 

3.5.3 Many-to-Many Communications with T⊂⊂⊂⊂R 

A similar reasoning as in case from Figure  3.10b gives  

τMPB(G) = max (log k+1 P, M/k) ( 3.16) 
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and  
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where b1 is the number of channels from T to R and b0 is a bisection width of 
sub-network T.  

3.5.4 More Complicated Many-to-Many Communications 

In cases where | T ∪ R | ≤ P, we cannot use the bisection width any longer. The 
same situation happens if transmitters and receivers are agglomerated in several 
clusters separated by clusters of silent nodes. 

If λCC(l) is the load of link l in CC (i.e. the number of messages using link 
l), then the lower bound is given as 

τMNX = max λCC(l) ( 3.18) 

over all links l.  

3.5.5 Example Calculation of Lower Bounds 

Now, we will try to estimate the lower bound for the broadcast and scatter 
communication. The spatial distribution of transmitters and receivers on the 4×4 
2D mesh is illustrated in Figure  3.11.  

There are M = 9 transmitting nodes, N = 11 receiving nodes, and Q = 4 
nodes in intersection T ∩ R. According to eq. (3.7),  

τMNB (G) = max (log 4+1 11, 9/4) = max (1.48, 2.25) = 3 steps.  

The complexity of scatter communication will be estimated by means of 
bisections b1 = 4, b2 = 6, and b0 = 1. Substituting these parameters into eq. (3.13) 
we will get 

τMNS(G) = τ1 + τ2 = max (5, 5) + max (7, 6) = 12 steps. 

 



 3.5 General Many-to-Many Communications 41 

 

Figure  3.11. Nine-to-eleven broadcast/scatter communication. 
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Scheduling of Wormhole 

Collective Communications 

The design of efficient routing algorithms for collective communication is the 
key issue in message-passing parallel computers or networks  [89],  [111],  [129]. 
As we could see in the previous chapter, the lower bound on the time complex-
ity of various CCs can be mathematically derived from the network parameters 
and the spatial distribution of communicating processes. Unfortunately, for 
irregular topologies (such as meshes, AMPs, random graphs, etc.) and/or many-
to-many CCs only an approximation of the exact lower bound can be obtained 
because of varying node’s degree, and the spatial distribution of processes on 
the underlying topology. Some hints on how to overcome this problem have 
been given in section  3.5. 

Moreover, as far as this author knows, the concrete forms of congestion-free 
schedules for particular CC patterns, and for the minimal number of steps (time 
slots) derived from the lower bounds are unknown even for many common 
topologies! This is the main motivation behind this work. The goal of this thesis 
is to design a tool producing (near) optimal communication schedules to an arbi-
trary topology and arbitrary scatter/broadcast based communication service with 
an acceptable time complexity.  

In recent years, many projects have addressed the design of efficient collec-
tive communication algorithms for wormhole-routed systems. Some of them 
will be briefly described in section  4.2.  

Since time complexities of CCs are highly dependent on the underlying 
topology, many researchers have focused their efforts at optimization of the 
present topologies and their modification to gain any reduction of complexity of 
a particular CC or to improve any other network parameters. Recent studies 
have demonstrated the significant role that communication architecture plays in 
determining a parallel systems’ overall performance. The following subsection 
briefly presents several interesting network topologies with some special 
characteristics mainly targeted to newly booming networks on chips (NoC)  [98]. 
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4.1 Interconnection Networks  

Nowadays, there are many assorted interconnection network topologies intended 
for the general purpose multiprocessors like clusters of workstations, blade sys-
tems, HPC (High Performance Computers), MPP (Massive Parallel Processors), 
Network on Chips (NoC), etc. Furthermore, completely new networks for 
specific parallel applications can be created using, for example, combinatorial or 
evolutionary algorithms.  

4.1.1 The Most Popular Interconnection Networks 

The simplest interconnection topology often used in parallel systems is a ring 
topology  [39]. It has been very popular due to its trivial manufacturing and still 
good performance for small systems up to dozens of nodes. At the present time, 
there are many application of this topology mainly in NoC systems like IBM 
Cell  [91] or ATI Ring bus  [1] systems. 

Another famous networks topology is a multidimensional hypercube  [170] 
having many attractive properties inducing regularity, symmetry, small logarith-
mic diameter, strong connectivity, recursive construction, partitionability, and 
relatively small link complexity. Efforts to improve some of these properties 
have lead to the design of many hypercube variants. They include twisted cubes 
 [48], cube connected cycles  [162], generalized hypercubes  [20], banyan-
hypercubes  [227], and binary orthogonal multiprocessors  [90]. 

Very popular networks are also based on a mesh  [76], and torus  [23] 
topology. Mesh topology has gained more consideration by designers due to its 
simplicity of manufacturing where only local and very short links are necessary 
to interconnect the network. The main problem with the mesh topology consists 
in its long diameter that results in the communication latency and a lack of regu-
larity and symmetry. Torus topology has been proposed to reduce the latency of 
the mesh and to keep its simplicity. The only difference between torus and mesh 
topology is that the switches on the edges are connected to the switches on the 
opposite edges through wrap-around channels. By these wrap-around channels 
the torus becomes node symmetrical. Although the torus architecture reduces 
the network diameter, the long wrap-around connections can result in excessive 
delay. Some variations of the mesh and torus topologies have been discovered 
which further improve some of their properties (e.g. higher dimensional meshes 
and torus (3-D mesh) and Midimew  [118], etc).  

The Minimal Distance Mesh with wrap-around links (Midimew topology) 
reaches the lowest diameter and average distance of any regular and symmetric 
d = 4 graph and can be obtained from 2D-torus by changing the arrangement of 
wrap-around links (see Figure  4.1). Reduced values of D and da translate to 
improved performance in synthetic as well as real loads [1]. 

The increase the efficiency of communication networks often leads to 
a decrease in its reliability. Networks with multistage topologies can offer 
a small diameter, large bisection width and a large number of redundant paths, 
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Figure  4.1. An example of a Midimew topology. 

but they are hard to construct because of the complex wiring structure.
Examples of the most popular multistage networks, which have been widely 
used recently, include the Butterfly network  [213], the Clos network  [34] or 
Benes network  [16]. 

4.1.2 Optimal Diameter-Degree Networks 

The Optimal Diameter-Degree (ODD) networks  [140] are a highly promising 
area of interconnection network, however, not very deeply examined. The size 
of an ODD network is equal or close to upper bounds known for the given node 
degree and diameter. Simply said, as many nodes P as possible are connected by 
a regular network with a uniform node degree d (a d-regular network), with an 
inter-node distance up to D. Such systems are more compact than others and can 
support faster communications too.  

The upper bounds on the number of P nodes with degree d > 2 that can be 
connected into an undirected graph, shortly graphs (4.1), or directed graph, 
shortly digraphs (4.2), and with diameter D ≥1 are known as Moore bounds 
 [134]: 
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A regular graph of degree d and diameter D whose number of vertices 
equals the above upper bound (4.1) is a Moore graph. If we exclude fully con-
nected graphs with D = 1, there exists only a few such graphs: 

• D=2: d = 3, P = 10 (Petersen graph)  [88] 

• D=2: d = 7, P = 50 (Hoffman-Singleton graph)  [17] 



46 4 Scheduling of Wormhole Collective Communications 
 

and no others with the possible exception d = 57 (which is still undecided). 
There are no Moore graphs with D ≥ 3 and no Moore digraphs either (disregard-
ing trivial cases D = 1 or d = 1). 

Whereas all above Moore graphs have the length of the shortest cycle 
(girth) five, the even girth (6, 8 and 12 only) can also be considered which leads 
to the worse upper bound  
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and to generalized Moore graphs. A few examples follow: 

• D= 2: d = 3, P = 6 (utility graph)  [221] 

• D= 3: d = 3, P = 14 (Heawood graph)  [220] 

• D= 4: d = 3, P = 30 (Levi graph)  [121] 

It is an open problem if there are infinitely many generalized Moore graphs of 
each degree. 

Since there are not many known Moore graphs, it is of great interest to find 
graphs which for a given diameter D and maximum degree d have a number of 
vertices as close as possible to the Moore bound. The largest known graphs and 
digraphs are presented in  [140] and  [134]. The more systematic approach has 
been used to design “almost” Moore graphs that miss the upper bound by 
a small number  [134] or whose number of nodes approximates the upper bounds 
asymptotically. The best networks in the latter case are based on Kautz digraphs 
with P = d

D 
+ d

D-1 nodes. In Table  4.1, all three upper bounds (4.1) - (4.3), the 
largest known graphs, Kautz digraphs, and generalized Moore graphs, all with 
degree d = 3 are stated. It turns out that the largest known digraphs are Kautz 
digraphs and that digraphs (4.2) are potentially much larger than graphs (4.1). 

The most interesting OOD topologies recently used in real multicomputers, 
are shown in Figure  4.2. They are Heawood graph with fourteen nodes, Petersen 
graph with ten nodes and Kautz digraph with twelve nodes. 

4.1.3 Novel Network Architectures 

In order to alleviate known bottlenecks of commonly used networks and the ne-
science of ODD networks for an arbitrary size, degree and diameter values, 
many engineers tried to design general-purpose networks by analyzing graph 
theory or using combinatorial optimization methods  [28].  

One of the novel architectures with an arbitrary size is the K-Ring topology 
 [112]. Intuitively, the K-Ring topology can be seen as a graph built using K > 0 
rings where each ring goes over all the nodes in a different order. The value K is 
called the dimension. For a given size and a given dimension there are many 
different K-Rings.  



 4.1 Interconnection Network 47 

 
 (a) Heawood graph       (b) Petersen graph           (c) Kautz digraph 

Figure  4.2. Interesting examples of almost optimal diameter-degree networks. 

Table  4.1. The size of graphs and digraphs with degree d = 3 and diameter D. (* Denotes 
a generalized Moore graph; digraphs are in bold) 

D 2 3 4 5 6 7 

Bound (4.1) 10 22 46 94 190 382 
Bound (4.2) 13 40 121 364 1093 3280 

Bound (4.3) 6 14 30 62 126 254 
Largest known 10 20 38 70 132 192 

Kautz 12 36 108 324 972 2916 

Moore 10 14* 30* - - - 
 
 
K-Rings are still not well known. There is especially almost no analytic formula 
for the computing of their characteristics. Because of their flexibility it is possi-
ble to build a lot of apparently different K-Rings, but we are still not able to de-
termine which of them correspond to the same graphs. K-Rings are Caley 
graphs  [154] and they belong to the General Corodal Rings (GCR)  [19]. Figure 
 4.3 shows two examples of K-Rings with dimension K=2 and size 15.  

Spidergon (also referred to as octagon) is also a novel on-chip interconnec-
tion network suitable for the aggressive on-chip communication demands of 
SoCs in several application domains and also for networking SoCs  [102] (see 
Figure  4.4a). In this architecture, eight nodes are connected by an octagonal ring 
and four diagonal links. The distance between any two node processors are no 
more than two hops (through one intermediate node) within the local ring. The 
spidergon network is scalable. If one node processor is used as the bridge node, 
more spidergon networks can be cascaded together, as shown in Figure  4.4b. 
This scaling strategy based on bridge nodes connecting adjacent Spidergon has a 
drawback of a very low bisection width BC and therefore a poor performance in 
all-to-all traffic. Another scaling strategy extends the spidergon to the 
multidimensional space by linking corresponding nodes of several spidergons, 
or simply increasing the ring length  [176]. The last way how to scale Spidergon 
is to add more nodes along the ring and connect them with diagonal links. 
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Figure  4.3. An Example of two different K-Rings of size 15 and K = 2. 

 

     
 

     (a) general spidergon network      (b) scalability of spidergon network 

Figure  4.4. Two examples of spidergon networks 

The AMP topology is a result of genetic graph optimization  [28]. A Mini-
mum Path (AMP)  [29] configuration is constructed so that the network diameter 
and the average inter-node distance is minimized. This principle is maintained 
even at the expense of the loss of regularity in the system. The AMP networks 
have been found for node count P = 5, 8, 12, 13, 14, 32, 36, 40, 53, 64, 128, 
256. The 8-node AMP network topology is depicted in Figure  4.5. The SC node 
denotes a system controller (host computer) that sends input data to processing 
nodes and collects results. Each processing node can communicate simulta-
neously on four bi-directional full duplex links.  

The new area in interconnection network is represented by polymorphic on-
chip networks  [106]. These networks can be configured prior to or during the 
application runtime, in order to have the topology and buffering of arbitrary net-
work designs. Simply said, if the structure of communication is known, the 
network is possible to reconfigure in runtime in order to afford as a good condi-
tion as the upcoming communication schedule can exploit. 
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Figure  4.5. The 8-node AMP topology. 

4.2 Scheduling of Collective Communications 

Over the last several years, many methods have been described for implement-
ing various CC patterns. Among the most common algorithms belong binary/ 
binomial and other tree-based algorithms and the pairwise exchange-based algo-
rithms  [1],  [120],  [174] such as recursive-doubling and halving. Many topology-
specific collective communication algorithms have been discussed. Paper  [201] 
focuses on SMP-based cluster hierarchy to implement collective communication 
operations. Paper  [174] advocates automatically tuned CCs based on network 
topology. The primary focus in these efforts is on other aspects (deadlock free-
dom, simple routing) of the implementation rather than exploitation the network 
concurrency at the algorithmic level. A few other papers have used the network 
concurrency to optimize CCs. Another possible direction is to look at gener-
alizations of routing problems, such as scheduling problems. There is a wide 
range of scheduling models. One example is a shop scheduling  [183] or exploi-
tation of the concurrency in modern networks  [200]. 

Although many collective communication algorithms have been designed 
for specific topologies, several researchers have taken a fundamentally different 
approach. Their idea is to design some families of parameterized algorithms that 
can be tuned to perform well on different architectures under various system 
conditions. For example, the postal model  [15] (similar to sending a batch of let-
ters through the postal service at one time) demonstrates the ability for a sending 
node to transmit multiple messages before the receiving node has received the 
first one. But for short messages, predominating in cache-coherent NoC, this 
model is unusable due to a dominating overhead of star-up latency over message 
transportation delay. 

 SC 
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If we restrict the communication model only to a non-combining (also 
referred to as direct) model, we can decompose any collective communication 
into a set COMM of pair-wise communications (transfers, messages, paths) 

xi,j = {c1, c2, c3, …, cL}, xi,j ∈ COMM,  ( 4.4) 

where ci are unidirectional channels along the path from the source to the 
destination node. In the following sections, basic models for the systematic 
design of CCs in multiport wormhole-routed networks will be described. More-
over, some of the best known algorithms intended for particular communication 
patterns will be presented. 

4.2.1 OAS Scheduling 

For both OAS and AAS, the set of message transfers COMM can be determined 
in advance. This pretty feature enables to pack COMM into a minimum number 
of groups so that there is no conflict within a group. If this condition is satisfied, 
the groups are compatible. Compatibility relation γ on set COMM can thus be 
defined: 

xi,j γ xk,l ≡ ∃!ce {ce∈xi,j and ce∈xk,l}, xi,j, xk,l ∈ COMM. ( 4.5) 

This relation defines a cover of the COMM set by maximum-size compati-
bility classes. All the message transfers in one compatibility class can realize 
transmission simultaneously, and therefore each such a group can be scheduled 
in one communication step. Obviously we would like to find a minimum num-
ber of compatibility classes still covering set COMM. The final step is to trans-
form this minimum cover of COMM to blocks by eliminating messages transfers 
in more than one class and possibly simultaneously balancing the size of classes. 
Notice that a message transfer can travel along just one of many possible paths 
between source and destination pair.  

The most frequently implemented OAS execution scheme is based on the 
Sequential Tree (ST), also known as the separate addressing algorithm  [147], 
 [13]. In this algorithm, the root sends a separate message to each of the other 
nodes participating in the scatter. The deadlock-free condition is ensured using 
minimal spanning tree of the underlying topology.  

4.2.2 AAS Scheduling 

In contrast to OAS, there is not much known about optimal AAS schedules for 
non-combination model, although it has been extensively studied so far. From 
the theoretical point of view, exact solutions of the AAS problem can be ob-
tained by analyzing of compatibility classes as in the previous case. This task 
can be performed by MILP method (Mixed Integer Linear Programming)  [141], 
but very long solutions are required for network sizes of practical interest. The 
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AAS scheduling can also be formulated as a graph colouring problem  [99],  [55]. 
Elements of COMM can be represented by graph nodes and incompatibility 
relation (two message transfers sharing a channel) by graph edges. A minimum 
number of colours needed to colour the graph gives the optimum number of 
compatibility classes (communication steps); nodes with the same colour belong 
to one compatibility class. MILP, as well as exact or heuristic graph colouring, 
yield only a suboptimal solution. The reason is the existence of multiple 
minimum paths for most source-destination pairs; it is not clear which minimum 
paths should be selected for message transfers (the set COMM). On the other 
hand, inclusion of all of them could produce more compatibility classes than 
necessary, aside from complex removal of redundant elements. Another 
approach, recursive division of set COMM described in  [55], is supposed to be 
exact, but can be used only for a one-port model. 

From the practical point of view, some research is developed on the cluster-
based systems  [192]. However, most of this research is designed to handle the 
topological constraints of the underlying networks, such as tori  [116],  [142], 
 [208], meshes  [191],  [189], hypercubes  [179], and multistage networks  [30].  

Young-Joo and Shin  [189] proposed an interesting method with linear time 
complexity but only for combining model and targeted only to tori and meshes. 
Paper  [57] extends the method and proposes the conceptually simple and 
symmetrical AAS algorithm for every message and every node so that it can be 
easily implemented.  

One of few direct algorithms (non-combining model) targeted to hyper-
cubes  [180] or meshes  [196] achieving the lower bound on time complexity is 
a complete exchange algorithm. Its idea is very simple: there are P−1 commu-
nication step; in each step s =1, 2,…,P−1, node i sends message Mi,j to node j = i 
xor k and receives message Mj,i from node j. Thus, all communication occurs 
directly between the original source node and the final destination node of that 
message. For communication between non-adjacent nodes only the routers are 
required to relay the message at the intermediate nodes on the path.  

Figure  4.6 shows the communication steps of the algorithm for the 2D (2×4) 
mesh using dimension ordered routing. Notice that in steps 2, 3, 6 and 7, 
messages transfers require some communication channels simultaneously, lead-
ing to channel contention! Since contention must not occur in our model of 
communication for NoC, the proposed algorithm is also inapplicable. Another 
idea on how to design a fast suboptimal and contention-free algorithm is a 
sequential combination of one-to-all techniques. Tseng  [209] used a gather-
then-scatter technique and enforced shortest paths in routing messages to 
achieve an asymptotically optimal number of communication steps. The pro-
posed scheme consists of a sequence of gathering phases followed by a se-
quence of scattering phases. In the beginning, all nodes will join the communi-
cation. After each gathering phase, the blocks are concentrated into a smaller 
number of nodes. On the contrary, blocs are distributed to more nodes after each 
scattering phase. At the end, each block is guaranteed to arrive at its destination.  



52 4 Scheduling of Wormhole Collective Communications 
 

 

Figure  4.6. Direct pairwise exchange on 2D mesh  [196]. The AAS communication takes 
7 communication steps, some of which show contention of links.  

4.2.3 OAB Scheduling 

The problem with broadcasts is that the set COMM cannot be determined in ad-
vance since the informed nodes can become distributors for further transfers. 
For this reason, many novel techniques have been developed and used. We only 
concern with the basic principles on the OAB communication in this subsection. 

Dominating sets. The Extended Dominating Node (EDN)  [207] model is 
based on the notion of dominating sets in graph theory. A dominating set D of 
a graph G is a set of vertices in G such that every vertex in G is either in D or is 
adjacent to at least one vertex in D  [58]. By exploiting the distance-insensitivity 
of wormhole routing, the EDN model extends the concept of domination to in-
clude sets of nodes reachable in a single message-passing step under a given 
unicast routing algorithm. The key issue in applying the EDN model to the de-
velopment of collective operations lies in finding such regular and recursive pat-
terns of dominating nodes that can pass messages to other sets of nodes while 
avoiding channel contention. 

Figure  4.7 illustrates the concept of the node domination on a 2D torus. It 
presents a set of five dominating nodes (blue colored) for the 5×5 torus  [206]. 
As illustrated with arrows, these five nodes can distribute a message to 20 
remaining nodes in a single step by sending it to appropriate neighbors. The 
basic idea is to build recursively a hierarchy of extended dominating nodes, 
where level-i EDNs are informed from all EDNs of levels j < i.  

message path 

area of contention 

 step 1  step 2  step 3 

 step 4  step 5 step 6 

 step 7 
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Figure  4.7. An illustration of (a) dominating sets and (b) extended dominating sets in the 
5×5 torus. The dominating nodes are shown in blue. 

Dimensional broadcast trees. The dimensional broadcast tree algorithm 
was described by Barnett in  [10]. It exploits a recursive doubling process within 
every mesh/torus dimension. Figure  4.8 illustrates this algorithm’s operation in 
the 4×4 2D mesh. In each message-passing step, every node holding a copy of 
the message is responsible for a part of a row or column. The node divides its 
part in half and sends a copy of the message to the node in the other half that 
occupies the same relative position. The algorithm thus takes advantage of the 
pipelining effect of wormhole routing while avoiding channel contention. The
idea combining a dimensional broadcast tree and recursive doubling targeted to 
torus topology was presented in  [153],  [160]. 

Double-tree algorithm. The Double Tree (DT) broadcast algorithm of 
McKinley and Trefftz  [128] is designed for multiple port wormhole hypercubes. 
The authors have demonstrated the advantages of this algorithm over the 
Spanning Binomial Tree (SBT)  [10] algorithm using a commercial system. The 
DT algorithm divides the hypercube into two parts by sending a message from 
the source, say S, to its bitwise complement (the opposite node) S’. This mes-
sage is called a diagonal message. In the next step, S and S’ become the roots of 
partial spanning binomial trees as implied in Figure  4.9. As a result, this algo-
rithm broadcasts a message in P/2 routing steps and is more efficient than the 
SBT algorithm. In addition, it does not require reconstructing the message at 
every destination like in the case of Transmission SubGraph (TSG)  [229] that is 
targeted for combinating hypercubes. 

HO-KAO algorithm. The DT algorithm is really approximately twice as 
fast on real machines as the standard SBT algorithm, but it is optimal only for 
dimensions d ≤ 6. An algorithm which is optimal up to a small multiplicative 
constant for d ≥ 7 is called Ho-Kao algorithm (HKA)  [84],  [85]. It is based on 
the following idea: divide recursively d-dimensional hypercube into sufficiently 
small subcubes of nearly equal size and apply DT inside these subcubes. 

Figure  4.10 demonstrates this idea for d = 7. HKA assumes the e-cube rout-
ing by checking the bits left-to-right and uses ascending dimension-simple paths 
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Figure  4.8. A generic schema of dimension ordered recursive doubling used in OAB on 
one-port WH meshes. 

 

 
   (a) establishing the second root         (b) spatial SBTs 

Figure  4.9.An example of 2-round OAB on the all-port 4D WH hypercube. 

Given a sequence of dimension numbers 0 ≤ i1 <… < ik ≤ d − 1, k ≤ d − 1, an 
ascending dimension-simple path is any path u0,…, uk of nodes in d-dimensional 
hypercube so that uj is obtained from uj-1 by complementing bit ij. It follows that 
all d paths u0 → uj are pairwise node-disjoint if e-cube WH routing is used, so 
that u0 can send k packets to all these destinations simultaneously. HKA 
constructs an ascending dimension-simple path u0,…, un so that d-dimensional 
cube can be partitioned into d + 1 disjoint subcubes Si of equal or nearly equal 
size, so that subcube Si contains ui. 

1 

1 

1 

S 

S’ 

0 

1 
2 3 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 

2 

1 

1 2 

S 

S’ 

step 1  step 2 

step 3  step 4 



 4.2 Scheduling of Collective Communications 55 

 

Figure  4.10. The optimal HO-KAO algorithm on the all-port 7D hypercube dividing the 
hypercube into seven 6D subcubes. 

Ho-Kao algorithm finishes in O(N/log(N + 1)) wormhole routing steps and 
is optimal to within a multiplicative constant. Furthermore, the algorithm can be 
expressed by a few simple recursive functions.  

4.2.4 AAB Scheduling 

Finally, the basic ideas of AAB schedules will be presented in this subsection. 
Jung  [100] proposes a theorem that a necessary and sufficient condition for an 
all-to-all broadcast in a k-ary 2-dimensional torus to be optimal is that the num-
ber of its data exchange steps between neighbor nodes is equal to its diameter. 
The obtained algorithms broadcast data under the constraints of the shortest 
paths routing and links load balancing without multiple receptions of identical 
data. The used approach, from its combinatorial optimization characteristic, has 
allowed it to reveal the existence of several families of optimal algorithms. It 
has been proven that there is a family of solutions which infer more efficient
data switching processes at each node. These solutions are also easier to imple-
ment too. Unfortunately, at present, the technique is not applicable on other 
regular or even irregular networks. 

For regular topologies the Time-Arc-Disjoint Trees (TADT)  [212] tree tech-
nique could be utilized. For AAB each of the P input packets has to be delivered 
individually to all nodes. Every node u of network G is the root of a broadcast 
spanning tree B(u). Each arc of B(u) is labeled with the number of the round in 
which the broadcast packet passes this arc. An arc with label i is said to be of 
level i. The height of B(u), h(B(u)), is the highest arc label in B(u). Two trees 
B(u) and B(v) are said to be time-arc-disjoint if for any i ∈ {0,…, min(h(B(u)), 
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Figure  4.11. Examples of two different Time-Arc-Disjoint Trees for AAB communica-
tions rooted in the blue node. 

h(B(v))) – 1}, the sets of arcs at level i in B(u) and B(v) are disjoint. Two such 
Time-Arc-Disjoint trees, rooted in the same node, are shown Figure  4.11 

The motivation behind these definitions follows from the lock-step assump-
tion: all the nodes start their broadcasts at the same time and the broadcasts 
proceed synchronously along the trees with the same speed. At round i, only the 
arcs at level i are active in all the trees. If broadcast trees are time-arc-disjoint, 
then all these parallel broadcasts are pairwise link-contention-free.  

Under these assumptions, the problem of designing an optimal AAB algo-
rithm reduces the problem of designing TADTs  [18] rooted in every node of the 
network! Here, we can nicely demonstrate how important the symmetry of the 
underlying topology for solving such a problem is. If the topology is vertex-
symmetric, we may have a chance to find a generic structure of a TADT, inde-
pendent of the location of its root. This problem has been solved for 2-D and  
3-D tori, 2-D meshes, hypercubes, and some other Cayley graphs  [212]. 

4.3 Conclusions and Outstanding Problems 

This subsection summarizes the knowledge about scheduling of the collective 
communications (designing the communication algorithms). In section  4.1, we 
described the problem of choosing an underlying network that has great impact 
on time complexity of designed CC schedules, on the one hand, and also on the 
expensiveness of their design, on the other hand. From the lower bound, mathe-
matically derived or estimated from interconnection topology, and the knowl-
edge of the frequency of particular communications, a suitable topology can be 
selected and employed. If an optimized application has other special require-
ments on the underlying topology, some of combinatorial optimization tech-
niques, like genetic algorithm  [28], could be utilized to produce an application-
specific topology.  
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The area of network design covers many outstanding problems like: 

• How to generate easily implementable but also very powerful networks 
with low energy consumption? 

• How to ensure high fault-tolerance? 

• How to estimate the lower bounds for irregular networks with non-con-
stants node degree? 

• Can dynamic reconfiguration decrease the latency and increase the 
throughput of a network, and if it can, when should it be done? 

If a suitable topology has been chosen and implemented, the routing 
strategy for CC has to be determined. Section  4.2 introduced the basic concepts 
of CCs scheduling and briefly described the state of the methods in this area. 
This issue can be concluded by making several statements: 

• The OAS problem can be solved very simply implementing the ST tree. 

• On the contrary, in case of AAS, all the theoretical and empirical tech-
niques fail. Of course, the MIPL  [141] or graph coloring  [55] can be 
used, but the optimal schedule does not have to be discovered because 
of deterministic routing limitation or optimization time constraint. 

• The problem with broadcasts is that the set COMM is not known in ad-
vance. Optimal algorithms reaching the theoretical lower bound of steps 
are not known even for familiar hypercubes of higher dimensions (d > 
7). However, for more complex topologies than simple meshes/tori or 
low dimensional hypercubes, this is still an outstanding problem. 

• For AAB, the number of steps is limited by k messages that can be ab-
sorbed by any node in one step. Therefore, we can inform only adjacent 
nodes in one step and still develop optimum scheduling. The task is 
easier in symmetric networks: it is sufficient to find the TADT, which 
translated to all source nodes, creates no conflicts in any step of AAB 
communication. However, for asymmetric, irregular (non-constant k) 
networks, no similar systematic approaches exist so far. 

• Many of the described methods are restricted by other limitations. We 
can mention, for example, port-model limitation, deterministic routing, 
slim nodes, regularity of underlying network, etc.  

Up to now, we have considered only one-to-all or all-to-all communica-
tions. What about many-to-many communications? This area is completely 
unexplored, perhaps except for one-to-many broadcast more often referred to as 
multicast. The importance of many-to-many communication expresses in huge 
parallel systems with thousands of processing nodes, where many tasks are 
executed simultaneously and a task utilizes only a subset of these nodes. There 
are many opened problems related to many-to-many CC scheduling:  

• Many-to-many communication patterns are insolvable by most of pro-
posed techniques because from the wormhole point-of-view they trans-
form the topology into an irregular form. 
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• Only nodes belonging to a given task can participate in a CC schedule 
and help, for example, with the distribution of messages; other nodes in 
the topology are not aware of it. 

• Any fault in NoC transforms the topology into an irregular form, thus it 
is not solvable by presented techniques. 

• Any fat topology transforms the both one-to-all and all-to-all CCs into 
the many-to-many communication patterns. 

• A separated task closely related to this problem is how to spatially 
distribute processes onto nodes to ensure the best performance.  

Finally, as we could see, the systematic approach, applicable to an arbitrary 
topology to obtain an optimal or near optimal schedule for any scatter or 
broadcast CC pattern does not exist. One of the reasons is a huge complexity of 
the scheduling problem proved to be NP-complete  [31]. For this reason a novel 
technique, based on evolutionary algorithms will be developed and implemented 
to alleviate all presented restrictions and bottlenecks. 

 



 

5  

Evolutionary Algorithms 

Since the 1960s there has been an increasing interest in the metaphor of imitat-
ing the evolution of living beings to develop powerful algorithms for difficult 
optimization problems. The algorithms belong to the class of stochastic algo-
rithms named evolutionary algorithm (EA). The best known algorithms in this 
class include genetic algorithms (GA), developed by Holland  [87]; evolutionary 
strategies (ES), developed by Rechenberg  [164] and Schwefel  [175]; evolution-
ary programming (EP), developed by Fogel  [52]; and genetic programming 
(GP) developed by Koza  [107]. There are also many hybrid versions that incor-
porate various features of the foregoing paradigms. 

This chapter deals with detailed description of principles of Genetic 
Algorithms (GA)  [66] and their modifications called Estimation of Distribution 

Algorithms (EDA)  [137],  [117] that help us to solve our optimization problem of 
deadlock-free scheduling of collective communications. The chapter also 
presents basic requirements and hints on how to design successful evolutionary 
algorithms that produce sufficient solutions of the problem. 

An optimization problem solved by EA can be defined by specifying (1) 
a set of all potential solutions to the problem and (2) a measure to evaluate the 
performance of each candidate solution with respect to the objective. The goal is 
to find a solution or a set of solutions that perform best with respect to the speci-
fied performance measure. For example, in a maximum satisfiability (MAXSAT 
 [78]) problem, each candidate solution represents an interpretation of all propo-
sitions (a list of truth values of all variables or propositions) and the quality of 
a solution can be defined as the number of satisfied clauses using the interpreta-
tion encoded by the solution. In the design of an aircraft wing, a solution can be 
represented by a set of parameters specifying the shape of the wing and the per-
formance of each parameter set can be determined by an experiment in a wind 
tunnel. In the design of an algorithm for playing chess, a solution can be repre-
sented by a set of condition action rules, and the performance of each such set 
can be defined as the portion of games won against other competitor strategies. 

In EA, there is no information about the relation between the semantics of 
solutions and the performance measure. The only way of learning something 
about this relation is to sample new candidate solutions and evaluate them. The 
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task of finding the best solution to an EA optimization problem is extremely 
difficult. In order to illustrate the difficulty of EA optimization, imagine you are 
asked to implement a program in an unknown programming language, given 
only the syntax of the language and a procedure that evaluates how good each 
valid program is. 

The following section introduces EAs as one of the approaches to black-box 
optimization, where the search for an optimum is driven by ideas inspired by the 
Darwinian survival of the fittest and the Mendelian inheritance of parental traits.  

5.1 Genetic Algorithms 

Genetic algorithms (GA)  [135], first proposed by Holland in 1975  [87], ap-
proach black-box optimization by evolving a population of candidate solutions 
using operators inspired by natural evolution and genetics to solve problems in 
a wide variety of domains.  

The genetic algorithm maintains a population of individuals. Each individ-
ual (string, chromosome) represents a potential solution to the problem at hand. 
Each individual is evaluated to give some measure of its fitness. Some individu-
als undergo stochastic transformation by means of genetic operations to form 
new individuals. There are two types of transformation: (1) mutation, which 
creates new individuals by making small changes in a single individual and (2) 
crossover, which creates new individuals by combining parts from two individu-
als. New individuals, called offspring, are then evaluated. A new population is 
formed by selecting the fitter individuals from the parent population and the 
offspring population. After several generations, the algorithm converges to the 
best individual, which hopefully represents an optimal or suboptimal solution to 
the problem. A general structure of the genetic algorithm is shown in Figure  5.1. 

There are two important issues with respect to search strategies: exploiting 
the best solution and exploring the search space  [21]. The genetic algorithms 
provide a directed random search in complex landscapes. Genetic operators 
perform essentially a blind search; selection operators hopefully direct the ge-
netic search towards the desirable area of solution space. One general principle 
for developing an implementation of genetic algorithms for a particular real-
world problem is to make a good balance between exploration and exploitation 
of the search space.  

In general, solving a problem by genetic algorithms requires treating five 
basic issues, as summarized by Michalewicz  [133]: 

(1) Determine a genetic representation of solutions to the problem. 

(2) Propose a way to create an initial population of solutions. 

(3) Design an evaluation function rating solutions in terms of their fitness. 

(4) Implement genetic operators altering the genetic composition of off-
spring during reproduction. 

(5) Adjust values for the control parameters of genetic algorithms. 
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Figure  5.1. Flowchart of a standard genetic algorithm. 

In order to achieve a good balance between exploration and exploitation of 
the search space, all the issues must be examined carefully. Additional heuristics 
should be incorporated in the algorithm to enhance the performance. The most 
important parts of EA design will be further reviewed in the next subsections. 

5.1.1 Encoding Issue 

How to encode a solution of the problem into a chromosome (individual) is 
a key issue when using genetic algorithms. The issue has been investigated from 
many aspects, such as mapping characters from phenotype space to genotype 
space when solutions are decoded into individuals and metamorphosis proper-
ties when individuals are manipulated by genetic operators. 

Classification of Encodings. In Holland’s work, encoding is carried out 
using binary strings  [87]. Binary encoding for function optimization problems is 
known to have severe drawbacks due to the existence of Hamming cliffs; pairs 
of encodings having a large Hamming distance while belonging to points of 
minimal distance in phenotype space  [124]. For example, the pair 0111 and 
1000 belongs to neighboring points in phenotype space (points of minimal 
Euclidean distance) but have maximum Hamming distance in genotype space. 
In order to cross the Hamming cliff, all bits have to be changed simultaneously. 
The probability that crossover and mutation will occur can be very small. In this 
sense, the binary code does not preserve the locality of points in the phenotype. 
For this reason the Gray code is often used  [73]. 

For many problems in the industrial engineering world, it is nearly 
impossible to represent their solutions with binary encoding. During the last 
twenty years, various encoding methods have been created for particular 
problems to provide effective implementation of genetic algorithms. Depending 
on which kind of symbol is used as the alleles (values) of a gene (parts of 
a chromosome/parameters of a solution), the encoding methods can be classified 
as follows: 
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• Binary and integer encoding 

• Real-number encoding 

• Literal permutation encoding 

• General data structure encoding 

Integer and real-number encodings are best used for function optimization 
problems. It has been widely confirmed that integer and real-number encoding 
performs better than binary or Gray encoding for function optimizations and 
constrained optimizations  [50],  [133],  [219]. Integer or literal permutation 
encoding is best used for combinatorial optimization problems. Since the es-
sence of combinatorial optimization problems is the search for the best permuta-
tion or combination of items subject to constraints, literal permutation encoding 
can be the best way to solve this type of problem. For more complex real-world 
problems, an appropriate data structure is suggested as the allele of a gene, in 
order to capture the nature of the problem. In such cases, a gene may be an n-ary 
or more complex data structure. 

In most practices, one-dimensional encoding is used. However, many real-
world problems require solutions for multidimensional structures. It is natural to 
use a multidimensional encoding method to represent those solutions. For 
example, Vignaux and Michalewicz used an allocation matrix as an encoding 
for the transportation problem  [217]. Cohoon and Paris used two-dimensional 
encoding for the VLSI circuit placement problem  [35]. Anderson, Jones and 
Rayan used a two/dimensional grid type of encoding  [5]. Moon and Kim used 
a two-dimensional encoding for graph problems  [136]. Ono, Yamamura and 
Kobayashi used a job-sequence matrix as an encoding for job-shop scheduling 
problems  [150]. A general discussion of multidimensional encoding and cross-
over was given by Bui and Moon  [27] who argued that to fit solutions of multi-
dimensional problems into one-dimensional encoding entails losing a consider-
able amount of the information contained in the multidimensional structure. 

Infeasibility and Illegality. Genetic algorithms work on two types of 
spaces alternatively: coding space and solution space, or in other words, 
genotype space and phenotype space. Genetic operators work on genotype 
space, and evaluation and selection work on phenotype space. Natural selection 
is the link between chromosomes and the performance of decoded solutions. 
The mapping from genotype space to phenotype space has a considerable influ-
ence on the performance of a genetic algorithm. One outstanding problem asso-
ciated with mapping is that some individuals correspond to infeasible solutions 
to a given problem. This problem may become very severe for constrained opti-
mization problems and combinatorial optimization problems. 

We need to distinguish between two basic concepts: infeasibility and ille-
gality as shown in Figure  5.2. These are often misused in the literature. Infeasi-
bility refers to the phenomenon that a solution decoded from chromosome lies 
outside the feasible region of a given problem; illegality refers to the phenome-
non that a chromosome does not represent a valid solution to a given problem.  
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Figure  5.2. Simple demonstration of infeasibility and illegality. 

The infeasibility of chromosome originates from the nature of the con-
strained optimization problem  [168]. Whichever technique is used, conventional 
methods or genetic algorithms, it must handle the constraints. For many optimi-
zation problems, the feasible region can be represented as a system of equalities 
or inequalities. For such cases, the penalty method can be used to handle infea-
sible chromosomes  [59],  [132]. In constrained optimization problems, the opti-
mum typically occurs at the boundary between the feasible and infeasible areas. 
The penalty approach will force the genetic search to approach the optimum 
from both sides of the feasible and infeasible regions. 

The illegality of chromosomes originates from the nature of encoding tech-
niques. For many combinatorial optimization problems, problem-specific en-
codings are used, and such encodings usually yield illegal offspring by a simple 
one-point crossover operation  [87]. As an illegal chromosome cannot be de-
coded to a solution, the penalty techniques are inapplicable to this situation. 
Repair (restoration) techniques are usually adopted to convert an illegal chro-
mosome to a legal one. For example, the well-known PMX operator  [65] is 
essentially a two-point crossover for permutation representations, together with 
a repair procedure to resolve the illegitimacy caused by a simple two-cutpoint 
crossover. Orvosh and Davis  [151] have shown that for many combinatorial 
optimization problems, it is relatively easy to repair an infeasible or illegal chr-
omosome, and the repair strategy does indeed surpass other strategies, such as 
the rejecting or penalizing strategy.  

Properties of Encodings. When a new encoding method is given, it is usu-
ally necessary to examine whether we can set up an effective genetic search 
using the encoding. Several principles have been proposed to evaluate an en-
coding  [182]: 

• Nonredundancy. The mapping between encodings and solutions should 
be 1-to-1. In other cases, GA will either waste time while searching (n-
to-1) or another procedure performed on phenotype space to determine 
one solution among many possible ones has to be used (1-to-n). 
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• Legality. Any permutation of an encoding has to correspond to a solu-
tion. This property guarantees that most existing genetic operations can 
easily be applied to the encoding. 

• Completeness. Any solution has a corresponding encoding. This prop-
erty guarantees that any point in the solution space is accessible for 
a genetic search.  

• Lamarckian property. The meaning of alleles for a gene should not be 
context dependent. The Lamarckian property for encoding concerns the 
issue of whether or not one chromosome can pass on its merits to future 
populations through common genetic operations  [33]. 

• Causality. Small variations on the genotype space due to mutation 
should imply small variations in the phenotype space. The property is 
focused on the conservation of neighborhood structures; that is, for the 
successful introduction of new information by mutation, the mutation 
operator should preserve the neighborhood structure in the correspond-
ing phenotype space.  

5.1.2 Genetic Operators 

Genetic operators are responsible for the generating of new candidate solutions. 
Together with a selection mechanism they make an engine of GA and explore 
the search space. In GA, accumulated information is exploited by the selection 
mechanism, while new regions of the search space are explored by means of 
genetic operators. 

In conventional GAs, the crossover operator is used as the principal 
operator and the performance of a genetic system is heavily dependent on it. 
The mutation operator which produces spontaneous random changes in various 
chromosomes is used as a background operator.  

Crossover. There are some basic ideas, how crossover can produce two 
offspring from two parents. We can include these common types: 

• One-point, n-point and uniform crossover 

• Arithmetic/intermediate crossover 

• Permutation-based crossovers 

One-point crossover was the original recombination operator proposed in 
 [87] and examined in  [43]. It works by choosing a randomly placed cut-point 
that splits both parents at this point and creates the two children by exchanging 
the tails (see Figure  5.3). One-point crossover can easily be generalized to n-
point crossover, where the representation is broken down into more than two 
segments of contiguous genes, and then the offspring are generated by taking 
alternative segments from the two parents. The previous two operators worked 
by dividing the parents into a number of sections of contiguous genes and reas-
sembling them to produce offspring. In contrast to this, uniform crossover  [194] 
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A: 0 1 0 0 1 1 1 1 0 1 1 0 

             
B: 1 1 1 1 0 0 0 1 1 0 1 0 

                    ⇓  ⇓ 
A’: 0 1 0 0 0 0 0 1 1 0 1 0 

             
B’: 1 1 1 1 1 1 1 1 0 1 1 0 

Figure  5.3. The schema of one-point crossover. 

works by treating each gene independently and making a random choice as to 
which parent it should be inherited from.  

There are two options for recombining two floating-point parents: (1) using 
an analogous operator to those used for binary chromosomes, or (2) using an 
operator that, in each gene position, creates a new gene value (allele) in the 
offspring that lies between those of the parents. In this way, crossover is able to 
create new gene material, but it has the disadvantage that as a result of the aver-
aging process, the range of the allele values in the population for each gene is 
reduced  [133].  

Permutation-based representations present particular difficulties for the 
design of recombination operators, since it is not generally possible simply to 
exchange substrings between parents and still maintain the permutation prop-
erty. Partially Mapped Crossover (PMX) was first proposed by Goldberg and 
Linge as a recombination operator for the Travelling Salesman Problem (TSP) 
in  [65], and has become one of the most widely used operators for adjacency-
type problems. The basic idea of PMX can be generalized as a combination of 
a two-point crossover with permutation preservation. First, PMX copies the seg-
ment between two cut-points from the first parent. Second, it completes the 
chromosome by looking for unused values from the second parent in order to 
preserve the permutation. The Order Crossover (OX)  [40] was designed by 
Davis for order-based permutation problems. It begins in a similar fashion to 
PMX, but the intention is to transmit information about relative order from the 
second parent. Another mutation operator is Cycle Crossover (CX)  [149] which 
is concerned with preserving as much information as possible about the absolute 
position in which elements occur.  

Mutation. Many variants of a mutation operator have been also introduced 
during the last decades. The most important ones cover: 

• Bitwise mutation of binary representations 

• Random resetting and creep mutation based on integer representations 

• Uniform and nonuniform mutation with a fixed distribution 

• Permutation based mutation operators 

Although a few other schemes have been occasionally used, the most com-
mon bit-flip mutation operator used for binary encodings considers each gene 
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separately and allows each bit to flip with a small probability. The actual num-
ber of values changed is thus not fixed, but depends on the encoding length  [87].  

For integers encodings, there are two principal forms of mutation, and both 
mutate each gene independently within a user defined probability. The random 

resetting operator extends the bit-flipping so that a new value is chosen at ran-
dom from the set of permissible values in each position. This is the most suit-
able operator to use when the genes encode for cardinal attributes, since all 
other gene values are equally likely to be chosen. Creep mutation was designed 
for ordinal attributes and works by adding a small (positive or negative) value to 
each gene within a defined probability. Usually these values are sampled ran-
domly for each position, from a distribution that is symmetric around zero, and 
is more likely generated to small changes than large ones  [60].  

For floating-point representation, it is normal to ignore the discretisation 
imposed by hardware and consider the allele values as coming from a continu-
ous rather that a discrete distribution. For a uniform operator the new values of 
a gene are drawn uniformly randomly from interval [xmin, xmax] analogously to 
bit-flip or random resetting. Perhaps the most common form of nonuniform 
mutation used with floating point representation takes a form analogous to the 
creep mutation for integers. The operator adds to the current gene value an 
amount drawn randomly from a Gaussian distribution with a mean of zero and 
a user-specified standard deviation, and then curtailing the resulting value to the 
range [xmin, xmax],  [145]. 

For permutation representations, it is no longer possible to consider each 
gene independently, but instead finding legal mutations in a matter of moving 
alleles around in the genome. The most common ordered proposed operators, 
firstly published in  [193], include swap, insert, scramble, and inversion muta-
tion. The swap operator swaps two randomly picked genes in the chromosome. 
Insert operator works by picking two alleles at random and moving one so that 
it is next to the other, shuffling among the others to make room. Scramble 

mutation randomly chooses some subset of values within a chromosome and 
scrambles them. Inversion mutation works by randomly selecting two positions 
in the string and reverse the order in which the values appear between those 
positions.  

The proper choice of genetic operator is problem (encoding) dependent. Our 
endeavour should be to design such operators that perform a good mixing of 
genetic material and prevent the creation of illegal solutions. Other hits on how 
to design genetic operators or choose the proper ones, can be found in the theory 
of GA proposed by Holland  [87] and refined by Goldberg  [67] in their building-
block hypotheses; or in a convergence controlled variation hypothesis given by 
Eshelman, Mathias, and Schaffer  [49].  

Cheng and Gen suggests another approach for designing genetic operators 
 [32]. For the two genetic operators, crossover and mutation, one is used to per-
form a random search to try to explore the area beyond a local optimum, and the 
other is used to perform a local search to try to find an improved solution. The 
genetic search then possesses two types of search abilities. With this approach, 
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the mutation operator will play the same important role as that of crossover 
operator in a genetic search. 

5.1.3 Selection and Replacement Mechanisms 

The principle behind genetic algorithms is essentially the Darwinian natural 
selection. Selection provides the driving force in a genetic algorithm. With too 
much force, a genetic search will terminate prematurely; with too little force, 
evolutionary progress will be slower than necessary. Typically, a lower selec-
tion pressure is indicated at the start of a genetic search in favour of a wide ex-
ploration of the search space, while a higher selection pressure is recommended 
at the end to narrow the search space. The selection directs the genetic search 
towards promising regions in the search space. On the other hand, the replace-
ment mechanism is responsible for replacing whole or part of the current popu-
lation by newly created offsprings. During the past two decades, many selection/ 
replacement methods have been proposed, examined and compared. The most 
common types are as follows  [77]: 

• Roulette wheel selection 

• (µ + λ) and (µ, λ)- selection 

• Tournament selection 

• Steady-state reproduction 

• Ranking and scaling 

• Sharing 

Roulette wheel selection was proposed by Holland  [87]. The basic idea is to 
determine selection probability or survival probability for each chromosome 
proportional to the fitness value. Then a model roulette wheel can be made dis-
playing these probabilities. The selection process is based on spinning the wheel 
a number of times equal to population size, each time selecting a single chromo-
some for the new population. The wheel features the selection method as a sto-
chastic sampling procedure. Baker proposed a stochastic universal sampling 
method  [7] that uses a single wheel spin. 

In contrast with proportional selection, (µ + λ)-selection, and (µ, λ)-selec-
tion as proposed by Bäck are deterministic procedures that select the best chro-
mosomes from parents and offspring  [6]. Note that both methods prohibit selec-
tion of duplicate chromosomes from the population, so many researchers prefer 
to use this method to deal with combinatorial optimization problems. Truncation 
and block selection are also deterministic procedures that rank all individuals 
according to their fitness and select the best as parents  [197]. Elitist selection is 
generally used as supplementary to proportional selection to preserve the best 
chromosome in the new generation if it has not been selected through a propor-
tional selection process. 

Generational replacement, replacing an entire set of parents by their off-
spring, can be viewed as another version of the deterministic approach. The 
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steady-state reproduction of Whitley  [226] and Syswerda  [194] belongs to this 
class, in which the n worst parents are replaced by offspring (n is the number of 
offspring). 

Another type of selection procedure contains random and deterministic 
features simultaneously. A typical example is the tournament selection of 
Goldberg, Korb, and Deb  [70]. This method randomly chooses a set of chromo-
somes and picks out the best chromosome for reproduction. The number of 
chromosomes in the set is called the tournament size. A common tournament 
size is 2; this is called a binary tournament. Stochastic tournament selection was 
suggested by Wetzel  [225]. In this method, selection probabilities are calculated 
normally and successive pairs of chromosomes are drawn using roulette wheel 
selection. After drawing a pair, the chromosome with higher fitness is inserted 
in the new population. The process continues until the population is full.  

In the proportional selection procedure, the selection probability of an indi-
vidual is proportional to its fitness. This simple scheme exhibits some undesir-
able properties. For example, in early generations, there is a tendency for a few 
superchromosomes to dominate the selection process; in later generations, when 
the population has largely been converted, competition among chromosomes is 
less strong and random search behavior will emerge.  

The scaling and ranking mechanisms are proposed to mitigate these prob-
lems. The scaling method maps raw objective function values to positive real 
values, and the survival probability for each chromosome is determined ac-
cording to these values. Fitness scaling has a two fold intention: (1) to maintain 
a reasonable differential between relative fitness ratings of chromosomes; and 
(2) to prevent a too-rapid takeover by some superchromosomes to meet the 
requirement to limit competition early but to stimulate it later.  

Since De Jong’s work, use of scaling objective functions has become widely 
accepted, and several scaling mechanisms have been proposed. According to the 
type of function used to transform the raw fitness into scaled fitness, scaling 
methods can be classified as linear scaling  [75], sigma truncation  [53], power 
law scaling  [63], logarithmic scaling  [75], etc.  

For most scaling methods, scaling parameters are problem dependent. Fit-
ness ranking has an effect similar to that of fitness scaling but avoids the need 
for extra scaling parameters  [165]. Baker introduced the notion of ranking selec-
tion with genetic algorithms to overcome the scaling problems of the direct 
fitness-based approach  [69]. The ranking method ignores the actual object func-
tion values; instead, it uses a ranking of chromosomes to determine survival 
probability. The idea is straightforward: sort the population from best to worst 
and assign the selection probability of each chromosome according to the rank-
ing but not its raw fitness. Two methods are in common use: linear ranking and 
exponential ranking. 

Sharing techniques, introduced by Goldberg and Richardson  [68] for multi-
modal function optimization, are used to maintain the diversity of population. 
A sharing function is a way of determining the degradation of and individual’s 
fitness due to a neighbor at some distance. With the degradation, the reproduc-
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tion probability of individuals in a crowd peak is restrained while other indi-
viduals are encouraged to give offspring.  

5.1.4 Creation of Initial Population 

Initialization of the first population is kept simple in most EA applications and 
seeded by randomly generated individuals. In principle, problem-specific heu-
ristics can be used in this step aiming at an initial population with higher fitness. 
Whether or not this is worth the extra computational effort very much depends 
on the application at hand.  

5.1.5 Fitness Function 

The role of the fitness function is to represent the requirements in order to adapt 
to them. It forms the basis for selection, and thereby it facilitates improvements. 
More accurately, it defines what improvement means. Technically, it is a func-
tion or procedure that assigns a quality measure to genotypes (e.g. in traveling 
salesman problem [65], the fitness function computes the length of route stored 
in a chromosome).  

5.1.6 Values for the Parameters of GA 

The behavior of genetic algorithms is characterized by a balance between ex-
ploitation and exploration in the search space. The balance is strongly affected 
by strategy parameters such as population size, maximum generation, crossover, 
and mutation ratio. How to choose a value for each parameter and how to find 
the values efficiently are very important, promising areas of research into ge-
netic algorithms  [74],  [41]. Fixed parameters are used in most applications of 
GAs. The parameter values are determined using a set-and-test approach. How-
ever, the number of possible parameters and their different values means that 
this is a very time-consuming activity.  

The technical drawbacks to parameter tuning based on experimentation can 
be summarized as follows:  

• Parameters are not independent. Nevertheless, trying all different com-
bination systematically is practically impossible. 

• The process of parameter tuning is time consuming, even if parameters 
are optimized one by one, regardless of their interactions.  

• For a given problem the selected parameter values are not necessarily 
optimal, even if the effort made for setting them has been significant.  

During the history of EAs considerable effort has been spent on finding pa-
rameter values that were good for a number for test problems. A well-known 
example is that of  [43], determining recommended values for basic parameters. 
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5.2 Estimation of Distribution Algorithms 

The behavior of the evolutionary computation algorithms introduced in the 
previous section depends on several parameters associated with them (types of 
crossover and mutation operators, crossover and mutation ratios, population 
size, rate of generational reproduction, number of generations, etc.). If a re-
searcher does not have experience in using this type of approach for the resolu-
tion of a concrete optimization problem, then the choice of suitable values for 
the parameters is itself converted into an optimization problem, as was shown 
by Grefenstette  [74]. This reason, together with the fact that prediction of the 
movements of the populations in the search space is extremely difficult, has 
motivated the birth of a type of algorithms known as Estimation of Distribution 

Algorithms (EDA). EDAs were introduced in the field of evolutionary computa-
tion for the first time by Mühlenbein and Paaß  [137], and some similar ap-
proaches can be found in the book by Zhigljavsky  [228].  

Holland  [87] already recognized that to take into account interacting vari-
ables (genes) would be beneficial to genetic algorithms. This unexploited source 
of knowledge was called linkage information. Following this idea, in other ap-
proaches developed by different authors  [70],  [101], and  [11] simple genetic 
algorithms were extended to process building blocks.  

In EDAs, there are neither crossover nor mutation operators. Instead, the 
new population of individuals is sampled from a probability distribution which 
is estimated from a database containing selected individuals from the previous 
generation. Whereas in evolutionary computation heuristic, the interrelations 
(building blocks) between the different variables representing the individuals are 
kept implicitly in mind, in EDAs the interrelations are explicitly expressed 
through the joint probability distribution associated with the individuals selected 
at each iteration. In fact, estimation of the joint probability distribution associ-
ated with the database containing these selected individuals constitutes the bot-
tleneck of this new heuristic. As estimation of distribution algorithms replaces 
standard recombination operators by building and sampling a probabilistic 
model, EDAs are also called as Probabilistic Model Building Genetic Algo-

rithms (PMBGA)  [158] and Iterated Density Estimation Algorithms (IDEAs) 
 [24]. 

Since, there are a lot of different ways on how to estimate a probabilistic 
model at the required level of complexity, EDAs have been classified by this 
property into three basic classes which include: 

• EDAs with no interactions between genes 

• EDAs with pairwise interaction between genes 

• EDAs with multivariate interactions.  
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5.2.1 EDA without Interactions 

The Population Based Incremental Learning (PBIL)  [8] replaces the popula-
tion of candidate solutions by a probability vector (p1, p2, ..., pn), where pi de-
notes the probability of a 1 in the i-th position of solution strings (of the i-th 
gene). Each pi is initially set to 0.5 which corresponds to a uniform distribution 
over the set of all solutions. In each iteration, PBIL generates s candidate solu-
tions according to the current probability vector where s ≥ 2 denotes the selec-
tion pressure. Each value is generated independently of its context (remaining 
bits) and thus no interactions are considered (see Figure  5.4).  

The best solution from the generated set of s solutions is then used to update 
the probability-vector entries using 

)( iiii pxpp −+= λ , ( 5.1) 

where λ ∈ (0,1) is the learning rate (say 0.02), and xi is the i-th bit (gene) of the 
best solution. PBIL was also referred to as the Hill Climbing with Learning 
(HCwL)  [115] and the Incremental Univariate Marginal Distribution Algorithm 
(IUMDA)  [139]. Theoretical analyses of PBIL can be found in  [115] and  [71]. 

The Compact Genetic Algorithm (cGA)  [80] eliminates the gap between 
PBIL and traditional GAs. Although cGA uses a probability vector instead of 
a population, updates of the probability vector correspond to replacing one can-
didate solution by another one using a population of size N and shuffling the 
resulting population using the population-wise uniform crossover  [155]. 

Unlike PBIL and cGA, the Univariate Marginal Distribution Algorithm 
(UMDA)  [137] maintains a population of solutions. A probability vector is 
computed using the selected population of promising solutions and new solu-
tions are generated by sampling the probability vector. The new solutions re-
place the old ones and the process is repeated until termination criteria are met. 
UMDA is therefore equivalent to a GA with probabilistic uniform crossover 
(see sect.  5.1.2) Although UMDA uses a probabilistic model as an intermediate 
step between the original and new populations, unlike PBIL and cGA, the per-
formance and dynamics of PBIL, cGA, and UMDA are similar. 

PBIL, cGA, and UMDA can solve problems decomposable into subprob-
lems of order one in a linear or quadratic number of fitness evaluations. How-
ever, if decomposition into single-bit subproblems misleads the decision making 
away from the optimum, these algorithms scale up poorly with problem size. 
For example, PBIL, cGA and UMDA require exponentially many evaluations 
until reliable convergence for additively separable traps.  

5.2.2 EDA with Pairwise Interactions 

EDAs with pairwise probabilistic models can encode dependencies in the form 
of a chain, a tree, or a forest. As these models move beyond the assumption of  
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Figure  5.4. A graphical model with no interactions displayed as a Bayesian network.  

variable independence, they represent the first step toward EDAs capable of 
solving decomposable problems of bounded difficulty in a scalable manner. 

The Mutual-Information-Maximizing Input Clustering (MIMIC) algo-
rithm  [42] uses a chain distribution (Figure  5.5a) specified by (1) an ordering of 
string positions (variables); (2) a probability of a 1 in the first position of the 
chain; and (3) conditional probabilities of every other position given the value in 
the previous position in the chain. A chain probabilistic model encodes the 
probability distribution where all positions, except for the first position of the 
chain, are conditionally dependent on the previous position in the chain. 

After selecting promising solutions and computing marginal and conditional 
probabilities, MIMIC uses a greedy algorithm to maximize mutual information 
between the adjacent positions in the chain. In this fashion the Kullback-Liebler 
divergence  [109] between the chain and actual distributions is to be minimized.  

The Combining Optimizers with Mutual Information Trees algorithm 
COMMIT, first proposed by Baluja and Davies  [9], uses dependency trees 
(Figure  5.5b) to model promising solutions. Like in PBIL  [8], the population is 
replaced by a probability vector, but in this case the probability vector contains 
all pairwise probabilities. The probabilities are initialized to 0.25. Each iteration 
adjusts the probability vector according to new promising solutions acquired on 
the fly. A dependency tree encodes the probability distribution where every 
variable except for the root is conditioned on the variable’s parent in the tree. 
A variant of Prim’s algorithm for finding the minimum spanning tree  [163] can 
be used to construct an optimal tree distribution.  

The Bivariate Marginal Distribution Algorithm (BMDA)  [159] uses 
a forest distribution (a set of mutually independent dependency trees, see Figure 
 5.5c). This class of models is even more general than the class of dependency 
trees, because any forest that contains two or more disjointed trees cannot be 
generally represented by a tree. As a measure used to determine whether to 
connect two variables, BMDA uses Pearson’s chi-square test  [126]. This meas-
ure is also used to discriminate the remaining dependencies in order to construct 
the final model. In order to learn a model, BMDA uses a variant of Prim’s algo-
rithm  [163]. 

Pairwise models capture some interactions in a problem with a reasonable 
computational overhead. EDAs with pairwise probabilistic models can identify, 
propagate, and juxtapose partial solutions of order two, and therefore they work 
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   (a) MIMICS                           (b) COMMIT                                  (c) BMDA 

Figure  5.5. Graphical models with pairwise interactions in form of (a) chain, (b) tree, or 
(c) forest displayed as Bayesian networks.  

well on problems decomposable into subproblems of order at mostly two  [9], 
 [24],  [159]. Nonetheless, capturing only some pairwise interactions has still 
been shown to be insufficient for solving all decomposable problems of 
bounded difficulty scalably  [9],  [159]. That is why EDAs research has pursued 
more complex models discussed in the next section. 

5.2.3 EDA with Multivariate Interactions 

This section is an overview of EDAs with models that can encode multivariate 
interactions. Using general multivariate models has brought powerful algorithms 
capable of solving problems of bounded difficulty quickly, accurately, and re-
liably. On the other hand, learning distributions with multivariate interactions 
necessitates more complex model-learning algorithms that require significant 
computational time and still do not guarantee global optimality of the resulting 
model. Nonetheless, many difficult problems are intractable using simple mod-
els and the use of complex models and algorithms is warranted. 

The Factorized Distribution Algorithm (FDA)  [138] uses a fixed factor-
ized distribution throughout the whole computation. The model is allowed to 
contain multivariate marginal and conditional probabilities, but FDA only learns 
the probabilities, not the structure (dependencies and independencies). In order 
to solve a problem using FDA, we must first decompose the problem and then 
factorize the decomposition.  

The Extended Compact Genetic Algorithm (ECGA)  [79] uses a marginal 
product model (MPM) that partitions the variables into several partitions which 
are processed as independent variables in UMDA (see Figure  5.6a). Each parti-
tion is treated as a single variable and different partitions are considered to be 
mutually independent.  

In order to decide between alternative MPMs, ECGA uses a variant of the 
Minimum Description Length (MDL) metric  [166] which favors models that 
allow higher compression of data (in this case, the selected set of promising 
solutions). More specifically, the Bayesian Information Criterion (BIC)  [177] is 
used. 
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         (a) ECGA                        (b) BOA 

Figure  5.6. Graphical models with multivariate interactions displayed as a Bayesian 
network. 

CGA provides robust and scalable solutions for problems that can be de-
composed into independent subproblems of bounded order (separable problems) 
 [173]. However, many real-world problems contain overlapping dependencies 
which cannot be accurately modeled by dividing the variables into disjoined 
partitions. This can result in poor performance of ECGA in relation to these 
problems. 

The Bayesian Optimization Algorithm (BOA)  [156] builds a Bayesian 
network for the population of promising solutions (Figure  5.6b) and samples the 
built network to generate new candidate solutions. Initially, BOA used the 
Bayesian-Dirichlet (BD)  [36] metric subject to a maximum model-complexity 
constraint to discriminate competing models, but other metrics have been ana-
lyzed in later work. In all variants of BOA, the model is constructed by a greedy 
algorithm that iteratively adds a new dependency in the model that maximizes 
the model quality. Other elementary graph operators – such as edge removals 
and reversals – can be incorporated, but edge additions are the most important. 
The construction is terminated when no more improvement is possible. The 
greedy algorithm which is used to learn a model in BOA is similar to the one 
used in ECGA. However, Bayesian networks can encode more complex depend-
encies and independencies than models used in ECGA. Therefore, BOA is also 
applicable to problems with overlapping dependencies.  

BOA uses an equivalent class of models as FDA; however, BOA learns 
both the structure and the probabilities of the model. Although BOA does not 
require problem-specific knowledge in advance, prior information about the 
problem can be incorporated using Bayesian statistics, and the relative influence 
of prior information and the population of promising solutions can be tuned by 
the user. An interesting study on incorporating prior problem specific informa-
tion to improve the performance of BOA in graph partitioning and multiproces-
sor tasks scheduling can be found in  [178]. 

EDAs that use models capable of covering multivariate interactions can 
solve a wide range of problems in a scalable manner; promising results were 
reported on two-dimensional Ising spin-glass systems  [157], graph partitioning 
 [178], telecommunication network optimization  [167], silicon cluster optimiza-
tion  [173], and scheduling [100].  
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6  

Evolutionary Design of 

Collective Communications  

As we could see in previous chapters, a systematic approach applicable to an ar-
bitrary topology to obtain an optimal or almost optimal schedule for any scatter 
or broadcast CC pattern does not exist. For this reason, a novel evolutionary 
based technique will be proposed.  

Therefore, the hypothesis of the thesis can be formulated based on informa-
tion and experiences collected in chapter  5: Evolutionary design is able to pro-
duce optimal or near optimal communication schedules comparable or even 

better than which have been obtained by a conventional design for the networks 

sizes of interest. Moreover, evolutionary design can reduce many drawbacks of 

present techniques and invent still unknown schedules for an arbitrary topology 

and scatter/broadcast communication patterns.  

This chapter deals with the description of the main components of the tech-
nique, their design and implementation. The input data structure containing all 
necessary information about a solved task will be introduced, and the preproc-
essing of them will be described in the first subsection. Suitable encodings and 
their properties will be investigated in the second subsection. The third subsec-
tion will continue with a definition of the fitness function. The next subsection 
will describe acceleration and restoration heuristic to reduce execution time and 
increase success rate of proposed algorithms. The topic of the last subsection is 
an introduction of the heuristic mutation operator. 

6.1 Input Data Structure and Preprocessing 

The description of a network topology and other necessary information about 
a particular CC are specified in an input data file. The structure of the file is as 
follows: 

• Any text/row beginning with the hash (#) symbol is considered to be 
a comment. 
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• The first uncommented row determines the number of nodes in a par-
ticular topology and the maximal number of output links per node 
(maximal node degree). 

• Any other row describes one node. A row contains the node index; its 
operation mode within the CC (transmitter, receiver, both functions, 
switch); and a list of the node’s neighbors, where two nodes are consid-
ered to be neighbors only if they are connected by a simple direct link. 

Figure  6.1 illustrates the 4×4 2D mesh with specified sets of transceivers 
and receivers that are performing many-to-many communication with each 
other. The topology contains 16 nodes; six of them are operating only as trans-
mitters, two of them are operating only as receivers and six nodes are executing 
both functions. Let us note that any receiver, including nodes operating in both 
modes, can accept messages from any transmitter and vice versa. The topology 
also contains two nodes not participating in the illustrated CC, and working only 
as switches (i.e. messages can be transported via them, but no message can be 
consumed, or created and distributed from them). 

On the right side of Figure  6.1, there is an input file dump. The comments 
are shown in italics for lucidity. The number of nodes is set to 16 (4×4 nodes). 
The maximal number of links is set to 4, since no node has got more than 4 
neighbors (east, south, west, and north). Then, the lists of nodes and their 
neighbors follow. The node operation mode is specified by one of these four 
symbols {T, R, B, N}.  

6.1.1 Input Data Preprocessing 

After the input file is loaded, the data have to be preprocessed. In the first phase, 
the preprocessor divides the set of all nodes V* into a set of transmitters T and 
a set of receivers R. Thereafter, a set of terminal nodes V is determined as the 
union T ∪ R. Finally, all the sets are ordered based on the node index. 

The preprocessor generates all the shortest paths (the set Rx,y) between all 
transmitter-receiver pairs and saves them into a specific data structure in the 
operating memory in the second phase. The algorithm  [62] is inspired by the 
breadth-first search algorithms (BFS). BFS is based on the searching of a graph 
where a transmitter is chosen as a root. The edges create a tree used in the 
searching process. A tree is gradually constructed, one level at a time, from the 
root that is assigned an index of a transmitter node. When a new level of the tree 
is generated, every node at the lowest level (leaf) is expanded. When a node is 
expanded, its successors are determined as all its direct neighbors except those 
which have been already located at higher levels of the tree (it is necessary to 
avoid cycles). The construction of the tree is finished when a value of at least 
one leaf is equal to the index of a receiver node. Receiver leaves’ indices con-
firm the existence of searched paths, which are then stored as sequences of inci-
dent node indices. 
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Figure  6.1. Description of an input file containing the 4×4 mesh topology with a many-
to-many communication pattern. 

A sample tree constructed while searching for the shortest paths from node 
no. 0 to node no. 6 in the 4×4 2D mesh topology is shown in Figure  6.2. Three 
paths were actually found in the tree: 0-1-2-6, 0-1-5-6 and 0-4-5-6. If one-to-all 
communication is being scheduled, only paths from a single transmitter node to 
all other receiver nodes are searched for. On the other hand, for optimization of 
many-to-many and all-to-all communication, all paths between every communi-
cating pair of transmitter-receiver nodes are considered. 

In certain cases when the target topology has nonuniform numbers of links 
per node (irregular topologies), it can happen that an optimal routing schedule 
cannot be constructed from a set of the shortest paths only. The usage of the 
shortest paths only could cause heavy utilization of some links but the rare utili-
zation of the others which can prevent the finding of an optimal solution. In 
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Figure  6.2. Construction of the shortest paths list from node no. 0 to node no. 6 in the 
4×4 2D mesh topology. 

order to avoid this problem, the algorithm must consider not only the shortest 
paths but also paths whose length may be longer. This approach can only be 
used for small topologies, because in cases of the large topologies the searching 
space of possible paths increases dramatically. For example, let us study 4×4 2D 
Mesh, all-to-all communication pattern, and the paths that are elongated by 2  
(1 makes no sense in this topology) according to the shortest paths; whole num-
ber of paths is increased from 744 to 2784, for more complex topologies with 36 
processors and more, rising to tens of thousands. Consequently, optimization al-
gorithms are not able to search an optimal solution for more complex topologies 
by non-minimal routing. 

6.2 Scatter Encoding 

This chapter describes fundamental principles of chosen encoding of candidate 
routing schedules. As broadcast and scatter are completely different communi-
cation services, candidate solutions are encoded in separate ways. First, the defi-
nition and features of the scatter encoding will be introduced and examined. 

6.2.1 Definition of the Scatter Encoding 

Consider a scatter based CC communication between M transmitters from set T 
and N receivers from set R (e.g. from Figure  6.1).  

(1) The CC can be defined as a set COMM of pair-wise transfers src, dst 
originating in src ∈ T and terminating in dst ∈ R, where src ≠ dst 

{ }dstsrcRdstTsrccommCOMM dstsrc ≠∈∈= ,,:,
. ( 6.1) 
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(2) A direct encoding can be designed for the scatter-based communication 
schedules (i.e. an exact description of the schedule is stored in a chromosome). 
A chromosome can be formalized as n-tuple of genes: 
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where M is the number of transmitters and N is the number of receivers while 
n is the total number of genes. Notice that 

M, N ≤ P and n =M·N. ( 6.3) 

(3) A gene genei,j represents a single message transfer from the transmitter 
(source) xi∈ T to the receiver (destination) xj ∈ R, where xi ≠ xj. The source and 
the destination are identified by the genes indexes i and j. A gene is an ordered 
couple: 

( )

Stepss

Rl

jiNjMislgene

ji

jiji

jijiji

<≤

∈

≠<≤<≤=

,

,,

,,,

0

,0 ,0 ,,
 ( 6.4) 

The first component li,j represents a chosen path from the transmitter xi to the 
receiver xj stored in the set Ri,j. The second component si,j determines a selected 
time slot (communication step) of the transfer between xi and xj. The total num-
ber of time slots (communication steps) is given by the predefined parameter 
Steps. 

(4) The (shortest) path has been defined in section  2.2.4 as an ordered set of 
unidirectional channels 

{ }Lji ccccl ,...,,, 321, = , ( 6.5) 

where src(c1) =xi and dst(cL) = xj. 

(5) Next, consider a set GENOME containing all the genes included in 
a chromosome: 

{ }jiNjMigeneGENOME ji ≠<≤<≤= ,0 and 0:,
. ( 6.6) 

(6) Finally, we can define a bijective mapping f from set GENOME into set 
COMM meaning that each gene corresponds to a unique pair-wise transfer and 
also vice versa: 

COMMcommGENOMEgenef dstsrcji ∈∈ ,,: a  

 iff xi=src, xj=dst. ( 6.7) 
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6.2.2 Features of the Scatter Encoding 

The basic advantage of the scatter encoding complies with most of the require-
ments defined in the section  5.1.1:  

• Nonredundancy. The encoding has satisfied the condition of nonredun-
dancy since all its instances can be transformed into unique communi-
cation schedules (see eq. 6.7). Any variation of genotype leads to a dif-
ferent schedule.  

• Legality. The encoding also satisfies the condition of legality (any chro-
mosome can be transformed into a communication schedule). If the 
genes values (alleles) respect the eq. 6.4, there is no way to create an 
illegal solution of the scatter schedule. 

• Completeness. Because the chromosomes directly encode the communi-
cation schedules, any possible schedule can be stored in a chromosome.  

• Lamarckian property. The Lamarckian property is satisfied considering 
that all point-to-point transfers are independent, and this implies that all 
alleles are context independent.  

• Causality. The causality condition is not fully satisfied since even 
a small variation in a chromosome can produce a large difference in the 
quality of the decoded schedule (phenotype). The first gene component 
satisfies the condition since two paths from Ri,j indexed by close values 
differ only in a small number of links. Hence, a swap of the paths will 
produce nearly the same schedule. On the other hand, a shift of a pair-
wise transfer to a different time slot can rapidly modify channels’ utili-
zation producing hot-spots, and dramatically influencing the quality of 
the schedule.  

 

6.2.3 Graphic Visualization of a Scatter Chromosome 

The presented encoding covers all possible instances of M-to-N scatter chromo-
some. Figure  6.3 illustrates an example of the most complex all-to-all scatter 
chromosome on the 4×4 2D mesh. 

Particular genes are separated by the blue lines. The first component li,j is 
emphasized by a yellow background and si,j by a blue background. The index i 
corresponds to the particular row (transmitter) and the index j to the particular 
column (receiver). Genes situated on the main diagonal are excluded from the 
chromosome since these communications do not have to be performed (source = 
destination).  

M-to-N CCs are composed of only a subset of all possible pair-wise trans-
fers. Some nodes are operating only as transmitters or receivers, while other 
nodes can be executing both functions, or can be excluded from communication  
performing only switching tasks.  
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Figure  6.3. The structure of an AAS chromosome. 

There is an example of MNS encoding based on a communication scheme 
presented in Figure  6.1 and shown in Figure  6.4. Because nodes no. 3, 7, 11, and 
15 are not transmitting in this CC, their rows have been excluded from the 
chromosome (illustrated by hyphens). The columns representing nodes no. 0, 1, 
2, 3, 12, 13, 14 and 15 have also been excluded from the genome since they are 
not operating as receivers.  

6.3 Broadcast Encoding 

This section introduces the definition of the broadcast encoding. Its features are 
examined and graphic representation is illustrated in the following subsections.  

6.3.1 Definition of the Broadcast Encoding 

Consider a broadcast based CC communication between M transmitters from set 
T and N receivers from set R (e.g. from Figure  6.1). As previously discussed in 
section  4.2.3, the COMM set cannot be constructed in advance for broadcast 
based CCs, since each node already informed could also become a distributor of 
the broadcast message.  

(1) Therefore, the definition of CC is based on a set of messages MSG that 
have to be delivered during a given CC to each destination. Let  

{ }dstsrcRdstTsrcmsgMSG dstsrc ≠∈∈= ,,:,  ( 6.8) 
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Figure  6.4. The structure of MNS chromosome following the distribution of transmitters 
and receivers illustrated in Figure  6.1. 

be a set of messages originating in transmitters src ∈ T, transported through the 
network via intermediate distributors d ∈ V, and consumed by receivers dst ∈ R. 
Notice, the distributor of the message transfer is not known in advance.  

(2) A direct encoding has been designed to store broadcast-based commu-
nication schedules. A broadcast CC schedule is represented by the chromosome 
in the form of n-tuple of genes 
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where M is the number of transmitters and N is the number of receivers while n 
is the total number of genes. Notice that 

M, N ≤ P and n =M·N. ( 6.10) 

(3) A gene genei,j determines the way in which a receiver xj ∈ R obtains the 
broadcast message msgi,j from the transmitter xi ∈ T via a distributor di,j ∈ V. 
The producer and consumer of the message are identified by the genes indexes i 
and j. Individual genes are represented by an ordered triplet: 
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The first component of the gene selects a distributor di,j of the message msgi,j. 
Besides the transmitters, the distributor can be any node from jisiD ,, , and thus 

not only the transmitter. Set jisiD ,, includes all nodes informed during all of 
si,j – 1 steps; see extended domination set theory  [207] or section  4.2.3. The 
second component li,j represents a chosen path between the distributor di,j and 
a receiver xj from the set jd jiR ,, . Analogously, the last component si,j deter-
mines a selected time slot of the transfer between di,j and xj. The total number of 
time slots (communication steps) is given by the predefined parameter Steps. 

(4) The (shortest) path was defined in the same way as in the section  2.2.4 
as an ordered set of unidirectional channels. 

(5) Next, consider a set GENOME containing all genes included in a chro-
mosome:  

{ }jiNjMigeneGENOME ji ≠<≤<≤= ,0 and 0:,
.  ( 6.12) 

(6) Finally, we can define a bijective mapping f from set GENOME into set 
MSG, thus each gene corresponds to a unique src-dst transfer of the message 
and also vice versa: 

MSGmsgGENOMEgenef dstsrcji ∈∈ ,,: a  

 iff xi=src, xj=dst.   ( 6.13) 

6.3.2 Features of the Broadcast Encoding 

The basic characteristics of broadcast encoding are summarized below: 

• Nonredundancy. The encoding has satisfied the condition of nonredun-
dancy since all its instances can be transformed into a unique commu-
nication schedule, eq. 6.13. Any variation of genotype leads to a differ-
ent schedule. 

• Legality. The legality of all instances of OAB chromosomes can be 
simply guaranteed using restoration heuristic (see section  6.5.3 and the 
eq. 6.11). This correction of broadcast chromosomes follows the theory 
of domination sets  [207]. The distributor in step s can become only 
a node informed during some of previous time steps {0,..., s-1}. Thus, 
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all nodes/genes violating this condition are corrected after any modifi-
cation of the chromosome.  

• Completeness. Because the chromosome directly encodes the communi-
cation schedule, any possible schedule can be stored in a chromosome.  

• Lamarckian property. The Lamarckian property is satisfied considering 
that all pair-wise transfers are independent which implies that all alleles 
are context independent. On the other hand, the values within the scope 
of a gene are naturally context dependent, so that a selected path be-
tween a distributor and destination is dependent on the selected dis-
tributor. Fortunately, genetic operators can be simply modified to pre-
vent linkage disruption by handling only whole genes.  

• Causality. The causality condition is not fully satisfied since even 
a small variation in a chromosome can produce a large difference in the 
quality of a decoded schedule (phenotype). The reason is the same as in 
the case of OAS, moreover it is aggravated by the selection of distribu-
tors.  

6.3.3 Graphic Visualization of a Broadcast Chromosome 

The presented encoding covers all possible instances of M-to-N broadcast chro-
mosome. Figure  6.5 illustrates an example of the most complex all-to-all broad-
cast chromosome on the 4×4 2D mesh. Particular genes are separated by the 
blue lines. The first component di,j is emphasized by a green background, the 
second component li,j is emphasized by a yellow background and si,j by a blue 
background. The index i corresponds to the particular row (transmitter), and the 
index j to the particular column (receiver). Genes situated on the main diagonal 
are excluded from the chromosome since these communications do not have to 
be performed (source = destination). 

M-to-N broadcasts are composed of only a subset of all possible point-to-
point communications. Some nodes are operating only as transmitters or 
receivers, some others can be executing both functions, or can be excluded from 
communication performing only switching tasks (see  6.2.3). 

6.4 Fitness Function Definition 

The purpose of the fitness function is a quality measurement of candidate solu-
tions. The candidate solutions encode communication schedules for a particular 
CC. The goal of the evolution is to design valid schedules with a predefined 
time complexity (number of communication steps in our approach). The neces-
sary condition for all valid schedules is their conflict-freedom. Two communi-
cations are said to be in a conflict if and only if they share the same channel in 
the same time slot. In order to be able to implement evolved schedules into 
a parallel system, the conflicts of shared resources have to be prevented. 
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Figure  6.5. The structure of an AAB chromosome. 

Consequently, the main idea of the fitness function is based on the conflict-
free condition violations. All conflicts within a chromosome are discovered and 
their count is calculated. The quality of the chromosome is then determined 
from the number of conflicts. 

The valid communication schedule for a given number of communication 
steps must be conflict-free. Valid schedules are either optimal (the number of 
steps equals the lower bound) or suboptimal. Evolution of a valid schedule for 
the given number of steps is finished up as soon as fitness (number of conflicts) 
drops to zero. If it does not do so in a reasonable time, the prescribed number of 
steps has to be one step increased and lunched again. 

6.4.1 Formal Definition of the Fitness Function 

This section proposes a formal description of the fitness function. The definition 
is the same for scatter and broadcast CC. For this purpose, we recall the intro-
duced definitions of the encodings from sections  6.2.1 and  6.3.1. 

(1) Let SS (Same Slot/Step) be a binary relation on the set GENOME. Let 
a, b ∈ COMM (scatter) or a, b ∈ MSG (broadcast) message transfers be repre-
sented by genei,j and genek,l, then 

lkjilkji ssgeneSSgene ,,,,  iff  = . ( 6.14) 

Thus, two transfers are in relation SS if and only if they are being executed dur-
ing the same time slot. 

Now, we show that SS is an equivalence relation: 

(a) SS is reflexive, since no transfer can be performed in more than one 
time slot. 
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(b) SS is symmetric considering si,j = sk,l, then sk,l = si,j 

(c) SS is transitive. Let a, b, c be elements of GENOME. Whenever a SS b 
and b SS c, then also a SS c (a is being executed within the same slot 
as c whenever a is being executed within the same slot as b and b is 
being  executed within the same slot as c). 

Thus SS is an equivalence relation. 

(2) The equivalence relation SS induces the partition GENOME/SS. Each 
equivalence class [gs] includes all transfers performed in the same time slot s.  

(3) Let Ea,b be a set of all shared channels between two transfers a, b repre-
sented by genes genei,j, genek,l ∈ GENOME  utilizes the paths li,j and lk,l, then 

lkjiba llE ,,, ∩= .  ( 6.15) 

The number of conflicts between a and b can be obtained as the cardinality of 
the set Ea,b. 

(4) Define a multiset Es including channels shared by all transfers within 
a given time slot, then 
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bagba
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(5) The multiset E, covering all shared channels within the whole CC, can 
be obtained by a union over all equivalence classes. Thus 

U
SSGENOMEg

s

s

EE
/][ ∈

= . ( 6.17) 

(6) The total number of conflicts can be obtained as the cardinality of mul-
tiset E. Thus 

|| EFitness = . ( 6.18)

6.4.2 Graphic Visualization of the Fitness Function 

Figure  6.6 illustrates an example of two point-to-point communications forming 
a part of a CC. The (a) variant shows transfers 0→11 (the blue one) and 4→7 
(the green one). These transfers will cause a conflict on the channel c = (5, 6), 
because of occupying the channel at the same time, which is naturally not 
possible. Contrary, the (b) variant does not invoke any violations of the conflict-
free condition. Both transfers 0→11 and 13→7 are not sharing a channel.  
The illustration of the fitness function concept is provided in Figure  6.7. On the 
left side of the figure, there are depicted two different AAS chromosomes with 
marked pair-wise transfers from Figure  6.6. The sources of the messages 
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    (a) conflicting communication                            (b) Conflict-free communications 

Figure  6.6. Two point-to-point communications illustrating the conflict-free condition. 

transfers are determined by the row indices. The destination of the messages 
transfers are determined by the column indices. 

First, the genes are categorized using the si,j component. Then, all paths 
stored in the genes in the same category are mutually compared. The li,j compo-
nent of a gene is a pointer into the set Ri,j maintaining all paths between the 
source-destination pairs. In the first case illustrated in Figure  6.7, the paths con-
tain the same substring of length 2, hence one conflict is identified. In the sec-
ond case, the paths do not share any substring. Notice, that two paths can stash 
more than one conflict. 

6.5 Acceleration and Restoration Heuristics 

This section introduces acceleration heuristics intended for speeding-up the 
optimization process. The acceleration heuristics are executed before the fitness 
function evaluation or inside the mutation operator (see section  6.6). The section 
also presents a restoration heuristic aimed at prevention of illegal solutions in 
the case of broadcast CC. The restoration heuristic is executed just before the 
fitness function evaluation. 

6.5.1 Port Based Acceleration Heuristic 

Port based acceleration heuristic improves optimization speed, taking into ac-
count the search space restrictions due to a limited message injection and ac-
ceptance capability of network nodes. Since no node can inject more than k 
messages into the network in a time slot (k-port model, see section  3.1), the 
acceleration heuristic checks this condition in the whole chromosome and redes-
igns ports’ utilizations in all time slots.  

Figure  6.8 shows node congestion. Four messages are waiting for trans-
mission here, however only three of them can be dispatched since the node has 
been equipped by three output and three local ports. The fourth message has to 
wait for another time slot. 
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Figure  6.7. Illustration of the fitness function evaluation concept. 

 

 

Figure  6.8. Illustration of port number limitation. 

The implementation of the heuristic is based on a node utilization histogram 
(see Figure  6.9). First, the numbers of messages dispatched in particular time 
slots are counted for all transmitters. Then all the messages that cannot be 
transmitted due to overload are shifted to such time slots where there are free 
output channels. 

The same check is also made on input channels to avoid situations a node is 
consuming more than k messages. This heuristic performs a local search on can-
didate solutions based on space domain so that conflicts caused by port-model 
limitation can be avoided in advance. This leads to the significant reduction of 
congestions speeding-up of the search because the evolution can only concern 
on conflict appearing along the paths. 
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Figure  6.9. The concept of port based heuristic using a channel utilization histogram. 

6.5.2 Transfer Swap Heuristic 

The transfer swap heuristic swaps associated time slot of two transfers originat-
ing in the same transmitter. Figure  6.10 illustrates one possible situation. Con-
sider two different time slots si and sj and four different message transfers. The 
heuristic works as follows: (1) one transfer from the same transmitter in each 
time slots is randomly selected (e.g. 0→11from slot si, and 0→3 from slot sj); 
(2) Their time slots are mutually exchanged, so that the transfer 0→11 will be 
executed in slot sj, and the transfer 0→3 in slot si.  

This heuristic performs a local search on a candidate solution based on the 
time domain. The conflicting transfers are rescheduled in spite of their timing to 
reduce total congestion.  

6.5.3 Restoration of Broadcast Chromosomes 

Considering that the broadcast chromosomes can get illegal during genetic ma-
nipulations (crossover, mutation, model sampling, etc.), the legality condition 
given by dominating sets, eq. 6.11, has to be verified.  

The restoration (a repair of the broadcast tree) proceeds in subsequent 
communication steps.  

First, the domination set for a particular time slot jisiD ,,  and transmitter xi ∈ 
T is determined. This set includes all nodes informed by message msgi in all of 
the previous steps, which is  

1,,, ,1
...}{ −∪∪∪=

jii sisiisi DDxD . ( 6.19) 
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Figure  6.10. The concept of the transfer swap heuristic. 

For all receivers xj ∈ R in a given step si,j, the condition jisiji Dd ,,, ∈ is 
checked. 

If di,j violates the condition of being a member of jisiD ,, , then di,j is changed 

to be an element of jisiD ,, . The choice is based on node ports’ utilization histo-
gram (see  6.5.1). 

A modification of the distributor node di,j has an impact naturally on utilized 
channels li,j, and set jd jiR ,, . Hence, the original path is replaced by a newly cho-
sen one from a list of exploitable paths between the new distributor-destination 
pair. 

Figure  6.11 presents the idea of the restoration heuristic. There is an invalid 
broadcast communication on the left side of the figure, variant (a). The informed 
nodes (elements of jisiD ,, ) are highlighted by a blue background. Notice that, 
node no. 11 is receiving the message from node no. 2. Naturally, this is not pos-
sible, since node no. 2 has not obtained the message yet. Therefore, the source 
of the transfer is exchanged for node no. 13 (one of the blue ones, see the right 
side of the figure). Consequently, the used path is also changed, variant (b). 
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Figure  6.11. Restoration of the broadcast tree. The informed nodes are shown in blue. 
The destination node is shown in green. 

6.5.4 Initial Population Building Heuristic  

The search space of broadcast based schedules is much more restricted than the 
search space of scatter based ones. The initial population of scatter schedules 
can be simply generated by a uniform random generator, thus all gene values are 
randomly selected from corresponding definition scopes (see eq. 6.4).  

However, this technique mostly leads to illegal solutions in the case of 
broadcast communication. Therefore, a specific heuristic for the initial popula-
tion creation has been developed. The heuristic injects good building blocks into 
the initial population. The idea follows these steps for each gene: 

(1) di,j is selected using a uniform random generator from the set V. 

(2) ijl ,  is selected using a uniform random generator from the set jd jiR ,, . 

(3) si,j is set initially to an undefined value. 

(4) By selecting correct time slots, the restoration heuristic produces legal 
broadcast schedules that violate the conflict-free condition in much 
fewer cases. 

6.5.5 Restricted Surrounding Heuristic  

The heuristic is based on the search space pruning and it is incorporated into the 
restoration heuristic. If for a given topology and MNB pattern, this formula  
((M – 1)/k > log k N) is valid, then MNB can be performed as a controlled flood 
(i.e. all processors send their message only to uniformed neighbors). In each 
step, messages are propagated in waves through the interconnection network. 
This feature of the interconnection network and MNB communication can be 
employed with an advantage to prune the search space. The set of possible re-
ceivers of the broadcast message in a slot can be restricted only to nodes within 
a given radius r ∈ <1, D/2 >, where D is a network diameter. This restriction 
leads to a massive reduction of possible engaged shortest paths.  
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The suitable radius value is chosen according to the ratio between the num-
bers of transmitters M and receivers N. The suitable radius r for OAB (M =1, N 
= P) is D/2 considering that many optimal broadcast algorithms inform the 
furthermost node first (see section  4.2.3). On the other hand, the suitable radius 
value for AAB (M = P, N = P) is r = 1,  [203]. Generally, the lower values of 
radius lead to faster convergence, but in some cases it is necessary to choose 
larger values (D/2 in the case of OAB communication) to ensure retrieval of 
a purposeful schedule.  

As a consequence of the reception restriction, the restoration heuristic has to 
be modified. In a process of building the dominating set, it can happen that there 
is no node that could inform a selected receiver in a given time slot. In this case, 
the communication has to be postponed to the later time slot, where at least one 
possible source of broadcast message has already existed. In some cases this 
postponement can cause a number of communication steps which is in excess of 
the requested maximum. This situation is handled by a penalization function. 
The amount of penalty is given by the sum of all pair-wise transfers running 
over the prescribed maximum number of steps. Finally, this value is added to 
the conflict count computed by the fitness function. 

Figure  6.12 illustrates the surrounding of node no. 1 with r = 1. This node 
can accept the messages only from the nodes belonging to its surrounding and 
also, the node can distribute the messages only to nodes lying in its surrounding.  

6.6 Mutation Operator 

The mutation is primarily intended to bring new genetic material into the popu-
lation of chromosomes. Typically, very simple mutation operators are used (see 
section  5.1.2). As we know, with an increasing distance between a source-des-
tination pair, the number of possible paths exponentially goes up. Therefore, it is 
necessary to employ a high-quality strategy responsible for testing possible 
paths and their organization into time slots.  

The mutation operator exploits possibilities of some of the proposed heuris-
tics. The mutation operator follows this procedure: 

(1) The port based heuristic is executed. This step prevents conflicts on in-
put and output channels of terminal nodes. 

(2) There are two ways how to select a mutated gene. The gene is selected 
with uniform probability in the first half of instances in order to be able 
to escape from suboptimal solutions. Otherwise, we select only from 
genes that are causing conflicts to guide the search to better regions of 
the search space. 

(3) One component of the selected gene is selected to be mutated. 

(a) Path mutation: a new path between source and destination is 
chosen using Gaussian distribution with the mean value equal 
to the current path index, and with the variance value equal to
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Figure  6.12. Illustration of the surrounding of the node no. 1 with r = 1. 

the one third of the total number of paths between source-des-
tination pairs. It ensures that similar paths to the current will 
be generated with higher probability, and on the other hand, 
any path can still be selected.  

(b) Slot mutation: first, the transfer swap heuristic is executed. If 
it does not improve the quality of the solution, the time slot is 
generated using a uniform random generator. 

(c) For broadcast solutions, there is a possibility to mutate the 
distributor of the message. The distributor is selected using 
a uniform random generator from all terminal nodes partici-
pating in the CC. Naturally, the restoration heuristic has to be 
applied before the fitness function is executed.  
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7  

Optimization Tools and 

Parameters Adjustments 

Combinatorial search and optimization techniques in general look for a solution 
to a problem among many potential solutions. For many search and optimization 
problems, exhaustive search is not feasible and some form of directed search is 
undertaken instead. In addition, rather than only the best (optimal) solution, 
a good non-optimal solution is often sought. 

The basic components of many search and optimization techniques are very 
similar. The definition of basic components like: an evaluation function, an 
encoding and a global data structure is often expected. The previous chapter 
proposed the fundamental concepts of the most frequently utilized components 
independent of a searching technique. Consequently, the problem of CC sched-
uling can be solved by many common techniques like evolutionary algorithms 
 [135], hill climbing  [115], tabu search  [165], simulated annealing  [21], particle 
swarm optimization  [104], ant colonies  [46], and many others. 

This chapter deals with the selection of the most suitable optimization tool 
for our task. We restricted ourselves to investigate the behaviour of Standard 
Genetic Algorithm (SGA)  [66], Mixed Bayesian Optimization Algorithm 
(MBOA)  [148] and Univariate Marginal Distribution Algorithm (UMDA) 
 [137]. These three algorithms are the typical representatives of evolutionary and 
estimation of distribution algorithms. The optimal parameters of the selected al-
gorithms are going to be established, and the performance of the algorithms is 
going to be measured and mutually compared in the following subsections. The 
victorious algorithm will be employed to check the quality of the proposed 
method and to design the optimal schedules on many topologies of interest.  

7.1 Optimization Tools 

This subsection introduces all the selected optimization tools, describes all their 
operators and suitable parameter setups.  
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7.1.1 Standard Genetic Algorithm 

Standard Genetic Algorithm (SGA)  [66], detailed in section  5.1.1, is probably 
the most frequently used evolutionary algorithm. In order to complete the algo-
rithm design, some operators have had to be established: 

(1) Selection mechanism. Two parents are selected from the parent popula-
tion by a binary tournament operator  [70]. 

(2) Crossover. One-point crossover with allowed crossover points only on 
the boundaries of the genes is used  [87]. 

(3) Mutation. The mutation operator proposed in section  6.6 is employed. 

(4) Replacement strategy. The steady-state reproduction is used  [226]. The 
parent population is sorted according to its fitness after every genera-
tion. The worst two thirds are replaced by newly generated offspring. 
The higher replacement value ensures reasonable diversity level and 
prevents an early stuck in local optima.  

In order to execute the algorithm, the values of several parameters will be 
adjusted experimentally. The most important ones cover  [74]: 

(1) Population size. The recommended values lie between 50 and c. 200. 

(2) Crossover probability. The recommended values lie in (0.7, 0.9). 

(3) Mutation probability. The recommended values lie in (0.001, 0.1). 

(4) Number of generations. The number of generation strongly depends on 
the population size and the optimized task complexity. 

The SGA algorithm has been implemented using GAlib  [218] library and 
compiled by GNU C++ under a Linux operating system. 

7.1.2 Mixed Bayesian Optimization Algorithm 

Mixed Bayesian Optimization Algorithm (MBOA) algorithm was created by Jiri 
Ocenasek in  [148]. MBOA is based on a Bayesian Optimization Algorithm 
(BOA). The probabilistic model of MBOA is a set of binary decision trees/ 
graphs. MBOA also differs from BOA in the heterogeneous model parameters. 
The decision trees can also be created for continuous or mixed domains. 
Although, the mutation operator is not frequently used in BOA algorithms 
because it could disturb convergence of the probabilistic model, its employing 
can generate new solutions from unexplored places of a search space and keep 
population diversity.  

In order to complete the algorithm design, some operators have had to be 
established: 

(1) Selection mechanism. The parent population is selected using a binary 
tournament operator  [70]. 

(2) Mutation. The mutation operator proposed in section  6.6 is employed to 
incorporate a local search technique into an MBOA algorithm. 
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(3) Replacement strategy. The steady-state principle is used  [226]. The par-
ent population is sorted according to its fitness after every generation. 
The worst two thirds are replaced by a newly generated offspring. The 
higher replacement value ensures a reasonable diversity level and pre-
vents an early stuck in local optima.  

In order to execute the algorithm, the values of several parameters will be 
adjusted experimentally. The most important ones cover  [148]: 

(1) Population size. The recommended values are between 50 and several 
hundreds with respect to the character of the solved task. 

(2) Parent population size. The size of the parent population is usually 50% 
of the population size. The probability model is estimated from the se-
lected parent population.  

(3) Model building frequency. The model is constructed in all generations. 

(4) Mutation probability. If it is ever used, the recommended values lie 
(0.001, 0.1)  [155]. 

(5) Number of generations. The number of generations strongly depends on 
the population size and the optimized task complexity. 

MBOA has been implemented and compiled by standard GNU C++ under 
a Linux operating system. 

7.1.3 Univarite Marginal Distribution Algorithm 

A Univariate Marginal Distribution Algorithm (UMDA) lies on the frontier be-
tween classic genetic algorithms and estimation of distribution algorithms  [137]. 
It does not cover any dependencies between variables (genes). For all compo-
nents of the genes, histograms are created. Then, the frequencies of all values of 
the genes are calculated. In contrast to SGA, the whole parent population is used 
to learn the model and produce offspring (not only two individuals).  

In order to complete the algorithm design, some operators have had to be 
established: 

(1) Selection mechanism. The parent population is selected using a binary 
tournament operator  [70]. 

(2) Mutation. The mutation operator proposed in section  6.6 is employed to 
incorporate a local search technique into an UMDA algorithm. 

(3) Replacement strategy. The steady-state principle is used. The parent 
population is sorted according to its fitness after every generation. The 
worst two thirds are replaced by a newly generated offspring. The 
higher replacement value ensures a reasonable diversity level and 
prevents an early stuck in local optima.  

In order to execute the algorithm, the values of several parameters will be 
adjusted experimentally. The most important ones cover  [137]: 

(1) Population size. The recommended values are between 50 and c. 200.
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(2) Parent population size. The size of the parent population is usually 50% 
of the population size. The probability model is estimated from the 
selected parent population.  

(3) Model building frequency. The model is constructed in all generations. 

(4) Mutation probability. The recommended values lie between 0.001 and 
0.1, in case it is ever used.  

(5) Number of generations. The number of generations strongly depends on 
the population size and the optimized task complexity. 

UMDA has been implemented and compiled by standard GNU C++ under 
a Linux operating system. 

7.2 Experimental Comparison of Solution Quality 

The first experimental work deals with the quality of obtained solutions. The 
goal of these measurements was the establishment of the most suitable parame-
ters for all selected optimization tools to produce the most quality solutions. 
Two sufficiently difficult benchmark tasks were chosen; AAS and AAB patterns 
on the 4D hypercube. 

An AAS communication pattern was chosen since it is the most complex 
variant of MNS communication. Similarly, AAB is the most complex variation 
of the MNB communication if the surrounding size is not restricted. The sur-
rounding size was not restricted to get the benchmark more difficult in these ex-
periments. The 4D hypercube with 16 nodes was selected due to its symmetry 
and known optimal solutions for both communication patterns. The correspond-
ing AAS and AAB chromosome lengths were 512 and 786 gene components. 

The numbers of communication steps were knowingly set one step below 
the lower bound for both communication patterns. It made it possible to com-
pare the algorithms only by the number of conflicts after a finite number of 
generations. That prevented the algorithm finishing before a given number of 
generations had been evolved due to a global optima discovery. 

Thirty experimental runs were executed for all the parameters setups. All 
graphs show the average values of the fitness function (conflicts counts) from 
all 30 runs after 500,000 generations.  

7.2.1 Solution Quality Produced by SGA 

In order to obtain a high-quality optimization tool based on SGA, three crucial 
parameters had to be established: the population size, the mutation probability, 
and the crossover probability. The tested values of parameters were as follows: 

• Population size: 50, 100 and 150 individuals 

• Mutation probability: 0.0, 0.2, 0.5, 0.7, 0.9 

• Crossover probability: 0.0, 0.2, 0.5, 0.7, 0.9 
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Since the mutation operator also incorporates the local search techniques, 
the values of the mutation probability are significantly higher than in related lit-
erature.  

Figure  7.1 shows the influence of the population size and the mutation and 
crossover probabilities on the best evolved solution quality. The results of the 
AAS benchmark are situated in the left column of the figure; cases (a), (b), and 
(c). The results of the AAB benchmark are situated in the right column of the 
figure; cases (d), (e), and (f).  

The rows match particular population sizes: 50 individuals for cases (a) and 
(d); 100 individuals for cases (b) and (e); and 150 individuals for cases (c) and 
(f). The x-axis of the graphs represents growing mutation probability while the 
y-axis of the graph corresponds to growing crossover probability. Finally, the z-
axis evaluates the solutions quality in terms of the conflicts count. The best 
parameter setup is highlighted by a red oval. 

Figure  7.1 reveals several very important tendencies common for both 
benchmarks:  

• Higher population size does not lead to significant improvement of the 

solution quality! It can be seen all graphs for both benchmarks are very 
similar. Actually, the higher population size slightly decreases the solu-
tions quality. It can be caused by the slower convergence of SGA; how-
ever 500,000 generations appear to be sufficient to do it.  

• The crossover probability has only a small impact on the solution qual-

ity! The mixture of genetic material performed by the crossover opera-
tor does not produce good building blocks (see building block theory 
 [67]). It is probably due to the great number of potential source-destina-
tion paths. 

• The evolution is controlled mainly by the mutation operator! The 
mutation operator improved by local search techniques is responsible 
for the solution quality improvement. With higher mutation probability, 
the number of conflicts significantly decreases. For example, if the 
mutation is not employed, the designed schedules contain about 200 
conflicts. On the other hand, if 90% of all solutions are mutated, the 
obtained solutions attacks the 7-8 conflicts count level for AAS bench-
mark. 

The following conclusions can be deduced from Figure  7.1: 

• An appropriate population size lies between 50 and 100 individuals. 

• Reasonable crossover probability for this population size is approxi-
mately 0.5 - 0.7. 

• It is always better to mutate as many individuals as possible, so that the 
most favorable value is around 0.9. 
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Figure  7.1. The influence of the population size, the mutation and crossover ratio on the 
solution quality: (a) - (c) AAS benchmark; (d) - (f) AAB benchmark; SGA algorithm. 
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7.2.2 Solution Quality Produced by MBOA 

In order to obtain a high-quality optimization tool based on MBOA, we have 
had to establish two crucial parameters: the population size and the mutation 
probability. The tested values of parameters were set as follows: 

• Population size: 50, 100 and 150 individuals 

• Mutation probability: 0.0, 0.2, 0.5, 0.7, 0.9 

Since the mutation operator incorporates also the local search techniques, 
the values of the mutation probability are significantly higher than in related 
literature. The maximal population size was limited due to the time complexity 
of the algorithm (see section  7.3). 

Figure  7.2 shows the influence of the population size and the mutation prob-
ability on the solution quality. The results of the AAS benchmark are situated in 
the left column of the figure: cases (a) and (b). The results of the AAB bench-
mark are situated in the right column of the figure: cases (c) and (d). The first 
row shows the influence of the mutation probability in the whole gamut of the 
mutation probabilities. As the mutation affects the solution quality dramatically, 
the graphs are detailed in the second row. The x-axis of the graphs represents 
growing mutation probability. Three different bars representing the results 
achieved with different population sizes are depicted for each mutation prob-
ability. The y-axis evaluates the solutions quality in terms of the conflicts count. 
Finally, the best parameter setup is highlighted by a red oval. 

Several interesting tendencies can be observed from Figure  7.2: 

• Higher population slightly improves the solution quality! This state-
ment is almost true in the whole mutation probability gamut for the 
AAS benchmark. Only in a few cases, some oscillations can be ob-
served. Contrary, the opposite tendency can be observed for the AAB 
benchmark. The higher the population size is, the worse the solutions 
are produced in most cases. The fitness function values for 50 and 100 
individuals are very closed indeed.  

• The evolution is controlled mainly by the mutation operator! The muta-
tion influences the quality dominantly. Disabling the mutation operator 
leads to very poor solutions. Higher values of the mutation probability 
bring only a minority improvement, but even a small innovation can 
bring us a high benefit. 

Analogous to the previous subsection, some statements can be concluded 
from Figure  7.2:  

• An appropriate population size lies between 100 and 150 individuals. 

• Reasonable mutation probability is approximately 0.5 - 0.7. 
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Figure  7.2. The influence of the population size and the mutation probability on the solu-
tion quality: (a) - (b) AAS benchmark; (c) - (d) AAB benchmark; MBOA algorithm. 

7.2.3 Solution Quality Produced by UMDA 

Finally, the quality of solutions produced by an UMDA algorithm was investi-
gated. As in the previous cases, it was necessary to use suitable parameters: the 
population size and the mutation probability. The tested values of the 
parameters were set as follows: 

• Population size: 50, 100, and 150 individuals 

• Mutation probability: 0.0, 0.2, 0.5, 0.7, 0.9 

Since the mutation operator also incorporates the local search techniques, 
the values of the mutation probability are significantly higher than in related 
literature.  

Figure  7.3 shows the influence of the population size and the mutation prob-
ability on the solution quality. The AAS results are situated in the left column 
and the AAB results in the right column again. The details are presented in the 
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second row. The x-axis represents growing mutation probability. Three different 
columns representing the results achieved with different population sizes are 
depicted for each mutation probability. The y-axis evaluates the solutions qual-
ity. Finally, the best parameter setup is highlighted by a red oval. 

Very similar tendencies to the MBOA algorithm can be observed from 
Figure  7.3: 

• The population size has only a small influence on the solution quality! 
As accrue from the figure, higher population size sometimes improves 
the solution quality, but sometimes does not. From this point of view, it 
is better to use a smaller population due to lower computation expen-
siveness.  

• The evolution is controlled mainly by the mutation operator! If the 
mutation operator is not employed, the quality of the produced solutions 
is poor. The quality of the solutions dramatically appreciates incorpo-
rating the mutation operator into the evolution process. It is very inter-
esting that even small mutation probability improves the quality many 
times. The higher values of the mutation probability only bring rela-
tively small additional improvements.  

Analogous to the previous subsections, some statements can be concluded 
from Figure  7.3:  

• An appropriate population size lies between 50 and 100 individuals. 

• Reasonable mutation probability is approximately 0.7 - 0.9. 

7.2.4 Summary 

This subsection summarizes the quality of the solution produced by the pro-
posed optimization tools. Figure  7.4 compares the achieved solution quality 
with the best parameters setups for AAS and AAB benchmarks and all the tools.  

The best solutions for the AAS benchmark are produced by MBOA. Let us 
note that solutions produced by UMDA achieve very similar quality. SGA pro-
duces slightly worse solutions than both other optimization tools. The best solu-
tions for the AAB benchmark are produced by UMDA. There are many more 
differences in solution quality between the investigated tools. SGA produces 
solutions with approximately 30% worse quality than UMDA. The worst solu-
tions are produced by the MBOA algorithm with about twice as worse quality. 

For all these reasons, UMDA can be declared the best optimization tool for 

both tested benchmarks.  
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Figure  7.3. The influence of the population size and the mutation probability on the solu-
tion quality: (a) - (b) AAS benchmark; (c) - (d) AAB benchmark; UMDA algorithm. 
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Figure  7.4. The comparison of achieved solution quality by different optimization tools.  
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7.3 Experimental Comparison of Tool Speed 

The second experimental work deals with the optimization speed of the pro-
posed optimizations tools. The goal of these measurements was to estimate the 
time complexity of proposed algorithms and select the fastest one. The same 
benchmarks as in section  7.2 were used.  

The execution times of 500,000 generations of all three optimization tools 
were measured for both AAB and AAS benchmarks. Then, the measured times 
were converted into the generation time. The generation time is the time that 
one generation takes to be executed. Thirty experimental runs were executed for 
all the parameter setups. All graphs show the average values of the generation 
time in milliseconds over all 30 runs. All results were measured on IBM Blade 
servers equipped with 2x dualcore AMD Opteron 275 processors and supplied 
by 4GB DDR2 RAM at 800 MHz. 

In order to be able to compare all three optimization tools, the parameter 
values have to be set as close as possible with respect to the quality of produced 
solutions.  

The following parameters values were used as follows: 

• Population size: 50, 100, and 150 individuals 

• Mutation probability: 0.9 

• Crossover probability: 0.9 

Figure  7.5 shows the generation time in milliseconds measured for all opti-
mization tools. The results of the AAS benchmark are situated in the left column 
of the figure: cases (a) and (b) while the results of the AAB benchmark are situ-
ated in the right column of the figure: cases (c) and (d). The x-axis represents 
the increasing population size, the y-axis evaluates the generation time in ms.  

First, we can take note of the incorporable higher generation time of the 
MBOA tool. MBOA is nearly a hundred times as slow as SGA and UMDA. 
MBOA exploits a very complex probabilistic model to be able to solve hard 
real-world tasks. It has actually achieved the best solution quality for the AAS 
benchmark. Unfortunately, the creation phase of such a complex model con-
sumes too much time.  

The second row of Figure  7.5 details the remaining optimization tools. It is 
evident that a simple genetic algorithm is approximately about 30-40% faster 
than UMDA. Although, UMDA only creates a simple probabilistic model, this 
phase still consumes more time than a simple one-point crossover. Nevertheless, 
the differences between SGA and UMDA go down for the AAB benchmark. 

Finally, if we compare AAS and AAB generation times, we can observe 
a marked growth. The growth is caused by a longer genome in the case of AAB 
(three components per gene against two components per gene in AAS), and also 
more complex fitness function (restoration heuristic). 

Owing to the results of this experimental study, SGA can be declared the 

fastest optimization tool for both tested benchmark. 
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Figure  7.5. The performance of investigated optimization tools with the optimal parame-
ter setups: (a) and (b) AAS benchmark; (c) and (d) AAB benchmark. 

7.4 Experimental Comparison of Tool Scalability 

This subsection deals with the scalability that indicates the ability to handle 
growing amounts of work in a graceful manner. Two different characteristics of 
the proposed optimization tools were investigated. Firstly, we focused on the 
number of fitness evaluations needed to reach the global optimum (NE). Sec-
ondly, we focused on the success rate representing the percentage occurrence of 
the global optimum in ten performed runs (SR). The global optimum is repre-
sented by a conflict-free (fitness function equals to zero) communication sched-
ule reaching the lower bound on the number of communication steps. 

Both these characteristics were examined using our familiar hypercubes. 
Five different instances of the hypercube topology with 8, 16, 32, 64 and 128 
nodes served these tasks. All of the four basic communication patterns were 
used to examine the behavior of the tools for this time. Only ten experimental 
runs were executed because of an excessive time complexity in order of days for 
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some experimental setups. Appropriate parameters were set up according to tips 
described in subsection  7.2: 

• Population size: 100 individuals  

• Mutation probability: 0.9 

• Crossover probability: 0.9 

7.4.1 Tool Scalability of Scatter Based Communications 

Figure  7.6 presents the growth of the NE characteristic in dependence on the 
hypercube size. The figure shows the results for the OAS benchmark, case (a); 
and for the AAS benchmark, case (b). The x-axis of the graphs represents grow-
ing hypercube size while the y-axis evaluates the needed number of fitness func-
tion evaluations to reach the global optimum for a particular benchmark. The 
NE characteristics are completed with the SR ones shown in Table  7.1 and 
Table  7.2. The configurations of the hypercubes, where some tool discovered 
the global optima in all experimental runs, are highlighted in red.  

All proposed tools scaled well for the OAS pattern. Only a linear depend-
ence of NE on the topology size was observed. Furthermore, the values of NE 
characteristic were very favorable and would allow us to solve more complex 
topologies. SE characteristics also promised a high yield of the optimization 
process (most runs would find the global optima). 

Looking carefully through both characteristics in Figure  7.6a and Table  7.1, 
some conclusions valid for the OAS communication pattern can be made: 

• SGA needed twice as small NE as MBOA, but the success rate (SR) 
was the lowest of all the tools. The 100% success rate was reached only 
for the smallest hypercube.  

• MBOA needed the most NE (it was the slowest), but reached very good 
SR, comparable to UMDA. 

• UMDA conducted best in both of the characteristics. It was the faster 
tool, and what is more important, it also attained the highest SR of all 
the tools.  

Optimization of AAS pattern is a much more difficult task. Let us note that 
expanding the hypercube twice doubles the number of pair-wise communication 
of the OAS pattern. But what will happen in the case of AAS? The number of 
pair-wise communication increases four times! That is why the proposed tools 
attained the values of about a million evaluations. 

More than quadratics dependence of NE on the hypercube size can be ob-
served. The SGA had not been able to reach the optima in all cases. Conse-
quently, the corresponding bars in Figure  7.6b were crossed. Furthermore, no 
tool could reliably solve bigger instances of hypercube than a 32-node one. Also 
SR statistics are worse than in the case of OAS. SR characteristic notify us that 
the search for the optimal AAS schedules on larger topologies has not been very 
effective. Practically 90% of the experimental runs have got stuck in a local 
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       (a) OAS benchmark          (b) AAS benchmark 

Figure  7.6. The scalability of investigated optimization tools - the numbers of fitness 
functions evaluations to reach global optima of scatter CCs with optimal parameter 
setups.  

optimum (i.e. a few conflicts remained in the schedule). It makes us to increase 
the minimal number of communication steps and thereby simplify the task, but 
at the cost of performance lost in the designed schedule.  

Some conclusion valid for the AAS pattern can be made from Figure  7.6b 
and Table  7.2 

• SGA is not a suitable tool for this communication pattern. It has been 
able to solve only the smallest hypercube, and moreover with very low 
reliability. 

• MBOA reached better SR values. However, NE values were very high, 
the dependency on the hypercube size was nearly quadratic.  

• UMDA conducted best in both of the characteristics again. But the NE 
grew nearly exponential (2.2M evaluations for hyper-16 against 82M 
evaluations for hyper-32). The larger topologies might be solvable by 
this tool. 

7.4.2 Tool Scalability of Broadcast Based Communications 

Figure  7.7 presents the growth of the NE characteristic in dependence on the 
hypercube size for broadcast patterns. The figure shows the results for the OAB 
benchmark case (a); and for the AAB benchmark case (b) in the same way as in 
the previous section. The NE characteristics are completed by the SR ones 
shown in Table  7.3 and Table  7.4. The configurations of the hypercubes, where 
some tool discovered the global optima in all experimental runs, are highlighted 
in red.  
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Table  7.1. The success rate with increasing benchmark instances; OAS benchmark. 

 Hyper-8 Hyper-16 Hyper-32 Hyper-64 Hyper-128 

SGA 100% 80% 70% 70% 70% 
MBOA 100% 100% 100% 90% 80% 
UMDA 100% 100% 100% 100% 90% 

 

Table  7.2. The success rate with increasing benchmark instances; AAS benchmark. 

 Hyper-8 Hyper-16 Hyper-32 Hyper-64 Hyper-128 

SGA 10% - - - - 

MBOA 60% 30% 10% - - 

UMDA 100% 40% 10% - - 

 

The scalability of OAB pattern was a little worse than in the case of OAS, 
but still remained on the favourable level. NE characteristics commonly attained 
the values up to millions against several hundred of thousand. That was caused 
by a one third longer chromosome and more complex communication patterns. 
There is an interesting drop of NE for 64-node hypercube (hyper-64) in the 
figure. It is related to a rounding up function used in the formulas of the lower 
bounds. This phenomenon is explained later in section  7.4.3. SR characteristics 
also look good. All the tools have been able to produce optimal solution with 
a sufficient probability.  

Looking carefully at both characteristics shown in Figure  7.7a and Table 
 7.3, some conclusions valid for the OAB communication pattern can be made: 

• SGA, MBOA and UMDA achieved similar NE up to hyper-64. Bigger 
differences could be observed as late as the 128-node hypercube. SGA 
can be said to have achieved moderate NE with a slightly lower success 
rate. 

• MBOA needed the most NE (it was the slowest), but reached very good 
SR comparable to UMDA on the other hand. 

• UMDA conducted best in both of the characteristics again. It was the 
fastest tool (three times as fast as MBOA), and what is more important, 
it also attained the highest SR of all the tools, however, the SR values 
were very closed. 

NE characteristics for the AAB pattern embody an exponential growth. 
Both MBOA and UMDA were able to find demanded solutions up to 32-node 
hypercube in a relatively short time. Unfortunately, MBOA reached only a 10% 
success rate for this topology. Moreover, SGA was not able to solve the bench-
mark at all. On the other hand, UMDA broke this limit and also solved a 64-
node hypercube but with a very low SR.  
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      (a) OAB benchmark           (b) AAB benchmark 

Figure  7.7. The scalability of investigated optimization tools - the numbers of fitness 
functions evaluations to reach global optima of broadcast CCs with optimal parameter 
setups. 

Some conclusions valid for the AAB pattern can be made from Figure  7.7b 
and Table  7.4: 

• SGA is not a suitable tool for this communication pattern because it has 
been able to solve only two smallest hypercubes, and moreover with 
very low reliability. 

• MBOA reached better SR values but with a higher NE. Unfortunately, 
it completely failed at solving the biggest hypercube.  

• UMDA conducted best in both of the characteristics again. But the NE 
grows exponential (160k evaluations for hyper-32 against 64.6M eva-
luations for hyper-64). A drop of NE is present between a 16 and 32-
node hypercube instances. 

7.4.3 Summary 

This subsection summarizes scalability of proposed optimization tools. Two 
different characteristics have been used to evaluate the scalability in terms of the 
number of evaluations needed to reach the global optimum and the success rate 
of its discovery. The values of these characteristics have been tabulated for all 
the proposed CC patterns. 

Generally, the higher SR was observed at one-to-all patterns, where it was 
not a problem to solve the hypercubes up to 128 nodes. On the other hand, the 
limits of the proposed tools were found near the 32/64 node boundary in cases 
of all-to-all patterns.  

Using real generational times presented in section  0 for the optimal popula-
tion size, we can estimate the real time complexity for a particular optimization 
tool, a given topology and communication pattern. For simplicity, one example  
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Table  7.3. The success rate with increasing benchmark instances; OAB benchmark. 

 Hyper-8 Hyper-16 Hyper-32 Hyper-64 Hyper-128 

SGA 100% 100% 50% 50% 30% 
MBOA 100% 100% 100% 70% 50% 
UMDA 100% 100% 100% 90% 60% 

 

Table  7.4. The success rate with increasing benchmark instances; AAB benchmark. 

 Hyper-8 Hyper-16 Hyper-32 Hyper-64 Hyper-128 

SGA 70% 20% - - - 

MBOA 100% 50% 10% - - 

UMDA 100% 80% 40% 10% - 

 
will be introduced. Consider the AAB pattern, hyper-16 topology and UMDA 
optimization tool. The evolution process will take approximately: 

stimegeneration
sizepop
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Note there is only a 40% probability to obtain the global optimum. 

Finally, we should explain an interesting gap occurred in the NE character-
istics. Let us compare the NE characteristics for the OAB communication pat-
tern, Figure  7.7a. It is related to a rounding up function used in the formulas of 
the lower bound. While for hyper-32 the unrounded lower bound on the number 
of steps is 1.93, for hyper-64 it is 2.13. The time complexity of an optimal 
communication schedule can not exceed two communication steps in the first 
case, whereas it can be split into three steps in the second case. By comparing 
unrounded and rounded time complexities we can make a conclusion that in the 
case of a hyper-64 topology, much more interconnection links remain unused 
and the evolutionary algorithm has more space to find the optimal schedule. The 
same abnormality can be seen on many other topologies and CC patterns. 

Taking into accounts all the mentioned pros and cons, the UMDA tool can 

be declared as the best scaling tool. 

7.5 Conclusions 

The goal of this section has been to search for the most suitable optimization 
tool. We have examined in depth the qualities of Standard Genetic Algorithm 
(SGA)  [66], Mixed Bayesian Optimization Algorithm (MBOA)  [148] and Uni-
variate Marginal Distribution Algorithm (UMDA)  [137].  

Firstly, the suitable parameter values of all the optimization tools were 
searched for. Based on quality of obtained solutions the best parameters values 
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were chosen. Consequently, all the tools were mutually compared and UMDA 
was found out to produce the best results. Afterwards, the generational time of 
the proposed tools with suitable parameters was compared, and after that, the 
time complexity was estimated. From these results, SGA was deducted to be the 
fastest of all. Lastly, the scalability of the proposed tools was examined. From 
these results, UMDA was concluded to scale best.  

Finally, we can conclude this section and acclaim the winner. The UMDA 
algorithm seems to be the most effective and powerful optimization tool for our 
task. For all these reasons, it will be used for all further experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8  

Experimental Results of the Quest 

for High Quality Schedules 

This chapter introduces the results of the proposed technique of evolutionary 
design of collective communication on wormhole networks. The key require-
ments for the schedules have been described in chapter  4. The main ideas of the 
proposed technique have been spelled out in chapter  6. The previous chapter has 
solved the issue of a suitable optimization tool selection and appropriate pa-
rameters setups. In this chapter, we are going to investigate the skills of the 
proposed technique implemented into UMDA  [139] on various interconnection 
topologies, including several common topologies, optimal diameter degree to-
pologies, some special topologies, multistage and fat topologies. We are also 
going to briefly discuss the results achieved on faulty topologies and with many-
to-many communication patterns.  

The goal of this chapter is to verify the quality of the technique and to de-
termine the attainable upper bounds on various interconnection networks. 
Moreover, we would like to prove that our evolutionary based technique is able 
to reinvent well known collective communication algorithms like recursive 
doubling  [128], Ho-Kao  [84], etc. As we could see in section  4.2, there are 
many interconnection topologies with unknown optimal schedules for some CC 
patterns. Actually, a systematic approach optimally executing given CCs in 
asymmetric, irregular, fat or faulty topologies has not exist so far. Consequently, 
this chapter demonstrates the most interesting newly invented communication 
schedules for some promising interconnection networks. The achieved results 
(the upper bounds of time complexity in terms of numbers of communication 
steps) are also well-arranged in appendix. 

8.1 Common Interconnection Topologies 

This section introduces the results of the proposed technique implemented into 
the UMDA algorithm on the interconnection topologies often employed to build 
parallel computers. In this section, hypercubes, rings, meshes and tori are fo-
cused on. Further, the upper bounds of CC schedules produced by evolution are 
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compared to theoretical lower bounds and the most interesting evolved 
schedules are presented here.  

8.1.1 Hypercubes  

Hypercubes are regular direct topologies with known optimal scheduling, except 
for OAB, for any hypercube size. Table  8.1 summarizes the time complexity of 
evolved schedules. From this table, the upper bounds (found by evolution) are 
evident to meet the mathematically derived lower bounds in most cases. A sin-
gle integer represents both the lower and the upper identical bounds reached by 
UMDA. Otherwise, two integers in one cell separated by a slash indicate that 
the lower bound (a smaller integer) has not been reached. Finally, empty cells 
(illustrated by hyphens) denote the instances of the problem that have not been 
tested yet because of their time complexity. 

OAS schedules reached the lower bounds in all cases. OAB schedules were 
equaled the best known algorithms like double tree and Ho-Kao. As the optimal 
schedule reaching 3 steps for a 256-node hypercube is not known up to now, the 
evolution equaled only the best known suboptimal solution of 4 steps; however 
the scheduling with 3 steps had been almost successful. Only one conflict re-
mained. Unfortunately, this conflict was not possible to remove even after days 
of optimization. UMDA also found optimal schedules for AAB up to 64-node 
and AAS up to 32-node instances. Regarding AAS and 64-node hypercube, the 
lower bound had to be increase by 3 steps to obtain a conflict-free schedule at 
least. Let us note the chromosome size for a 64-node hypercube and AAS was 
8192 genes with dozens of their possible values!  

We will now present the optimal schedules only for the 8-node hypercube 
because of being limited by their size and complexity. Table  8.2 presents the 
optimal schedules for OAS and OAB. OAS communication can theoretically be 
scheduled in three time steps (slots), which has been proven by UMDA rein-
venting the conflict-free sequential tree (ST)  [147]. Looking at the OAB sched-
ule, a modified double tree can be found in this schedule. The message is sent to 
three nodes at different distances in the fist step. Consequently, node no. 4 helps 
the root with the broadcast. In an original double tree algorithm  [128], the mes-
sage is sent to the furthermost node (here node no. 7 at the distance of 3). In our 
case, the root of the second tree is chosen in the distance of 2. 

The optimal AAS schedule cannot be executed in less than four communi-
cation steps (see Table  8.3). In each step, every node can distribute up to three 
distinct messages (d = 3). In spite of studying this schedule carefully, we have 
not found any system or regularity of the schedule. We can only note the sched-
ule is formed by pairwise communications that do not cause any conflict.  

In contrast, the AAB schedule illustrated in Table  8.4 embodies a strongly 
regular structure. The communication is guided by a controlled flood  [203]. The 
schedule is formed by neighbor-to-neighbor transfers; each distributing the 
message only to uniformed adjacent nodes. 
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Table  8.1. Time complexity of the evolved schedules for four basic CC patterns on all-
port hypercubes. 

Topology OAS AAS OAB AAB 

Hypercube-8 3 4 2 3 
Hypercube-16 4 9 2 4 
Hypercube-32 7 16 2 7 
Hypercube-64 11 35/32 3 11 
Hypercube-128 19 - 3 - 

Hypercube-256 32 - 4/3 - 

 

Table  8.2. Optimal OAS and OAB schedules on the 8-node all-port hypercube. 

OAS  OAB 

step from→to path  step from (origin)→to path 

0→4 0,4      0→1 0,1 
0→5 0,1,5      0→3 0,2,3 1 
0→6 0,2,6  

1 
    0→4 0,4 

0→1 0,1      0→2 0,2 
2 

0→2 0,2      0→5 0,1,5 
0→3 0,1,3  4 (0)→6 4,6 

3 
0→7 0,4,5,7  

2 

4 (0)→7 4,5,7 

 

Table  8.3. Optimal AAS schedule on the 8-node all-port hypercube. 

time step/from → to (path) 
source 

step 1 step 2 step 3 step 4 

0→3 (0,2,3) 0→1 (0,1) 0→2 (0,2) 0→6 (0,2,6) 
 0→5 (0,4,5) 0-4 (0,4) 0→7 (0,4,5,7) 0 
    
1→0 (1,0) 1→6 (1,5,7,6) 1→2 (1,3,2) 1→3 (1,3) 
 1→7 (1,3,7) 1→4 (1,5,4) 1→5 (1,5) 1 
    
2→4 (2,0,4) 2→0 (2,0) 2→5 (2,6,7,5) 2→1 (2,0,1) 
 2→6 (2,6) 2→7 (2,3,7) 2→3 (2,3) 2 
    
3→4 (3,7,6,4) 3→0 (3,1,0)  3→1 (3,1) 
3→5 (3,1,5)   3→2 (3,2) 3 
3→6 (3,2,6)   3→7 (3,7) 
4→1 (4,0,1) 4→3 (4,0,2,3) 4→5 (4,5) 4→0 (4,0) 
4→7 (4,5,7)  4→6 (4,6) 4→2 (4,6,2) 4 
    
5→3 (5,1,3) 5→2 (5,4,6,2) 5→1 (5,1) 5→0 (5,1,0) 
5→6 (5,4,6)  5→7 (5,7) 5→4 (5,4) 5 
    
6→2 (6,2) 6→4 (6,4) 6→0 (6,2,0) 6→5 (6,7,5) 
6→3 (6,7,3) 6→7 (6,7) 6→1 (6,4,0,1)  6 
    
7→5 (7,5) 7→1 (7,5,1) 7→0 (7,3,1,0) 7→3 (7,3) 
 7→2 (7,3,2) 7→6 (7,6) 7→4 (7,6,4) 7 
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Table  8.4. Optimal AAB schedule on the 8-node all-port hypercube. 

time step/from → to (path) 
source 

step 1 step 2 step 3 

0→1 (0,1) 1→3 (1,3) 6→7 (6,7) 
0→2 (0,2) 4→5 (4,5)  0 
0→4 (0,4) 4→6 (4,6)  
1→0 (1,0) 3→2 (3,2) 4→6 (4,6) 
1→3 (1,3) 5→4 (5,4)  

1 
 

1→5 (1,5) 5→7 (5,7)  
2→0 (2,0) 0→1 (0,1) 7→5 (7,5) 
2→3 (2,3) 0→4 (0,4)  2 
2→6 (2,6) 3→7 (3,7)  
3→1 (3,1) 1→0 (1,0) 0→4 (0,4) 
3→2 (3,2) 1→5 (1,5)  3 
3→7 (3,7) 2→6 (2,6)  
4→0 (4,0) 5→1 (5,1) 7→3 (7,3) 
4→5 (4,5) 0→2 (0,2)  4 
4→6 (4,6) 6→7 (6,7)  
5→1 (5,1) 4→0 (4,0) 3→2 (3,2) 
5→4 (5,4) 7→3 (7,3)  5 
5→7 (5,7) 7→6 (7,6)  
6→2 (6,2) 2→0 (2,0) 5→1 (5,1) 
6→4 (6,4) 2→3 (2,3)  6 
6→7 (6,7) 7→5 (7,5)  
7→3 (7,3) 3→1 (3,1) 2→0 (2,0) 
7→5 (7,5) 6→2 (6,2)  7 
7→6 (7,6) 6→4 (6,4)  

8.1.2 Rings  

The bidirectional ring topology, though very simple, is not free from the routing 
deadlock because the channel dependency graph is not acyclic  [47]. This can be 
seen on a unidirectional as well as a bidirectional ring. The problem can be 
solved by the introduction of virtual channels  [47] and by implementing rules on 
channel usage. We assume that these rules are adhered to automatically in all 
our CC schedules and thus the deadlock is avoided. 

Table  8.5 summarizes the upper bounds τCC(G) reached by UMDA on uni-
directional and bidirectional rings of sizes 8, 16, 24 and 32 nodes. From the 
table, the lower bounds τCC(G) and the upper bounds τCC(G) are evident to be 
mostly identical. The only exception is AAS communication in larger networks, 
where the lower bounds are apparently too tight. In fact, the obtained numerical 
results have led us to improve of theoretical lower bounds for AAS communi-
cation. The lower bound for AAS and WH networks in wide use has been for-
mulated in  [134],  [39] as: 
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Table  8.5. Time complexity of the evolved schedules on rings. 

Topology OAS AAS OAB AAB 

Ring-bi-8 4 8 2 4 
Ring-bi-16 8 34/32 3 8 
Ring-bi-24 12 78/72 4/3 12 
Ring-bi-32 16 140/128 4 16 
Ring-uni-8 7 28 3 7 
Ring-uni-16 15 128/120 4 15 
Ring-uni-24 23 300/276 5 23 
Ring-uni-32 31 550/496 5 31 

 
This bound have been improved to this form: 
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For orthogonal topologies such as hypercubes, the correction is not needed 
as ∆=0 and two expressions in which the maximum is sought for are equivalent. 
However, for other networks the inclusion of the correction is essential and may 
change the bound dramatically (e.g. for the 8-node unidirectional ring the lower 
bound has changed from 16 to 28 steps!), see section  3.4.2. 

OAS algorithm spreading customized messages to every partner is trivial 
because the source has to inject one (d = 1) or two (d = 2) messages at a time 
into the ring and the lower bound clearly applies. A sample OAS schedule on 
a unidirectional 8-node ring is illustrated in Table  8.6. The optimal OAB algo-
rithm reaching the lower bound recursively doubles (k = 1) or triples (k = 2) the 
number of informed nodes in each step. The ring is split into two halves (k = 1) 
or three thirds (k = 2) and then the source sends a message in its image in the 
other half or images in other thirds. The same schedule has been reinvented by 
UMDA exactly for the unidirectional 8-node ring, see Table  8.6. 

The AAS communication can be implemented as (P–1) permutations, 
deadlock-free with virtual channels, but not without link congestions (conflicts). 
Communication time thus cannot be estimated. We have therefore tried to find 
an AAS communication schedule organized into congestion-free steps with the 
usage of UMDA. Though in most cases the optimal solution has not been found, 
even a suboptimal solution could prevent contentions and in addition improve 
the performance of a parallel algorithm. 

There is a sample solution of an optimal AAS schedule for the 8-node bidi-
rectional ring shown in Table  8.7. For simplicity the path descriptions were 
omitted. The number of steps reaches the lower bound of 8 steps and 56 mes-
sages get distributed. In each step some nodes use one or all (two) their ports 
while other nodes are idle. For example, in step 1, node no. 4 is communicating 
simultaneously on both external channels; nodes no. 0, 2, 3 and 7 are communi-
cating on a single channel; and nodes no. 1, 5 and 6 are idle. It is important to 
note that all 16 channels keep busy in all the steps. 
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Table  8.6. Optimal OAS and OAB schedules on the 8-node unidirectional ring. 

OAS  OAB 

step from→to path  step from (origin)→to path 

1 0→4 0,1,2,3,4  1 0→4 0,1,2,3,4 
2 0→3 0,1,2,3  0→2 0,31,2 
3 0→6 0,1,2,3,4,5,6  

2 
4 (0)→6 4,5,6 

4 0→5 0,1,2,3,4,5  0→1 0,1 
5 0→7 0,1,2,3,4,5,6,7  2 (0)→3 2,3 
6 0→2 0,1,2  4 (0)→5 4,5 
7 0→1 0,1  

3 

6 (0)→7 6,7 

 

Table  8.7. Optimal AAS and AAB schedules on the 8-node bidirectional all-port ring. 

AAS AAB 

from → to from → to 

source step 

1 

step 

2 

step 

3 

step 

4 

step 

5 

step 

6 

step 

7 

step 

8 

source step 

1 

step 

2 

step 

3 

step 

4 

0→4 0→3 0→1  0→2  0→7  0→1 1→2 2→3 5→4 0 
 0→5   0→6    

0 
0→7 7→6 6→5  

 1→0 1→2 1→6  1→3  1→4 1→0 2→3 3→4 6→5 
1 

  1→5     1→7 
1 

1→2 0→7 7→6  
2→0 2→1 2→6 2→3 2→5 2→7 2→4  2→1 1→0 4→5 5→6 

2 
        

2 
2→3 3→4 0→7  

3→4 3→5  3→1  3→2 3→0  3→2 2→1 1→0 6→7 
3 

   3→6  3→7   
3 

3→4 4→5 5→6  
4→2    4→0  4→3 4→1 4→3 3→2 2→1 1→0 

4 
4→7      4→5 4→6 

4 
4→5 5→6 6→7  

 5→2 5→1  5→0 5→3 5→7  5→4 4→3 7→0 0→1 
5 

 5→6   5→4    
5 

5→6 6→7 3→2  
 6→0 6→7 6→2 6→5  6→4 6→1 6→5 7→0 0→1 1→2 

6 
   6→3     

6 
6→7 5→4 4→3  

7→3  7→0   7→1 7→2 7→4 7→0 0→1 1→2 4→3 
7 

     7→5 7→6  

 

7 
7→6 6→5 5→4  

 

 

AAB communication around a unidirectional ring has also a straightforward 
solution: all processors just send their messages in one direction around the ring 
and the communication proceeds by pipelining in P–1 steps. All the channels 
are used in all steps. Regarding a bidirectional ring, every node sends its mes-
sages into two branches of a primitive broadcast tree and they do one hop in 
each step. It is easily seen that these broadcast trees of all the nodes are time-arc 
disjoint (i.e. no channel is used more than once in a single step)  [18]. Thus the 
lower bound can again be reached. In this case, UMDA has not been able to 
reinvent this algorithm (see Table  8.7).  



 8.1 Common Interconnection Topologies 119 

8.1.3 Meshes and Tori 

Meshes and tori are also very popular topologies. Meshes can be easily manu-
factured on a chip due to local interconnections only, however they have other 
disadvantages. The main one is a lack of node symmetry and regularity as the 
node degree is not constant. While the corner nodes can only use 2 external 
links, the nodes on the boundary are equipped with 3 links and internal nodes 
even with 4 links. Therefore, one-to-all schedules for all-port meshes (k = d) 
will need more or less steps, respectively. This is a big difference in comparison 
to node symmetric tori networks containing wrap-around links.  

As far as 2D meshes are concerned, the dimension-ordered deterministic 
routing (first in x, then in y dimension) on meshes and tori is known to be dead-
lock-free  [131]. A certain degree of adaptivness can be obtained by more re-
laxed routing, such as North-last or West-first strategy  [64]. 

Table  8.8 confronts the upper bounds achieved by evolution with the mathe-
matically derived ones. There are several square instances of meshes and tori 
with sizes from 3×3 nodes up to 10×10 nodes in the table. Two cases of rectan-
gular topologies with dimensions 3×4 and 4×8 have also been investigated. 
Three different values for OAB and OAS are provided in the case of meshes, re-
flecting three chosen root node positions (left corner, the centre of the upper 
edge, the centre of the mesh).  

During the search for the optimum schedule, it may be necessary to include 
not only multiple minimum paths, but sometimes even non-minimum ones! 
Figure  8.1 shows one example - OAS communication in the mesh topology. In 
order to reach the minimum number of communication steps (the lower bound is 
5 steps), 3 messages must be injected into a network in every step by the source 
node. The last step requires non-minimum routing. 

OAB in 1-port 2D-meshes is a relatively easy task: recursive doubling (as 
on the ring) is done first in x dimension and as soon as all nodes in row x are 
informed, OAB in all columns is done simultaneously, again by recursive dou-
bling (see Figure  4.8). On the other hand, the development of an optimal OAB 
algorithm in all-port 2D-meshes is difficult because the lower bound is pretty 
tight. In order to achieve it, we need an algorithm in which every node, once 
informed, must find in every subsequent step four uninformed nodes and deliver 
them the message, so that globally all used paths are link-disjoined. Since 
meshes, unlike tori, are not node-symmetric, there are no elegant algorithms for 
them. Here again we have to resort to evolutionary optimization that have 
produced successful optimal schedules up to 10×10 mesh and 7×7 torus. 
Surveying the upper bounds presented in Table  8.8, we learn that OAS and 
OAB do not pose a challenge for UMDA. Therefore, the evolution is able to 
produce novel, maybe up to now unknown, schedules.  

The similar situation is in the design of TADT trees useful for OAS and 
AAB communications. They are known for square tori, but in the other cases 
their construction is difficult due to the lack of symmetry. On the contrary, the 
evolution was very successful here. Meshes up to 8×8 and tori up to 6×6 nodes 
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Table  8.8. Time complexity of the evolved schedules for 2D meshes. 

Topology OAS AAS OAB AAB 

Mesh-3x3 4,3,2 6 2,2,2 4 
Mesh-3x4 6,4,3 12 3,2,2 6 
Mesh-4x4 8,6,4 16 3,2,2 8 
Mesh-5x5 12,8,6 32 3,3,3, 12 
Mesh-4x8 16,11,8 64 3,3,3 16 
Mesh-6x6 18,12,9 56/54 4,3,3 18 
Mesh-7x7 24,16,12 - 4,4,3 24 
Mesh-8x8 32,22,16 - 4,4,3 32 
Mesh-9x9 40,27,20 - 4,4,4 - 

Mesh-10x10 50,33,25 - 5,5,5 - 

Torus-3x3 2 4 2 3 
Torus-3x4 3 6 2 3 
Torus-4x4 4 9/8 2 4 
Torus-5x5 6 16/15 2 6 
Torus-4x8 8 33/32 3 11/8 
Torus-6x6 9 30/27 3 9 
Torus-7x7 12 - 3 13/12 
Torus-8x8 16 - 3 18/16 
Torus-9x9 20 - 4/3 - 

Torus-10x10 25 - 4/3 - 

 

 

 

Figure  8.1. Optimal OAS schedule exploiting a non-minimal routing in the fifth step. 
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were solved without any loss of performance in the schedules. In the case of 7×7 
mesh, only one step worse solution was obtained. Moreover, UMDA could 
elegantly solve rectangular topologies, like mesh-4×8, too. 

Finally, the conflict-free AAS schedules are not known even for square tori. 
AAS schedules were hard nuts to crack, especially in cases of tori. The optimal 
schedules were designed up to 4×8 (32 node) mesh and only up to 4×3 tori. 
Rectangular meshes and tori needed more relaxed lower bounds, because due to 
different x and y dimensions not all-port could be effectively used.  

Many of evolved schedules embodied a one step higher time complexity. 
The evolution on very large topologies has not been done because the execution 
time of evolution could simply exceed several days. 

Due to the exceeding complexity of the evolved schedules we will not show 
all-to-all schedules but only one interesting OAB example, see Table  8.9. The 
root (node no. 0) found two partners in the first step, nodes no. 6 and 13. These 
nodes located other partners and distributed the message to the other seven 
nodes in the second steps. Finally, all remaining nodes were informed in the last 
step. 

8.2 Optimal Diameter-Degree Topologies  

The evolution has been also applied to several optimal diameter-degree topolo-
gies that either already found the commercial application (such as scalable 
Kautz networks,  [188]) or are potential candidates for NoCs (like non-scalable 
Petersen (P = 10)  [88], Heawood (P = 14)  [220] or Levi (P = 30)  [121]) net-
works. The potential of the ODD networks has been discussed in section  4.1.2 
briefly. 

As far as this author knows, performance of collective communications on 
such networks has not been studied as of yet. The reason may be that until re-
cently  [188] these networks have not been used in commercial systems. Conse-
quently, any designed schedule improves the performance of CCs and pushes 
our knowledge in this area a leap forward.  

The results of the UMDA optimization tool are summarized in Table  8.10. 
Two integers in one cell separated by a slash indicate that the lower bound 
(a smaller integer) has not been reached whereas a single integer represents both 
the lower and the upper identical bounds reached by an EA. An asterisk (*) indi-
cates the fact that a non-minimum routing had to be used; otherwise the mini-
mum routing was used everywhere else. From the table below it can be con-
cluded that except for the AAS pattern, the lower bounds have been reached, 
and therefore cannot be improved any more. However, the upper bounds of 
AAS are fairly close to the optimum. This is good news for many NoC design-
ers because: (1) ODD networks enable us to make highly compact systems, and 
(2) we can make them pretty fast now.  

In order to show an example of the optimal schedule, the unidirectional ori-
ented Kautz-12 network has been chosen. The resulting schedules are presented
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Table  8.9. Optimal OAB schedule on the 4×4 mesh; node 0 which is situated in the left 
corner is the root.  

step 0 step 1 step 2 

from→to path from→to path from→to path 

0→6 0,1,2,6 0→9 0,1,5,9 0→1 0,1 
0→13 0,4,8,12,13 0→12 0,4,8,12 6→7 6,7 
  6→10 6,10 10→15 10,11,15 
  6→11 6,7,11 11→3 11,7,3 
  13→2 13,9,10,6,2 13→8 13,12,8 
  13→4 13,12,8,4 14→5 14,13,9,5 
  13→14 13,14   

 

Table  8.10. Time complexity of the evolved schedules for ODD networks. 

Topology OAS AAS OAB AAB 

Petersen-10 3 5 2 3 
Kautz-12 4 7 2 4 
Heawood-14 5 10/9 2 5 
Levi-30 10 31/28 3 10 
Kautz-36 12* 34/31 3 12 

 
only for the most complex all-to-all communication patterns in Table  8.11. 
Some empty slots in the AAS table show that not all links are used in every step 
of AAS.  

The broadcasting sub-trees have been chosen to illustrate the AAB sched-
ule. There are three columns (sub-trees) in the AAB table, because all nodes are 
equipped by three output channels, hence they can distribute three messages 
simultaneously (via nodes no. 3, 4 and 5 in the case of source no. 0). The nota-
tions 0-3-1 and 0-3-2 denote the following: the message was delivered to node 
no. 3 in the first communication steps. Then, the message was received by nodes 
no. 1 and 2 from node no. 3 in the second communication step. Another exam-
ple, the notation 0-4-x-x-9 denotes the following statements: Node no. 4 was 
informed by node no. 0 in the first step; then the message did not move two 
steps; and finally, the message was delivered to node no. 9 by node no. 4 in the 
fourth communication step.  

Let us note that the presented solutions are not unique, several solutions 
have been found for both AAS and AAB patterns. 

8.3 Novel Network Architectures 

This section explores the quality of evolved CC schedules for some novel inter-
connection networks. First, the small K-ring  [112] and Midimew topologies 
with 8 nodes (see section  4.1.3) were examined. This section is mainly targeted 
to spidergon  [102] (also called octagon) and AMP topology  [28]. Spidergon is 
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Table  8.11. Optimal AAS schedule in 7 steps and AAB schedule in 4 steps on the ori-
ented Kautz-12 network. 

AAS AAB 

from→to 
three subtrees broadcasting 

source message source 

step 1 step 2 step 3 step 4 step 5 step 6 step 7 

source 

tree 1 tree 2 tree 3 

0→9 0→2 0→3 0→6 0→1  0→8 0-3-1 0-4-x-x-9 0-5-x-6 
 0→4 0→7 0→B    0-3-2 0-4-x-x-A 0-5-x-x-7 0 
 0→5 0→A     

0 
 0-4-x-x-B 0-5-x-x-8 

1→7 1→2 1→0 1→3 1→6 1→4  1-6-3 1-8-A 1-x-7-0 
1→9 1→A 1→5   1→B  1-6-4 1-8-x-9 1-x-7-x-2 1 

  1→8     
1 

1-6-x-x-5 1-8-x-B  
2→7 2→1 2→4 2→0 2→5 2→6  2-9-8 2-A-5 2-B-1 

 2→3 2→9  2→B 2→A  2-9-x-6 2-A-x-4 2-B-x-0 2 
 2→8      

2 
2-9-x-7 2-A-x-x-3    

 3→1 3→0 3→8 3→5 3→2 3→6 3-0-4 3-1-8 3-2-9 
  3→B  3→9 3→4 3→A 3-0-5 3-1-x-6 3-2-A 3 
     3→7  

3 
 3-1-x-7 3-2-B 

4→A 4→0 4→1  4→3 4→2 4→7 4-9-6 4-A-x-3 4-B-x-x-0 
 4→6 4→8  4→B 4→5  4-9-7 4-A-x-x-5 4-B-x-x-1 4 
     4→9  

4 
4-9-x-8  4-B-x-x-2 

5→4 5→0 5→A 5→7 5→2 5→6 5→1 5-7-2 5-x-6-x-3 5-x-8-A 
5→B   5→8  5→9 5→3 5-7-x-x-0 5-x-6-x-4 5-x-8-x-9 5 

       
5 

5-7-x-x-1  5-x-8-x-B 
6→2 6→0 6→1 6→A 6→8 6→3 6→B 6-3-x-0 6-4-9 6-x-5-7 
6→5 6→4   6→9 6→7  6-3-x-1 6-4-x-A 6-x-5-8 6 

       
6 

6-3-x-2 6-4-x-B   
7→0 7→6  7→3 7→8 7→5 7→2 7-0-x-4 7-2-x-9 7-x-1-x-6 
7→1   7→9  7→B 7→4 7-0-x-5 7-2-x-A 7-x-1-x-8 7 
7→A       

 

7 
7-0-x-x-3 7-2-x-B  

 8→2 8→9 8→1 8→4 8→3 8→0  8-9-x-x-6 8-A-3-x-0 8-x-B-1 
  8→B 8→7   8→5  8-9-x-x-7 8-A-x-5 8-x-B-2 8 
   8→A   8→6  

8 
 8-A-x-x-4  

9→6 9→7 9→2 9→5 9→0 9→1   9-6-x-3 9-7-0 9-8-x-x-A 
9→A  9→4 9→8 9→3    9-6-x-4 9-7-x-1  9 

    9→B    
9 

9-6-x-5 9-7-x-2-B  
A→1 A→8 A→3 A→2  A→4 A→0  A-3-0 A-4-B A-5-7 
A→7  A→6 A→5     A-3-x-x-1 A-4-x-9-8 A-5-x-x-6 A 
A→B   A→9     

A 
A-3-x-x-2     

B→5  B→0 B→A B→4 B→1 B→8  B-1-6 B-x-0-3 B-x-2-x-9 
B→6  B→2  B→7 B→3 B→9  B-1-x-8 B-x-0-x-4 B-x-2-x-A B 

        
B 

B-1-x-x-7 B-x-0-x-5  

 
 
also a novel on-chip network architecture suitable for the aggressive on-chip 
communication demands of SoCs in several application domains and also for 
networking SoCs  [102] (see Figure  4.4a). As a ring, it is also not free from 
deadlock and virtual channels have to be used. The AMP topology is a result of 
genetic graph optimization  [28]. A Minimum Path (AMP)  [29] configuration is 
constructed so that the network diameter and the average inter-node distance is 
minimized. Let us note that AMP is an asymmetric topology. 
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Table  8.12 compares the time complexity of evolved schedules for particu-
lar communication patterns. From the table, UMDA can be concluded to have 
been able to design optimal schedules for both OAS and OAB in all instances of 
the proposed topologies. The obtained schedules for AAB on spidergon also 
reached the lower bounds. In the case of AAS, UMDA tried to approach the 
lower bounds as close as possible. In some cases it was verified that the differ-
ence between lower and upper (reached) bounds was due to the minimum 
routing strategy used in our approach. Inclusion of the non-minimum routing 
would have led to an enormous increase of possible source-destination paths 
and, therefore, was not explored. However, in some small networks the analysis 
of the last remaining conflict in fitness function revealed that it could have been 
eliminated if non-minimum routing had been used.  

Collective communications on the generic 8-node symmetric spidergon 
network are easy. One-to-all communications are done the same way for every 
source node. OAS can be clearly done in three steps and OAB needs two steps. 
In order to implement AAB, we have to use such a broadcasting tree that is 
time-arc-disjoint (TADT) and can be used by all nodes simultaneously without 
creating conflict. The same tree as well as for store-and-forward switching can 
be used, restricting communication in each step to only between neighbors. The 
most complex AAS communication is not performed the same way by all nodes 
- there is no analogy to the TADT. The optimum AAS schedule is given in 
Table  8.13. 

After checking of AAB results on AMP topology, it could be concluded that 
UMDA does not offer very good results (e.g. two steps worse schedule for 23 
nodes). This problem has been hardly studied. It originates in the asymmetrical 
nature of AMP where there are some bottlenecks and hotspots that make it im-
possible to design an optimal schedule. Consequently, the lower bound cannot 
ever be found. Let us note that this can be a problem of more topologies, not 
only AMP. The theoretical lower bounds tell us only the lowest possible time 
complexity of the schedule for a particular CC and topology, but they do not tell 
us anything about whether or not it is possible to reach them! On the other hand, 
UMDA surprisingly designed optimal AAS schedules for all AMP instances.  

Since AMP is an asymmetrical network, no systematic approach to schedule 
CC exists so the best ever known schedules are presented. The optimal sched-
ules for AAB and AAS have been shown in Figure  3.7 and Figure  3.9 in section 
 3.4.1 and  3.4.2, respectively. 

8.4 Multistage Topologies 

This section is oriented to multistage interconnection networks, also called 
MINs  [195],  [108]. MINs are indirect networks that means the interconnection 
networks are composed of several processing nodes (processors) and intermedi-
ate switches. More formally, MIN is a succession of stages of switching ele-
ments (SEs) and interconnection wires connecting P processing (terminal) 
nodes. SEs in the most general architecture are themselves interconnection
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Table  8.12. Time complexity of the evolved schedules for some novel networks. 

Topology OAS AAS OAB AAB 

K-Ring-8 2 3 2 2 
Midimew-8 2 3 2 2 
Spidergon-6 2 3 2 2 
Spidergon-8 3 4 2 3 
Spidergon-12 4 9 2 4 
Spidergon-16 5 17/16 2 5 
Spidergon-20 7 26/25 3 7 
Spidergon-24 8 37/36 3 8 
Spidergon-28 9 51/49 3 9 
Spidergon-32 11 70/64 3 11 
Spidergon-36 12 91/81 3 12 
Spidergon-64 21 - 3 24 
AMP-8 2 3 2 2 
AMP-23 6 14 2 8/6 
AMP-32 8 22 3 8 
AMP-42 11 31 3 14/11 
AMP-53 13 46 3 14/13 

 

Table  8.13. Optimal AAS schedule on the 8-node all-port spidergon. 

time step/from → to (path) 
source 

step 1 step 2 step 3 step 4 

0→3 (0,7,3) 0→2 (0,1,2) 0→1 (0,1) 0→4 (0,4) 
 0→7 (0,7)  0→5 (0,1,5) 0 
   0→6 (0,7,6) 
1→4 (1,0,4) 1→0 (1,0) 1→2 (1,2) 1→3 (1,2,3) 
1→6 (1,5,6)  1→5 (1,5)  1 
  1→7 (1,0,7)  
2→1 (2,1) 2→5 (2,6,5) 2→4 (2,3,4) 2→0 (2,1,0) 
2→3 (2,3)  2→6 (2,6)  2 
2→7 (2,6,7)    
3→0 (3,4,0) 3→1 (3,2,1) 3→2 (3,2) 3→5 (3,4,5) 
 3→4 (3,4)  3→6 (3,2,6) 3 
   3→7 (3,7) 
4→2 (4,3,2) 4→1 (4,5,1) 4→0 (4,0) 4→3 (4,3) 
4→5 (4,5) 4→7 (4,3,7) 4→6 (4,5,6)  4 
    
5→2 (5,1,2) 5→4 (5,4) 5→3 (5,4,3) 5→0 (5,4,0) 
 5→7 (5,6,7)  5→1 (5,1) 5 
   5→6 (5,6) 
6→4 (6,5,4) 6→3 (6,2,3) 6→0 (6,7,0) 6→2 (6,2) 
  6→1 (6,2,1) 6→5 (6,5) 6 
   6→7 (6,7) 
7→1 (7,0,1) 7→4 (7,0,4) 7→5 (7,6,5) 7→0 (7,0) 
7→2 (7,6,2) 7→3 (7,3)   7 
 7→6 (7,6)   
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networks of small sizes. If P is the number of terminal nodes (the MIN’s degree) 
and k is the SE’s degree (the number of input/output ports), the minimum num-
ber of switches in a stage must be P/k. 

The interconnection pattern or patterns between MIN’s stages can be repre-
sented mathematically by a set of functions. Examples of such topologies cover 
an unidirectional Omega  [119] (a perfect-shuffle permutation) and Butterfly 
 [102] (butterfly permutation) networks. Figure  8.2 presents the 8-node Omega 
and Butterfly networks. Terminal nodes are shown in green and switching ele-
ments in red boxes. In both cases, eight input-output ports are interconnected by 
three stages of 2×2 switches. It is easy to see that a single pass through the three 
stages allows any input port to reach any output port.  

The main disadvantage of permutation-based MINs is their zero fault-toler-
ance and high blocking probability. In order to alleviate the bottleneck consist-
ing in only a single path between an input-output pair, the multipath Clos 
network has been proposed  [210]. Here, each network input-output pair can be 
connected by a path via an arbitrary middle stage. The basic version of a Clos 
network consists of three SE stages, as shown in Figure  8.3a. Clos networks of 
more than three stages emerge by substituting again the middle stage SEs by 
Clos network. 

The MINs described so far have unidirectional network links, but bidirec-
tional forms are easily derived as two MINs back-to-back, folded on one another 
(see Figure  8.3b). The overlapping unidirectional links run in different direc-
tions, thus forming bidirectional links, and the overlapping switches merge into 
a single switch with twice the ports (i.e. 4×4 switch). A representative of this 
class is a Fat-tree  [120] topology which originates in the two folded Butterfly 
network. Unlike traditional trees in computer science, fat trees resemble real 
trees because they get thicker near the root.  

Let us carefully look at investigated MINs. There are two different types of 
nodes in these networks. We have to realize that SE nodes can only pass on the 
message from their input to output and are not able to consume, create or mod-
ify the message. Only terminal nodes can do this. The situation is similar to 
many-to-many communication patterns, when only terminal nodes (the green 
ones in Figure  8.3) are involved in communication so that the chromosomes 
include only terminal nodes (see Figure  6.4)  

The UMDA has been applied to several MINs that already found the com-
mercial application such as Omega, Butterfly and Clos networks. The bidirec-
tional MINs were represented by binary and fat trees where terminal nodes were 
placed only in leaves. This study was completed by a full binary tree, where 
every node represents one processing node. 

First, we verified the ability of the UMDA to discover optimal communica-
tion schedules for unidirectional MINs (see Table  8.14). Two integers in one 
cell separated by a slash indicate that the lower bound (a smaller integer) has not 
been reached, whereas a single integer represents both the lower and the upper 
identical bounds reached by the UMDA. Obtained schedules for 8-node Omega 
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             (a) Omega network           (b) Butterfly network 

Figure  8.2. Illustration of the 8-node Omega and Butterfly networks. 

 

  
 (a) Clos network   

 

        
(b) unfolded Butterfly network (Fat tree) 

Figure  8.3. General form of the Clos network and Fat tree topology.

and Butterfly have met the theoretical lower bound for all classes of collective 
communications, and thus cannot be improved anymore. The limit of simul-
taneously executable transfers was reached by 12-node and 16-node topologies. 
For the successful accomplishment of all-to-all communications, UMDA had to 
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add one additional communication step to the theoretically derived value. The 
Clos network embodies the same problem leading also in one step addition. 

Second, we investigated the ability of the proposed UMDA to discover op-
timal communication schedules for bidirectional MINs represented by the bi-
nary (B-Tree), fat (Fat-Tree), and full binary tree (Full-Tree). Binary trees 
represent suitable interconnection networks for chip multiprocessor because 
they need only a very simple link arrangement on a 2D silicon chip. However, 
as we can see in Table  8.14, their performance rapidly decreases with the num-
ber of connected processing nodes. More importantly, the proposed UMDA is 
able to find optimal communication schedules for most tested binary trees and 
investigated communication patterns. As can be seen from Table  8.14, the lower 
bounds for the AAB pattern are too tight. Consequently, it has not been possible 
to find optimal solutions. Moreover, there is no certainty that it will be even 
possible to reach them because the controlled flood does not work for multistage 
networks.  

The fat tree topology eliminates the bottleneck of the narrowing bandwidth 
towards the root. The height of the tree remains the same, but the number of 
bidirectional links proportionally increases. In this case, UMDA created optimal 
schedules for fat trees with 4, 8, 16, and 32 leaves, except for AAS on the 32-
leave fat tree. Here, only suboptimal solutions with one step worse time com-
plexity were searched.  

Finally, the experimental work was completed with the full binary tree, 
where all switching elements integrate a processing unit too. Since the full bi-
nary tree is an asymmetrical topology, several different situations depending on 
a level of a source node (from a leave to the root) have been investigated. In all 
cases, the theoretical lower bounds were reached. 

An example of a designed optimal AAS schedule for the 8-leave fat-tree to-
pology is shown in Table  8.15. There is a complete path from source to destina-
tion via a turning node (sub-tree root) in every cell. The first row in a cell 
represents the movement up from the source to the sub-tree root. The second 
row represents the movement down from the sub-tree root to the destination 
node. Let us note that since interconnection links are bidirectional, the messages 
do not have to go through all intermediate stages. Finally, it should be men-
tioned that the presented communication schedule is not unique: several optimal 
schedules can be found for a given CC.  

8.5 Fat Topologies 

One way on how to increase the number of interconnected terminal nodes and 
not make the network more complex is to use a concept of fat topologies. The 
idea is very simple: all terminal nodes are replaced by multiprocessor nodes, so 
that more than one CPU core is connected by the shared router to the intercon-
nection network. For instance, we can divide 12 CPU cores in spidergon 
network among 12, 6 or 4 multiprocessor nodes with 1, 2 or 3 CPU per a node, 
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Table  8.14. Time complexity of the evolved schedules for unidirectional and bidirec-
tional MINs. 

Topology OAS AAS OAB AAB 

Omega-8 7 7 3 8 
Omega-16 15 16/15 4 16/15 
Butterfly-8 7 7 3 7 
Butterfly-16 15 16/15 4 16/15 
Clos-8 11 12/11 4 12/11 
Clos-16 15 16/15 4 16/15 
B-Tree-4 3 4 2 3 
B-Tree-8 7 16 3 8/7 
B-Tree-16 15 64 4 20/15 
B-Tree-32 31 256 5 64/31 
Fat-Tree-4 3 3 2 3 
Fat-Tree-8 7 7 3 7 
Fat-Tree-16 15 15 4 15 
Fat-Tree-32 31 32/31 5 31 
Full-Tree-7 6,4,3 12 3,2,2 7 
Full-Tree-15 14,12,8,7 56 3,3,3,3 15 
Full-Tree-31 30,28,24,16,15 240 4,4,4,4,4 31 
Full-Tree-63 62,60,56,50,48,32 992 5,5,5,5,5,5 64 

 

Table  8.15. Optimal AAS schedule on the 8-node fat tree. 

path [from, via, turning point (sub-tree root), 

via, to] source 

step 1 step 2 step 3 step 4 step 5 step 6 step 7 

0 
0,A,F 
B,2 

0,A,E,I 
G, D,7 

0,A,F,L 
H,C,5 

7,D,G,K 
E,B,3 

0,A,F,L 
H,D,6 

0,A,E 
B,3 

0,A 
1 

1 
1,A,E,K 
G,C,5 

1,A,F 
B,3 

1,A,E,K 
G,D,6 

1,A,E,K 
G,D,7 

1,A,E,I 
G,C,4 

1,A 
0 

1,A,E 
B,2 

2 
2,B,F,L 
H,D,6 

2,B,E,K 
G,C,5 

2,B,E,I 
G,C,4 

2,B,E 
A,1 

2,B 
3 

2,B,F,L 
H,D,7 

2,B,E 
A,0 

3 
3,B,E,I 
G,D,7 

3,B,F,J 
H,D,6 

3,B,F 
A,1 

3,B,F 
A,0 

3,B 
2 

3,B,E,I 
G,C,5 

3,B,F,L 
H,C,4 

4 
4,C,G,K 

E,B,3 
4,C,H,J 
F,A,1 

4,C,H 
D,7 

4,C,H 
D,6 

4,C,H,L 
F,A,0 

4,C,H,J 
F,B,2 

4,C 
5 

5 
5,C 
4 

5,C,G,K 
E,B,2 

5,C,G,I 
E,A,0 

5,C,G,I 
E,B,3 

5,C,G,I 
E,A,1 

5,C,G 
D,6 

5,C,G 
D,7 

6 
6,D,H,J 
F,A,1 

6,D,G,I 
E,A,0 

6,D,H,L 
F,B,2 

6,D,G 
C,5 

6,D 
7 

6,D,H 
C,4 

6,D,H,L 
F,B,3 

7 
7,D,G,I 
E,A,0 

7,D,H 
C,4 

7,D,G,K 
E,B,3 

7,D,H,L 
F,B,2 

7,D,H 
C,5 

7,D,G,K 
E,A,1 

7,D 
6 

 
respectively. In this case, only a one-port model is usually assumed. As micro-
electronic technology is turning to multicore and multi-threaded processors for 
more performance and less power consumption, networks interconnecting such 
fat nodes are of interest (e.g. fat hypercube has been recently used in SGI Origin 
3000 machine  [185]). Also, Opteron processors produced by AMD are equipped 
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by HyperTransport links on the chip ready for a fat cube connection  [103]. Fat 
nodes (8 CPUs per node) have been used in a Swiss-T1 cluster with a K-ring 
network  [56].  

Figure  8.4 illustrates the way the network gets fat. The direct all-port slim 
spidergon is transformed into the indirect one-port fat spidergon with the same
structure of switching elements (routers), but with twice as many interconnected 
terminal nodes. The technique of fat interconnection networks has several ad-
vantages over traditional networks: (1) it makes some small networks more 
scalable, even though the interconnection graph of a network is not scalable at 
all (e.g. OOD networks, see section  4.1.2) or even partially scalable (spidergon, 
hypercube, AMP); (2) it provides in many cases cheaper network implementa-
tion in terms of hardware cost and is more often suitable for networking systems 
on a chip; (3) the performance in collective communications is only a little 
worse than that of base networks, but it can be controlled by a multiplicity of 
links (see the fat tree topology, Figure  8.3b) and by overlapping local and global 
communications.  

Table  8.16 summarizes the upper bounds attained on a 2-fat one-port fat 
hypercube and 2-fat, 3-fat and 4-fat spidergons. The term 2-fat implies two 
CPUs connected to a switching element. The notation 2-fat-hypercube-8 repre-
sents a 3D hypercube with 8 switching elements connected by three input/output 
links and 16 terminal nodes, two per each switch. The construction of an input 
file for the evolution algorithm is straightforward. A slim topology is taken, all 
terminal nodes are replaced by switches changing the operation mode from T, R 
or B to N. Two new terminal nodes are then connected to the original one by 
adding edges to and from it (see section  6.1). The technique is actually the same 
to the case of indirect topologies and the many-to-many communications.  

It should be noted that neither lower bounds for one-port nor for all-port 
model apply here. The reason is that we cannot assign external network ports of 
a node explicitly to internal cores. Let us also note that the optimal schedules are 
not known for the fat spidergon networks so far. Accordingly, Table  8.16 
presents the best know upper bounds of CCs for the fat spidergon networks 
found by evolution. The upper bounds are close to the double of the basic 
topologies - sometimes better sometimes worse, compare Table  8.16 with Table 
 8.12 and Table  8.1. 

An example of a designed optimal AAB on the 2-fat-hypercube-4 is shown 
in Table  8.17. There is shown the complete path from source terminal node via 
some switches to the destination terminal node in every cell. The terminal nodes 
are denoted by numbers from 0 to 7, switching nodes are denoted by letters from 
A to D. It can be seen that the schedule follows the technique of a modified 
controlled flood (i.e. no message is transported further than 3 hops).  

Let us note that for fat topologies and AAB, the controlled flood mechanism 
has to be modified because the switch nodes are not able to maintain any 
message, but only interconnect their inputs to outputs and, therefore, cannot be 
used as distributors. Consequently, the modified flood mechanism should take 
into account only the terminal nodes. In the case of direct slim topologies, the 
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      (a) all-port slim spidergon          (b) one-port fat spidergon 

Figure  8.4. Illustration of the all-port slim 8-node spidergon and one-port 2-fat 8-node sp-
idergon. 

 

Table  8.16. Time complexity of the evolved schedules for one-port bidirectional fat hy-
percubes and spidergons with 2 terminal nodes per switch. 

Topology OAS AAS OAB AAB 

2-fat-hypercube-4 7 8 3 7 
2-fat-hypercube-8 15 17 4 15 
2-fat-hypercube-16 31 36 6 33 
2-fat-hypercube-32 63 - 7 - 

2-fat-spidergon-6 11 12 4 12 
2-fat-spidergon-8 15 17 4 16 
2-fat-spidergon-10 19 25 5 20 
2-fat-spidergon-12 23 37 5 24 
2-fat-spidergon-14 27 50 5 29 
2-fat-spidergon-16 31 66 6 37 
2-fat-spidergon-18 35 86 6 42 
3-fat-spidergon-4 11 11 4 11 
3-fat-spidergon-8 23 38 5 24 
3-fat-spidergon-12 35 82 6 42 
4-fat-spidergon-4 15 16 4 16 
4-fat-spidergon-6 23 38 5 24 
4-fat-spidergon-8 31 64 6 34 

 
nearest terminal nodes are situated at a distance of 1 (see Figure  8.4a). However, 
in the case of indirect fat topologies, two switches are put between them. 
Finally, the nearest terminal nodes not connected to the same switch are situated 
at a distance of 3 (see the Figure  8.4b). Subsequently, the value of radius r has 
to be increased to a value of at least three to be able to reach a terminal node 
connected to a neighbor switch (see section  6.5.5). 
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8.6 Faulty Topologies 

Since SoC/NoC systems include many processor cores, interconnection links 
and other units, their failure rate is much higher than the failure rate of the sin-
gle-processor system. Generally, there are two kinds of faults in NoC systems:
faulty links and faulty nodes. The first one is a damaged link interconnecting 
two parts of a system. After the faulty link has been located, it has to be ex-
cluded from all routing algorithms (CC schedules). After new CCs have been re-
scheduled, the system is able to work properly with only little loss of perform-
ance. A node fault can be imagined as implying that all of that node’s commu-
nication links are faulty. Of course, the network has to stay connected (i.e. at 
least one path for each source-destination pairs has to remain). 

In this section, we will consider faults to be permanent (defects in manu-
facturing) as opposed to, say, transient, intermittent or even malicious faults. 
Our technique supposes that faulty links or nodes have been already detected, 
and the faulty region has been bordered. Conceptually, the faulty region may be 
considered as an island of faults in a sea of communication channels and nodes. 
In the same manner a ship is navigated around an island, it should be feasible to 
route a message around a faulty region (see Figure  8.5). That can be done using 
adaptive routing algorithms that re-route paths from source-destination pairs. 
However, these algorithms achieve only suboptimal results (i.e. possible faster 
CC schedules can exist, but they are not discovered, whereas only deterministic 
principles are used for rescheduling). In addition, many of the fault-tolerant 
adaptive routing algorithms are not deadlock free and this introduces additional 
delays and congestions. Moreover, networks in a faulty state are neither sym-
metrical nor regular, and analytic methods for scheduling do not exist. In order 
to relax all these restrictions, our evolutionary based technique has been applied 
for finding CCs schedules on faulty networks.  

The proposed evolutionary technique has been applied to two networks that 
had already found the commercial application such as scalable 12-node Kautz 
networks  [188] and the well known 4×4 2D-mesh.  

As the Kautz network is known for its fault tolerance, performance degra-
dation under a single link fault has been tested. A fault diameter of the Kautz12 
network is D+2, meaning that among multiple links between any two nodes the 
longest path is 4. The network performance under a single link fault is given in 
Table  8.18 (with node no. 0 as the root of OAB and OAS), but the network 
could operate even under a double link fault. In any case, when the link fault has 
been detected, a new schedule can be created in 20 seconds on a single proces-
sor and then the cluster can continue with a lower performance (see Table  8.22). 

The 2D meshes are very suitable for the interconnection network for System 
on Chips (SoC) because they need only a very simple link arrangement on a 2D 
silicon chip. For the 4×4 2D mesh, performance degradation under a single link 
fault and a single node fault were tested. Table  8.19 shows the performance 
degradation under a single link fault. The source node of OAB and OAS was 
appointed node no. 0. Any link fault in the 4×4 2D mesh increased the time 
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Table  8.17. Optimal AAB schedule on the 2-fat-hypercube-4. 

from→ via →to 
source 

step 1 step 2 step 3 step 4 step 5 step 6 step 7 

0,A,B,2 2,B,D,7 0,A,C,5 0,A,B,3 0,A,1 5,C,D,6  0 
    7,D,C,4   

1,A,C,4 4,C,D,6 6,D,7  1,A,B,3 7,D,B,2 3,B,A,0 
1 

     1,A,C,5  
2,B,D,7  2,B,A,1  4,C,5 2,B,A,0 2,B,3 

2 
  7,D,C,4  2,B,D,6   

3,B,A,0 0,A,C,4 3,B,2 2,B,A,1  3,B,D,7 4,C,5 
3 

      7,D,6 
4,C,D,6 6,D,B,3 4,C,A,0 3,B,2  4,C,A,1 5,C,D,7 

4 
   4,C,5    

5,C,A,1 1,A,B,2 1,A,B,3 1,A,0 5,C,D,7  1,A,C,4 
5 

  5,C,D,6     
6,D,C,5 5,C,A,0  6,D,7  0,A,B,3 0,A,1 

6 
     6,D,C,4 6,D,B,2 

7,D,B,3 3,B,A,1  7,D,C,4 3,B,A,0   
7 

 7,D,C,5  5,C,D,6 6,D,B,2   

 

 

 

Figure  8.5. Isolation of faulty node no. 10. 

overhead of AAS about 37%. The OAS and AAB communication would be de-
layed twice, but only in two cases, and OAB communication would not be influ-
enced in any way. In all tested link failures, the optimal communication sched-
ules were discovered for a given CC. 

Finally, the performance degradation under a single node fault was tested 
(Table  8.20). A node fault can be thought of as implying that all of that node’s 
communication links are faulty. From this table, the same performance degrada-
tion under a single node fault as under a single link fault can be observed. 

As the communication schedules are too complicated to be simply demon-
strated in the text form, they will be omitted this time around. 
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Table  8.18. Performance of the Kautz12 network with a single faulty link (in the number 
of steps).Reduced performance is in bold.  

link OAS AAS OAB AAB 

no fault 4 7 2 4 
0→3 6 9 3 6 

0→5 6 9 3 6 

0→4 6 9 3 6 

1→7 4 9 2 6 

1→6 4 9 2 6 

1→8 4 9 2 6 

2→B 4 9 2 6 

2→A 4 9 2 6 

2→9 4 9 2 6 

3→0 4 9 2 6 

3→1 5 9 2 6 

3→2 5 9 2 6 

5→7 4 9 2 6 

all other 4 9 2 6 

 

Table  8.19. Performance of the 4×4 2D mesh network with a single faulty link (in the 
number of steps). Reduced performance is in bold. 

link OAS AAS OAB AAB 

no fault 8 16 3 8 
0→1 15 22 3 15 

0→4 15 22 3 15 

all other 8 22 3 8 

 

Table  8.20. Performance of the 4×4 2D mesh network with a single faulty node (in the 
number of steps). Reduced performance is in bold. 

node OAS AAS OAB AAB 

no fault 8 16 3 8 
0 15 22 3 15 

4 15 22 3 15 

all other 8 22 3 8 

 

8.7 Many-to-Many Communications 

Besides one-to-all and all-to-all communication patterns, we can also find many 
communication patterns that are engaged only as a subset of nodes in. Typical 
occurrences of these CC patterns can be found in algorithms based on recursion, 
like divide and conquer  [198]. For example, one big task is divided into several 
smaller ones. These smaller tasks can also be divided into subtasks and
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processed in a parallel fashion. The communication among a subset of nodes 
participating in a subtask can be globally seen as many-to-many (M-to-N) com-
munication.  

Another situation could be simply imagined. Let us suppose we keep at our 
disposition an extensive parallel cluster. Unfortunately, our task can effectively 
employ only a small part of the cluster. From the global point of view, all our 
all-to-all CCs will be transformed to M-to-N ones.  

The importance of M-to-N communications also consists in their common-
ness. Many special patterns can be simply converted to them. Moreover, any CC 
executed on an indirect (fat, multistage) network can be actually seen as M-to-N 
communication, where switching nodes are excluded from the communication. 
M-to-N communications can also be beneficial for one-port networks. We can 
simply transform a direct all-port network to an indirect one-port one by putting 
switches between the terminal nodes and entry points of the network. It is now 
possible to handle the CC problem as M-to-N communications. Moreover, any 
combination of all-port and one-port nodes can be created.  

We have investigated only a couple of possible M-to-N arrangements, but it 
can be simply demonstrated that the proposed technique is able to design M-to-
N with any distribution of transmitters and receivers. The topologies of interest 
were the 8-node all-port hypercube and 8-node all-port spidergon. Four arrange-
ments of transceivers and receivers were investigated for both topologies. In the 
case of a hypercube, we examined the communication within the same base 
(4 nodes) and between the bases (nodes on the lower base transmitted the mes-
sages to nodes on the upper base). Furthermore, we examined the situation when 
every node on the lower base sends the message to all other nodes, and finally, 
the nodes situated on the body diagonal forwarded the messages to the nodes on 
the lower base. In the case of a spidergon, we investigated these arrangements: 
within the left half of the spidergon; between left and right half; left half distrib-
uting the messages to all the nodes; and the nodes with odd indexes transmitting 
to the nodes with even indexes. The upper bounds of obtained schedules are 
summarized in Table  8.21. 

The obtained upper bounds are identical to the estimated lower bounds for 
all the cases. It should be noted that the upper bounds lie between one-to-all and 
all-to-all bounds. Of course, for more complex topologies, the quality of sched-
ules does not have to be identical to the estimated lower bounds, but in all cases 
it will be at least the same as in the case of all-to-all communication on a given 
interconnection network.  

It is also important to remember that for most M-to-N communication, the 
non-minimal routing has to be used to exploit all of the potential of the inter-
connection network (all free links). Minimal routing would often lead to only 
suboptimal solutions. This situation can be simply observed (e.g. in the case of 
the 8-node spidergon and MNS communication within the left half). If only 
minimal routing is allowed, the communication takes 3 steps because links from 
the second half cannot be employed, especially, the links connecting both 
halves. 
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Table  8.21. Time complexity of the evolved schedules for the 8-node hypercube and 
spidergon for a few M-to-N CC patterns. 

Topology Pattern MMS MMB 

Within the same base 2 2 
Between the bases 4 2 
Lower base to all 4 3 

Hypercube-8 

diagonal to the lower base 2 2 
Within the left half 2 2 
Left half to right half 3 3 
Left half to all 3 3 

Spidergon-8 

Odd nodes to even nodes 3 2 

 
On the other hand, allowing the non-minimal routing, the communication will 
save one step. This schedule is shown in Table  8.22. Notice the transfer from 
node no. 4 to node no. 6. The shortest path goes through node no. 5, but the 
channel between 5 and 6 is busy, so the longer path has had to be chosen (4, 0, 
1, 2, 6) (for a better understanding see Figure  8.4a). 

8.8 Summary 

This section has analyzed the capabilities of a proposed evolutionary technique 
to design near optimal CC schedules on almost all types of interconnection net-
works at great length. It is seen from the results that for the networks of interest 
in this work, the obtained upper bounds are mostly close or equal to theoretical 
lower bounds. The only exception is AAS communication in larger networks, 
where the lower bounds are apparently too tight. In fact, the obtained numerical 
results have led us to an improvement of theoretical lower bounds for AAS 
communication (see section  3.4.2). This is a very significant contribution of this 
thesis.  

Of course, the fact that the lower bound may not always be reached by the 
presented algorithm is to be expected because it may not be attainable in princi-
ple by any algorithm. Sometimes lower bounds can be obtained in schedules 
with non-minimum routing. Unfortunately, inclusion of the non-minimum 
routing would lead to an enormous increase of possible paths from sources to 
destinations and to the prohibitive computer memory and time requirements. 

Table  8.23 shows average execution times of UMDA during 5 successful 
runs on several networks. OAS communication is relatively easy; a solution 
always takes less than one second. For OAB communication, the values are less 
than one second for simple network topologies. The longest execution time 
(hypercube-32) is about 41 seconds. Contrary, evolution of a suitable solution 
for all-to-all communication takes a much longer time, especially for the AAS 
communication. An exponential increase of the execution time with the network 
size can be observed. For the most complex topologies, it can easily reach 
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Table  8.22. Optimal MNS schedule within the left side of the 8-node all-port spidergon.  

from, via, to 
source 

step 1 step 2 

4,5 4,0,1,2,6 
4,0,7  4 

  
5,6 5,4 

 5,6,7 5 
  

6,5 6,2,1,0,4 
6,2,3,7  6 

  
7,3,4  

7,0,1,5  7 
7,6  

 

Table  8.23. Execution times of UMDA in seconds, minutes, hours and days (average 
values during 5 successful runs). 

Topology OAS AAS OAB AAB 

Ring -8 <1s 5m6s <1s <1s 
Uni-Ring-8 <1s 57s <1s <1s 
Spidergon-8 <1s 2s <1s <1s 
Petersen-10 <1s 12s <1s 2s 
Kautz-12 <1s 23s <1s 3s 
Heawood-14 <1s 9m17s <1s 5s 
Spidergon-16 <1s 22m36s 3s 1m41s 
Levi-30 <1s 1d6h 3s 2h2m 
Hypercube-32 <1s 4d5h 41s 28m38s 
Kautz-36 <1s 3d5h 20s 9h50m 

 
impracticable values of days. The execution times as such delimitate the area of 
suitable topologies for the proposed evolutionary approach of CC scheduling.  

Let us note that all experiments were realized in sequential manner on IBM 
Blade servers equipped with 2x dualcore AMD Opteron 275 processors and 
supplied by 4GB DDR2 RAM at 800 MHz. 

The evolved schedules may serve for writing high-performance communi-
cation routines for application-specific networks on chip or for development of 
communication libraries in the case of general-purpose interconnection net-
works. All the upper bounds achieved by UMDA are summarized in Appendix. 
For implementation we need to establish synchronization between particular 
communication steps and upload the routing tables (taken from the schedule) to 
the switching elements and terminal nodes. The time complexity of real imple-
mentation can be then obtained by the usage of the model of wormhole commu-
nication (see section  3.1). 
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Conclusions 

The importance of point-to-point interconnection networks steadily grows. 
Many real multiprocessor systems have been based on wormhole interconnec-
tion networks (e.g. Tilera Tile  [199], Sicortex SC systems  [184], IBM Cell proc-
essor  [91]), and other systems will certainly follow. These networks are directly 
predestined to force out bus based interconnections from Systems on Chip 
(SoC) and Networks on Chip (NoC) of many scales due to their simple manu-
facturability, reliability, fault-tolerance, low latency and high throughput.  

One of the key issues in this area is the performance of communications 
among nodes placed in such a topology. Since any parallel task requires com-
munication and synchronization mechanisms, the communication latency should 
be minimized while the network throughput should be maximized. Most com-
munication and synchronization mechanisms can be simply converted into col-
lective communications (CC) based on scatter/gather and broadcast/reduce 
services, for example, the data distribution among nodes can be implemented by 
one-to-all scatter, the parallel algorithm control by one-to-all broadcast, results 
collection by all-to-one gather or reduce, barrier synchronization by all-to-all 
broadcast, etc.  

As we could see in chapter  3, the time complexity of a particular collective 
communication pattern can be estimated from the network parameters. The 
lower bounds on time complexity can be expressed in terms of the number of 
synchronized communication steps (time slots). Although, the lower bounds can 
be obtained relatively easily, the design of such communication schedules meet-
ing the lower bounds is still an outstanding problem because the schedules have 
to prevent link blocking, deadlock and livelock  [37]. 

Many approaches that implement (near) optimal schedules of CC have been 
published  [174],  [128],  [12]. Unfortunately, the authors have concentrated either 
on only a fixed topology, such as hypercube  [85] or mesh  [10], or have not been 
able to work with irregular topologies, many-to-many communication patterns, 
all-port model or non-determinist routing (see chapter  4). A universal approach 
has not existed up till now.  

Therefore, the hypothesis of the thesis has been formulated based on infor-
mation and experiences collected in chapter  5: Evolutionary design is able to 
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produce optimal or near optimal communication schedules comparable or even 

better than which have been obtained by a conventional design for the networks 

sizes of interest. Moreover, evolutionary design reduces many drawbacks of 

present techniques and invents still unknown schedules for an arbitrary topol-

ogy and scatter/broadcast communication patterns.  

The design of the proposed evolutionary technique has been detailed in 
chapter  6. The chapter has described the encodings of schedules, fitness function 
evaluation and acceleration and restoration heuristics. The chapter has also 
provided the formal definition of the main components of the technique. Let us 
remind ourselves that the proposed method is not only restricted to evolutionary 
algorithms, but any other optimization technique can be employed.  

As the evolutionary algorithms are highly sensitive to a suitable parameters 
setup, a comprehensive study has been accomplished in chapter  7. Three differ-
ent evolutionary algorithms have been investigated, namely the Standard 
Genetic Algorithm (SGA)  [66], Mixed Bayesian Optimization Algorithm 
(MBOA)  [148] and Univariate Marginal Distribution Algorithm (UMDA)  [137]. 
The results have shown that the most suitable one is the UMDA algorithm. The 
results have also shown that the evolution is controlled mainly by a mutation 
operator and that the sufficient population size is relatively small.  

Chapter  8 has presented the achievements of the UMDA algorithm. The 
postulated hypothesis has been completely proved in this chapter. UMDA has 
reinvented many important optimal scheduling techniques like the recursive 
doubling  [128] on hypercubes, rings, tori or TAD Tree  [212] approach for tori 
and hypercubes. It has also equaled the Ho-Kao algorithm  [84] and ST algo-
rithm  [147]. Moreover, many unknown optimal schedules have been invented 
namely for optimal diameter-degree networks, irregular meshes, fat topologies, 
indirect topologies, and many-to-many communication pattern. If it was not 
possible to design an optimal schedule, a suboptimal one was found in a reason-
able time. All the results are also summarized in appendix.  

Since the schedules are designed for the source-based routing technique 
 [39], the wormhole switches  [146] can remain without any change. The sched-
ules can be uploaded into processing nodes that can exploit them to perform the 
communications as fast as possible. The designed schedules may also serve for 
writing high-performance communication functions for a concrete topology. 
Consequently, this function can be included into, for example, the well-known 
OpenMPI  [92] library. Otherwise, when a promising topology has been intro-
duced, the proposed technique could be simply applied to this topology and 
accelerate the communication on it. 

The results of this technique has been also published at prestigious confer-
ences in the area of evolutionary algorithms like ACM GECCO in 2007, 2008, 
2009, and 2010 or ICES 2008, and in the area of networks on chip like IEEE 
ICN 2006, 2007, 2009, IEEE ICONS 2010 or IEEE PARALEC 2006. The main 
parts of the thesis have been accepted as a chapter of upcoming book “Auto-
nomic Networking-on-Chip: Bio-inspired Specification, Development and 
Verification". 
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The core of this thesis has actually awarded Honorable Mention at Human-
Competitive Competition, London, UK, 2007 and by Jan Hlavička Award for 
the Best Paper presented at workshop on Computer architectures and diagnos-
tics PAD 2005. 

9.1 Contributions of the Thesis 

This section summarizes all notable contribution of the thesis and the proposed 
technique.  

(1) The new method for scheduling of collective communication with the 
prevention of link blocking, deadlock and livelock not limited by a to-
pology or a distribution of cooperating nodes has been proposed. 

(2) The thesis has introduced the concept of the main components of most 
optimization tools. Hence, a lot of optimization tools based on classical 
artificial intelligence or heuristic methods like hill climbing  [115], as 
well as stochastic methods like simulating annealing  [21], particle 
swarm optimization  [104], and artificial ant colonies  [46] can be ex-
ploited.  

(3) The integrity of the technique is given by its capabilities to design opti-
mal or at least sub-optimal schedules for many kinds of network to-
pologies and communication pattern that have never been solved so far. 
The technique can be applied to 

(a) Regular topologies (e.g. hypercube and torus). 

(b) Irregular topologies (e.g. mesh, AMP). 

(c) Multi-stage topologies (e.g. Omega, Clos). 

(d) Fat topologies of any type (e.g. fat tree, fat hypercube). 

(e) One-port, all-port, and even k-port model (by an additional 
limitation of port based heuristic). 

(f) Minimal and even non-minimal routing (only for small scale 
topologies). 

(g) Simplex, full duplex links and even half-duplex (by a simple 
modification of conflict counting function not to distinguish 
between channel directions). 

(h) Any distribution of cooperating nodes on the topology (one-
to-all, many-to-many, all-to-all). 

(i) Faulty nodes and faulty links (an operational state can be re-
stored after a link or a node fault). 

(j) And many others. 

(4) Many optimal communication schedules have been reinvented with the 
help of the technique implemented into the UMDA algorithm. Let’s 
remember the recursive doubling algorithm or time-arc disjoint broad-
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cast trees at least. Very significant success has been in the invention of 
algorithms that equal the Ho-Kao algorithm.  

(5) Many still unknown optimal schedules have been designed by the tech-
nique (e.g. for rectangular tori, meshes, spidergons, AMPs, ODD net-
works, etc.). 

(6) The section  3.5 has provided a new look on the lower bounds for many-
to-many CCs. They have been classified and estimated there for the 
first time ever. 

(7) The results allow us to rectify the mathematical formula for the lower 
bound of all-to-all scatter, (see section  3.4.2). 

(8) An assessment whether the theoretical lower bounds of CC times are 
reachable at all or how close we can get to them (multistage topologies, 
spidergon, etc.) has been done. 

For all these reasons this technique was declared as human competitive. It 
means that produced results are comparable to them produced by an expert. 

9.2 Future work 

Although the proposed technique covers a large area of the scheduling of col-
lective communication on wormhole networks, there are naturally many other 
possible extensions of the technique.  

An introduction of the channel capacity (throughput) is one of many possi-
ble future extensions. Only the channels with the same capacity have been pre-
sumed in this work, but in real-world applications the channels can be 
hierarchized into more levels of different capacity (e.g. backbone links, inter-
cluster links, local interconnection, etc). Accordingly, the capacity of the chan-
nels should be taken into account in the fitness function to allow more transfers 
at a time with respect to the channel capacity. 

Only scatter or broadcast CCs have been investigated in this work because 
they are most frequently used. A few additional communication services could 
be seen in real-world applications. Let us note for example permutation and scan 
communications or application specific CCs created by a collection of point-to-
point communications. Such a CC can perform any possible combination of 
messages transmissions. The input file structure would have to be modified to 
be able to handle a general CC. The source-destination pairs of all message 
transfers would have to be provided to the technique. A corresponding chromo-
some would proceed from many-to-many scatter ones. 

For some networks, it could also be beneficial to use the combining model 
that was not used to keep the switches as simple as possible in this work. Mes-
sage combining reduces the total number of messages, making each node sends 
fewer messages of a larger size. Reducing the number of steps start-ups can 
improve communication performance in the case of short messages when the 
start-up delays dominate in CC times. Unfortunately, the combination of mes-
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sages completely changes the principles of the scheduling and such a new tech-
nique would have to be designed.  

Another direction for future research could be targeted to an improvement 
of acceleration and restoration heuristics. Limitations of the technique have been 
observed mainly at AAS communications, so additional research in this area 
could be beneficial. Better results could also be obtained by employing a more 
sophisticated optimization tool, such as particle swarm optimization (PSO) that 
turns out to be a surprisingly good optimization tool. 





 

 

References 

[1] Advanced Micro Devices, Inc. Radeon X1800 memory controller, Technology, 
White Paper, 2005, URL <http://ati.amd.com/products/radeonx1k/whitepapers 
/X1800_Memory_Controller_Whitepaper.pdf>. 

[2] Agarwal, P. and Breuer, M. A. Some theoretical aspect of algorithmic routing. In 
Proceedings of the 14th conference on Design automation table of contents, 
IEEE Press, Piscataway, NJ, USA, pages 23-31, 1997. 

[3] Al-Hashimi, B. System-on-chip: next generation electronics. The Institution of 
Electrical Engineering, United Kingdom, ISBN-10:0863415520, 2006. 

[4] AMD: Advanced Micro Devices. AMD Direct Connect Architecture, 2009, URL: 
<http://www.amd.com/us/products/technologies/direct-connect-architecture 
/Pages/direct-connect-architecture.aspx>. 

[5] Anderson, C., Jones, K., and Ryan, J. A two-dimensional genetic algorithm for 
the ising problem. In. Complex Systems, vol. 5, pages 327-333, 1991. 

[6] Bäck, T. Proceedings of the 7th International Conference on Genetic Algorithms, 
Morgan Kaufmann Publishers, San Francisco, 1997. 

[7] Baker, J. Adaptive selection method for genetic algorithms. In Proceedings of the 
2nd International Conference on Genetic Algorithms, Lawrence Erlbaum 
Associates, Hillsdale, N.J., pages 100-111, 1987. 

[8] Baluja, S. Population-Based Incremental Learning: A method for Integrating 

Genetic Search Based Function Optimization and Competitive Learning. 
Carnegie-Mellon Technical report, CMU-CS-94-163, 1994. 

[9] Baluja, S. and Davies, S. Using optimal dependency-trees for combinatorial 
optimization: Learning the structure of the search space. In Proceedings of the 
International Conference on Machine Learning, pages 30-38, 1997. 

[10] Bamettet, M., et al. Broadcasting on Meshes with Worm-Hole Routing, Technical 
report. TR-93-24, Dept. Computer Science, University of Texas at Austin, 1993. 

[11] Bandyopadhyay, S., Kargupta, H., and Wang, G. Revising the gemga: Scalable 
evolutionary optimization through linkage learning. In Proceedings of the 1998 
IEEE International Conference on Evolutionary Computation, IEEE Press, pages 
603-608, 1998. 

[12] Banikazemi, M. and Panda, D. K. Can Scatter Communication Take Advantage 
of Multidestination Message Passing? In Proceedings of International Confer-

ence on High Performance Computing, Springer-Verlag Berlin Heidelberg, pages 
204-211, 2000. 



146 References 

[13] Banikazeni, M. and Dhabaleskwar, P. K. Efficient Scatter Communication in 

Wormhole k-ary n-cubes with Multidestination Message Passing. Technical 
Report OSU-CISRC-9/96-TR46, 1996. 

[14] Barnett, M., Shuler, L., van de Geijn, R., Gupta, S., Payne, D. G., and Watts, J. 
Interprocessor collective communication library (InterCom). In Proceedings of 
the Scalable High Performance Computing Conference, IEEE Computer Society 
Press, pages 357-364, 1994. 

[15] Bar-Noy, A. and Kipnis, S. Designing Broadcasting Algorithms in the Postal 
Model for Message-Passing Systems. In Proceedings of the 1992 Symphosium on 
Parallel algorithms and architectures, ACM, New York, pages 13-22, 1992. 

[16] Beneš, V. E. Mathematical Theory of Connecting Networks and Telephone 
Traffic, Academic Press, ISBN-10: 0120875500, 1965. 

[17] Benson, C. T. and Losey, N. E. On a Graph of Hoffman and Singleton. 
Combinatorial Theory Series. B 11, pages 67-79, 1971. 

[18] Bermond, J. C and Fraigniaud, P. Broatcasting and NP-completeness. In Graph 

Theory Notws of New York, pages 8-14, 1992. 

[19] Bermond, J.-C. and Delorme C. Strategies for Interconnection Networks: Some 
Methods from Graph Theory. In Journal of Parallel and Distributed Computing, 
no. 3, pages 433-449, 1986. 

[20] Bhuyan, L. N. and Agrawal, D. P. Generalized Hypercube and Hyperbus 
Structures for a Computer Network. In IEEE Transaction on Computers 33 (4), 
pages 323-333, 1984. 

[21] Booker, L. Improving search in genetic algorithms. In Davis, L., editor, Genetic 

Algorithms and Simulated Annealing, Morgan Kaufmann Publishers, San 
Francisco, 1987. 

[22] Borkar, S. iWrap: An integrated solution to high-speed parallel computing. In 
Proceeding of Supercomputing’88, pages 330-339, 1988. 

[23] Bose, B., Broeg, B., Known Y., and Ashir, Y. Lee Distance and opological 
Properties of k-ary n-cubes. In IEEE Transactions on Computers, vol. 44, no. 8, 
pages 1021-1030, August 1995. 

[24] Bosman, P. A. N. and Thierens, D. Linkage information processing in 
distribution estimation algorithms. In Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO-99), pages 60-67, 1999. 

[25] Brindle, A. Genetic algorithms for function optimization. Ph.D. dissertation, 
University of Alberta-Edmondton, 1981. 

[26] Buhrman, H., Hoepman, J., and Vitányi, P. Optimal routing tables. In Proceed-
ings of the fifteenth annual ACM symposium on Principles of distributed comput-
ing, ACM Press, NY, USA, pages 134-142, 1996. 

[27] Bui, T. N. and Moon B. R. On multi-dimensional encoding/crossover. In 
Proceedings of the 6th International Conference on Genetic Algorithms, Morgan 
Kaufmann Publishers, San Francisco, pages 49-56, 1996. 

[28] Burgess C. J. and Chalmers, A. G. Genetic algorithms for generating minimum 
path configurations In Microprocessors and Microsystems, vol. 19, no. 1, Febru-
ary 1995. 

[29] Burgess, C. J. and Chalmers, A. G. Optimum Transputer Configurations for Real 

Applications Requiring Global Communications. Technical Report. UMI Order 
Number: CS-EXT-1995-044, University of Bristol, 1995. 



 References 147 

[30] Chau, S. C. and Fu, A. W. C. An optical multistage interconnection network for 
optimal All-to-All personalized exchange. In Proceedings of the fourth 

International Conference on Parallel and Distributed Computing, Applications 
and Technologies (PDCAT'2003), pages 292-295, 2003. 

[31] Chelius, G. and Fleury, E. NP-Completeness of ad hoc multicast routing prob-

lems, Research report no. 5665, Institut National de Recherche en Informatique et 
en Automatique, September 2005. 

[32] Cheng, R., and Gen, M. Evolution program for resource constrained project 
scheduling problem. In Proceedings of the First IEEE Conference on Evolution-
ary Computation, IEEE Press, Piscataway, NJ, pages 736-741, 1994. 

[33] Cheng, R., Gen, M., and Tsujimura Y. A tutorial survey of job-shop scheduling 
problems using genetic algorithms: I. Representation. In Computer and Industrial 

Engineering, vol. 35, no. 2, 1999. 

[34] Clos, C. A study of non-blocking switching networks. In Bell System Technical 
Journal 32 (5), pages 406-424, March 1953. 

[35] Cohoon, P. and Paris, W. Genetic placement. In Proceedings of IEEE Interna-
tional Conference on Computer-Aided Design, pages 422-425, 1986. 

[36] Cooper, G. F. and Herskovits, E. H. A Bayesian method for the induction of 
probabilistic networks from data. In Machine Learning, vol. 9, pages 309-347, 
1992. 

[37] Dally W. J. and Seitz, C. L. Deadlock-Free Message Routing in Multiprocessor 
Interconnection Networks. IEEE Transactions on Computers, vol. C-36, no. 5, 
pages 547-553, 1987. 

[38] Dally, W. J. and Towles, B. Route packets, not wires: on-chip interconnection 
networks. In Proceedings of the Design Automation Conference, Las Vegas, NV, 
pages 684-689, June 2001. 

[39] Dally, W. and Towles, B. Principles and Practices of Interconnection Networks. 
The Morgan Kaufmann Series in Computer Architecture and Design, Morgan 
Kaufman Publishers, 2004. 

[40] Davis, L. Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991. 

[41] Davis. L. Adapting operator probabilities in genetic algorithm. In Proceedings of 
the 3rd international Conference on Genetic Algorithms, Morgan Kaufman Pub-
lishers, San Francisco, pages 61-69, 1989. 

[42] De Bonet, J. S., Isbell, C. L. and Viola., P. MIMIC: Finding optima by estimating 
probability densities. Advances. In Neural Information Processing Systems, vol. 
9, The MIT Press, Cambridge, 1997.  

[43] De Jong, K. A. An Analysis of the Behavior of a Class of Genetic Adaptive 
Systems. PhD thesis, University of Michigan, 1975. 

[44] Dimopoulos, N. J., Chowdhury, M., Sivakumar, R., and Dimakopoulos, V. 
Routing in Hypercycles. Deadlock free and backtracking strategies. In PARLE 
'92 Parallel Architectures and Languages Europe, Lecture Notes in Computer 
Science, Springer Berlin/Heidelberg, vol. 605, pages 973-974, 2006. 

[45] Dolter, J. W, Ramanathan, P., and Shin, K. G. Performance Analysis of Virtual 
Cut-Through Switching in HARTS: A Hexagonal Mesh Multicomputer. In IEEE 
Transactions on Computers, vol. 40, no. 6, 1991. 

[46] Dorigo, M. and Stützle, T. Ant Colony Optimization. The MIT Press, ISBN-10: 
0-262-04219-3, 2004. 



148 References 
 
[47] Duato, J., Yalamanchili, S. Interconnection Networks – An Engineering Ap-

proach, Morgan Kaufman Publishers, Elsevier Science, 2003 

[48] Esfahanian, A., Ni, L., Sagan, B. On enhancing hypercube multiprocessors. In 
Proceedings of the 1988 International conference of Parallel Processing, pages 
86-89, 1988. 

[49] Eshelman, L., Mathias, K., and Schaffer, J. Convergence controlled variation. In 
Foundations of Genetic Algorithms, vol.4, Morgan Kaufmann Publishers, San 
Francisco, 1997. 

[50] Eshelman, L. and Schaffer, J. Real-Coded genetic algorithms and interval 
schemata. In Foundations of Genetic Algorithms, vol. 2, Morgan Kaufmann Pub-
lishers, San Francisco, pages187-202, 1993.  

[51] Fischer, S., Vöcking, B. Adaptive routing with stale information. In Proceedings 
of the twenty-fourth annual ACM symposium on Principles of distributed 

computing, ACM, New York, NY, pages 276-283, 2005. 

[52] Fogel, L., Owens, A., and Walsh, M. Artificial Inteligence Through Simulated 

Evolution, Wiley, New York, 1966. 

[53] Forrest, S. Documentation for prisoner’s dilemma and norms programs that used 

the genetic algorithms. Ph.D. dissertation, University of Michigan-Ant Arbor, 
1985. 

[54] Fox, G. C. Solving Problems on Concurrent Processors. In General Techniques 
and Regular Problems, vol. 1, Prentice Hall, Englewood Cliffs, NJ, 1988. 

[55] Gabrielyan, E. and Hersch, R. D. Efficient Liquid Schedule Search Strategies for 
Collective Communications. In Proceedings of the 12th IEEE International 
Conference on Network ICON 2004, Singapore, vol. 2, pages 760-766, 2004. 

[56] Gabrielyan, R. and Hersch D. Efficient Liquid Schedule Search Strategies for 
Collective Communications. In Proceedings of he12th IEEE International 

Conference on Networks, Singapore, Vol. 2, November 16-19, pages 760-766, 
2004. 

[57] Gang, L., Nai-jie, G., Kun, B., Kun, T., and Wan-li, D. Optimal All-to-All 
Personalized Communication in All-Port Tori. In Proceedings of World Academy 

of Science, Engineering and Technology, vol. 10, ISSN 1307-6884, December 
2005. 

[58] Garey, M. R. and Johnson, D. S. Computer and Intractability, A Guide to the 
Theory of NP-Completeness. Freeman, 1979. 

[59] Gen, M. and Cheng, R. A survey of penalty techniques in genetic algorithms. In 
Proceedings of the IEEE International Conference on Evolutionary Computation, 
IEEE Press, Piscataway, NJ, pages 804-809, 1996. 

[60] Gen, M. and Cheng, R. Genetic algorithms and engineering optimization. In 
Engineering in Design and Automation, Wiley Series, ISBN 0-741-31531-1, 
2000. 

[61] Geoffray, P. and Hoefler, T. Adaptive Routing Strategies for Modern High 
Performance Networks. In Proceedings of the 6th IEEE Symposium on High 
Performance Interconnects, pages165-172, 2008. 

[62] Gill, S. Parallel Programming. In: The Computer Journal, vol. 1, pages 2-10, 
April 1958. 

[63] Gillies, A. Machine learning procedures for generating image domain feature 

detectors, Ph.D. dissertation, University of Michigan-Ant Arbor, 1985. 



 References 149 

[64] Glass, C. J. and Ni. L. The turn model for adaptive routing. In Symposium on 
Computer Architecture, pages 278-287, 1992. 

[65] Goldberg, D. E. and Linge, R., Alleles, loci, and the traveling salesman problem. 
In Proceedings of the 1st International Conference on Genetic Algorithms and 

Their Applications, Lawrence Erlbaum, Hillsdale, New Jersey, pages 154-159, 
1985. 

[66] Goldberg, D. E. Genetic algorithms in search, optimization, and machine 
learning. Addison-Wesley, Reading, MA, 1989. 

[67] Goldberg, D. Genetic Algorithm in Search, Optimization and Machine Learning, 
Addison-Wesley, Reading, MA, 1989. 

[68] Goldberg, D. and Richardson, J. Genetic algorithms with sharing for multimodal 
function optimization. In Proceedings of the 2nd International Conference on 

Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale, N.J., pages 41-49, 
1987. 

[69] Goldberg, D. and Deb, K. A comparative analysis of selection schemes used in 
genetic algorithms. In Foundations of Genetic Algorithms, Morgan Kaufmann 
Publishers, San Francisco, pages 69-93, 1991. 

[70] Goldberg, D., Korb, B., and Deb, K. Messy genetic algorithms: motivation, 
analysis and first results. In Complex Systems, vol. 3, pages 493-530, 1989. 

[71] Gonzalez, C., Lozano, J., and Larrañaga, P. Analyzing the PBIL algorithm by 
means of discrete dynamical systems. In Complex Systems, vol. 4, no. 12, pages 
465-479, 2001. 

[72] Grama, A., Gupta, A., Karypis, G., and Kumar, V. Introduction to Parallel 
Computing, The Benjamin/Cummings Publishing Company, Inc, Second edition, 
ISBN-10: 0-201-64865-2, 2003. 

[73] Gray, F. Pulse Code Communication, U.S. Patent 2 632 056, 1953. 

[74] Grefenstette, J. Optimization of control parameters for genetic algorithms. In 
IEEE Transactions on Systems, Man, and Cybernetics, 16(1), pages 122-128, 
1986. 

[75] Grefenstette, J. and Baker, J. How genetic algorithms work: a critical look at 
implicit parallelism. In Proceedings of the 3rd International Conference on Ge-

netic Algorithms, Morgan Kaufmann Publishers, San Francisco, pages 20-27, 
1989. 

[76] Groth, D. and Toby, S. Network+ Study Guide, Fourth Edition. Sybex, Inc., 
ISBN 0-7821-4406-3, 2005.  

[77] Hancock, P. An empirical comparison of selection methods in evolutionary 
algorithms. In Evolutionary Computing, Springer-Verlag, Berlin, pages 80-95, 
1994. 

[78] HantaFo, Z. and Haiou, S. Exact Algorithms for MAX-SAT. In Electronic Notes 

in Theoretical Computer Science, no. 1, 2003. 

[79] Harik, G. Linkage learning via probabilistic modeling in the ECGA. IlliGAL 
Report No. 99010, University of Illinois at Urbana-Champaign, Illinois Genetic 
Algorithms Laboratory, Urbana, Illinois, 1999. 

[80] Harik, G. R., Lobo, F. G., and Goldberg, D. E. The compact genetic algorithm. In 
IEEE Transactions on Evolutionary Computation, pages 523-528, 1999. 

[81] Hemani, A., Jantsch, A., Kumar, S., Postula, A., Oberg, J., Millberg, M., and 
Lindqvist, D. Network on a chip: An architecture for billion transistor era. In 
IEEE NorChip, 2000. 



150 References 
 
[82] Hennessy, J. L. and Patterson, D. A. Computer Architecture - A Quantitative 

Approach. 4th Edition, Morgan Kaufman Publishers, Inc., 2006. 

[83] Hiranandani S., Kennedy, K., and Tseng, C. W. Compiling Fortran D for MIMD 
Distributed-Memory Machines. In Communications of the ACM, pages 66-80, 
1992. 

[84] Ho, C.-T. Optimal broadcasting on SIMD hypercubes without indirect addressing 
capability. In Parallel and Distributed Computing, vol. 13, no. 2, pages 246-255, 
October 1991. 

[85] Ho, C.-T. and Raghunath, M. T. Efficient communication primitives on 
hypercubes. In Concurrency: Practice and Experience, no. 6, pages 427-457, 
1992. 

[86] Ho, R., Mai, K., and Horowitz, M. The future of wires. In Proceedings of the 
IEEE, vol. 89, issue 4, pages 490-504, 2001. 

[87] Holland, J. H. Adaptation in natural and artificial systems. University of Michi-
gan Press, Ann Arbor, MI, 1975. 

[88] Holton, D. A., Sheehan, J. The Petersen Graph, Cambridge University Press, 
ISBN 0-521-43594-3, 1993. 

[89] Huang, C. C. and McKinley, P. K. Communication issues in parallel computing 
across ATM networks. In IEEE Parallel and Distributed Technology, vol. 4, 
pages 73-86, 1994. 

[90] Hwang, K. and Kim, D. Generalization of orthogonal multiprocessor for 
massively parallel computation. In Proceedings of the 2nd Frontiers MPC, pages 
391-398, October 1988. 

[91] IBM Corporation. The CELL processor at IBM research, 2009, URL: <http:// 
www.research.ibm.com/cell/>. 

[92] Indiana University. Open MPI: Open Source High Performance Computing, 
2009, URL: <http://www.open-mpi.org/>. 

[93] Intel. Intel Nehalem-EX processor, 2009: URL: <http://www.intel.com/ 
pressroom/archive/releases/20090526comp.htm>. 

[94] Intel. Tera-scale research program, 2009. URL: <http://techresearch.intel. 
com/articles/Tera-Scale/1421.htm>. 

[95] ISO OSI model. In ISO/IEC standard 7498-1:1994, URL: <http://standards.iso. 
org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip>. 

[96] Ivanov, A. and Micheli, G. De. Guest Editors’ Introduction: The Network-on-
Chip Paradigm in Practice and Research”. In IEEE Design&Test of Computers, 
IEEE Los Alamitos CA, pages 399-403, 2005. 

[97] Jaffe, J. M. Distributed multi-destination routing: The constraints of local 
information. In Proceedings of the first ACM SIGACT-SIGOPS symposium on 

Principles of distributed computing, ACM New York, NY, USA, pages 49-54, 
1982. 

[98] Jantsch, A., Tenhunen, H. (Eds.), Networks on Chip, Kluwer Academic 
Publishers, 2003. 

[99] Joseph Culberson. Graph Coloring Resources Page, 2004, URL: <http:// 
webdocs.cs.ualberta.ca/~joe/Coloring/> 

[100] Jung, J. P. and Sakho, I. A Methodology for Devising Optimal All-port All-to-all 
Broadcast Algorithms in 2-Dimensional Tori. In Proceedings of the 28th Annual 
IEEE International Conference on Local Computer Networks (LCN’03), pages 
558-566, 2003. 



 References 151 

[101] Karguptam H. and Goldberg D, E. Search, blackbox optimization, and sample 
complexity. In Foundations of Genetic Algorithms 4, Morgan Kaufmann, San 
Mateo, CA, 1997. 

[102] Karim, F. and Nguyen, A. An Interconnect Architecture for Networking Systems 
on Chips. In IEEE Micro, pages 36-45, 2002. 

[103] Keltcher C. N. The AMD Opteron Processor for Multiprocessor Servers. In IEEE 
Micro, pages 66-76, 2003. 

[104] Kennedy, J. and Eberhart, R. C. Particle swarm optimization. In Proceedings of 
IEEE International Conference on Neural Networks, Piscataway, NJ., pages 
1942-1948, 1995. 

[105] Khonsari, A., Shahrabi, A., Ould-Khaoua, M., and Sarbazi-Azad, H. Performance 
comparison of deadlock recovery and deadlock avoidance routing algorithms in 
wormhole-switched networks. In IEEE Proceedings Computers and Digital 

Techniques, ISSN: 1350-2387, pages 97-106, 2003. 

[106] Kim, M. M., Davis, J. D., Oskin, M., and Austin, T. Polymorphic On-Chip 
Networks. In SIGARCH Compututer. Archititecture News, vol. 36, issue 3, pages 
101-112, 2008. 

[107] Koza, J. R. Genetic Programming, MIT Press, Cambridge, MA, 1992. 

[108] Kruskal, C. P. and Snir, M. The performance of multistage interconnection net-
works for multiprocessors. In IEEE Transactions on Computers, vol. 32, issue 
12, pages 1091-1098, 1983. 

[109] Kullback, S. and Leibler, R. A. On information and sufficiency. In Annals of 
Mathematical Statistics, vol. 22, pages 79-86, 1951. 

[110] Kumar, S., Jantsch, A., Soininen, J.-P., Forsell, M., Millberg, M., Oberg, J., 
Tiensyrja, K., and Hemani, A. A network on chip architecture and design meth-
odology. In Proceedings of IEEE Computer Society Annual Symposium on VLSI, 
pages 105-112, 2002. 

[111] Kumar, V., Grama, A., Gupta, A., and Karypis, G. Introduction to parallel 
computing: design and analysis of algorithms. Benjamin/Cummings Press, 1994. 

[112] Kuonen, P. The K-Ring: a versatile model for the design of MIMD computer 
topology. In Proceedings of the High-Performance Computing Conference 
(HPC'99), San Diego, USA, pages 381-385, 1999. 

[113] Kurose, J., F. and Ross, K., W. Computer Networking: A Top-Down Approach, 
Addison-Wesley, ISBN 0-321-49770-8, 2007. 

[114] Kuszmaul, B. C. Fast, Deterministic Routing, on Hypercubes, Using Small 
Buffers. In IEEE Transactions on Computers, IEEE Computer Society 
Washington, DC, USA vol. 39, no. 11, pages 1390-1393, 1990. 

[115] Kvasnicka, V., Pelikan, M. and Pospichal, J. Hill climbing with learning (An 
abstraction of genetic algorithm). In Neural Network World, vol. 6, pages 773–
796, 1996. 

[116] Lam, C. C, Huang, C. H., and Sadayappan, P. Optimal Algorithms for All-to-All 
Personalized Communication on Rings and Two Dimensional Tori. In. Journal of 
Parallel and Distributed Computing, no. 43, pages 3-13, 1997. 

[117] Larrañaga P. and Loazano J. A. Estimation of Distribution Algorithms, A New 

Tool for Evolutionary Computation, Kluwer Academic Publishers, pages 59-100, 
2002. 



152 References 
 
[118] Lau, C. M. and Chen, G. Optimal Layouts of Midimew Networks. In IEEE 

Transactions on Parallel and Distributed Systems, vol. 7, no. 9, pages 954-961, 
1996. 

[119] Lawrie, D. A. Access and alignment of data in an array processor. In IEEE 
Transactions on Computers., vol. 24, pages 1145-1155, 1975. 

[120] Leiserson, C. E. Fat-Trees: Universal Networks for Hardware Efficient Super-
computing. In IEEE Transactions on Computers, vol. C-34, pages 892-901, 
1985. 

[121] Levi, F. W. Finite geometrical systems. Calcutta, 1942. 

[122] Li, J. Aickelin, U. A Bayesian optimization algorithm for the nurse scheduling 
problem. In Proceedings of the Congress on Evolutionary Computation (CEC-
2003), pages 2149-2156, 2003. 

[123] Liao, W-K. and King, Ch-T. Valved routing: efficient flow control for adaptive 
nonminimal routing in interconnection networks. In IEEE Transactions on Com-
puters, vol. 44, no. 10, pages 1181-1193, 1995. 

[124] Ludvig, J., Hesser, J. and Manner, R. Tracking the representation problem by 
stochastic averaging. In Proceedings of the 7th International Conference on 

Genetic Algorithms, Morgan Kaufmann Publishers, San Francisco, pages196-
203, 1997. 

[125] Mao, W., Chen, J., and Watson, W. One-to-all personalized communication in 
torus networks In Proceedings of the 25th IASTED International Multi-Confer-

ence: parallel and distributed computing and networks, ACTA Press, Anaheim, 
CA, pages 291-296, 2007. 

[126] Marascuilo, L. A. and McSweeney, M. Nonparametric and distribution free 
methods for the social sciences. Brooks/Cole Publishing Company, CA, 1977. 

[127] Matsutani, H., Koibuchi M., and Yamada, Y. Non-Minimal Routing Strategy for 
Application-Specific Networks-on-Chips. In Proceedings of the 2005 Interna-
tional Conference on Parallel Processing Workshops, IEEE Computer Society, 
Washington, DC, USA, pages 273-280, 2005. 

[128] McKinley, P. K. andTrefftz, C. Efficient Broadcast in All-Port Wormhole-
Routed Hypercubes. In Proceedings of International Conference on Parallel 
Processing, vol. 11, pages 288-291, 1993. 

[129] McKinley, P. K., Tsai, Y. J., and Robinson, D. Collective communication in 
wormhole-routed massively parallel computers. In IEEE Transactions on 
Parallel and Distributed Systems, vol. 7, no. 2, pages184-190, 1996. 

[130] McKinley, P. K., Xu, H., Esfahanian, A.-H., and Ni, L. M. Unicast-Based 
Multicast Communication in Wormhole-Routed Direct Networks. In IEEE 

Transactions on Parallel and Distributed Systems, vol. 5, no. 12, pages 1254–
1265, 1994. 

[131] Message Passing Interface Forum. Document for Standard Message-Passing 
Interface, Technical Report CS-93-214, University of Tennessee, 1993. 

[132] Michalewicz Z. A survey of constraint handling techniques in evolutionary 
computation methods. In Proceedings of the 4th Annual Conference on Evolu-

tionary Programming, MIT Press, Cambridge, MA, pages 135-155, 1995. 

[133] Michalewiz, Z. Genetic Algorithm + Data Structure = Evolution Programs, 3rd 
edition, Springer-Verlag, New York, 1996. 

[134] Miller, M. and Širáň, J. Moore graphs and beyond: A survey of the degree/ 
diameter problem. In The Electronic Journal of Combinatorics, 2005. 



 References 153 

[135] Mitchell, M. An introduction to genetic algorithms. MIT Press, Cambridge, MA, 
1996. 

[136] Moon, B. R. and Kim, C. K. A two-dimensional embedding of graphs for genetic 
algorithms. In Proceedings of the 7th International Conference on Genetic 
Algorithms, Morgan Kaufmann Publishers, San Francisco, pages 204-211, 1997. 

[137] Mühlenbein, H. and Paaß, G. From recombination of genes to the estimation of 
distributions I. Binary parameters. In Lecture Notes in Computer Science 1411: 
Parallel Problem Solving from Nature – PPSN IV, pages 178-187, 1996. 

[138] Mühlenbein, H., Mahnig, T., Rodriguez, A. O. Schemata, distributions and 
graphical models in evolutionary optimization. In Journal of Heuristics, vol. 5, 
pages 215-247, 1998. 

[139] Mühlenbein, H., The equation for response to selection and its use for prediction. 
In Evolutionary Computation, vol. 5, no. 3, pages 303–346, 1997. 

[140] Munafo, R., The Diameter-Degree Problem, 2008, URL: <http://www.mrob.com 
/pub/math/ttl-problem.html>. 

[141] Murty, K. Linear and Combinatorial Programming. John Wiley, New York, 
1976. 

[142] Naijie, G. U. Efficient Indirect All-to-All Personalized Communication on Rings 
and 2-D Tori. In Journal of Computer Science and Technology, vol. 16, no. 5, 
pages 480-483, 2001. 

[143] Najaf-abadi, H. H. and Sarbazi-Azad, H. An empirical performance analysis of 
minimal and non-minimal routing in cube-based OTIS multicomputers. In 
Journal of High Speed Networks, IOS Press, vol. 16, no.2, pages 133-155, 2007. 

[144] Nayebi, A., Shamaei, A., and Sarbazi-Azad, H. Improving a Fault-Tolerant 
Routing Algorithm Using Detailed Traffic Analysis. In Proceedings of High Per-

formance Computation Conference, Springer-Verlag Berlin Heidelberg, pages 
766-775, 2007. 

[145] Neubauer, A. Adaptive non-uniform mutation for genetic algorithms. In 
Computational Intelligence Theory and Applications, LNSC,Springer Berlin / 
Heidelberg, pages24-34, 1997. 

[146] Ni, L. M. and McKinley, P. K., A Survey of Wormhole Routing Techniques in 
Direct Networks. In Computer, vol. 26, no. 2, pages 62-76, 1993. 

[147] Nupairoj, N. and Ni, L. M. Benchmarking of Multicast Communication Services. 
Technical Report MSU-CPS-ACS-103. Michigan State University, September 
1995. 

[148] Ocenasek, J. Parallel Estimation of Distribution Algorithms. PhD. Thesis, 
Faculty of Information Technology, Brno University of Technology, Brno, Czech 
Rep., 2002. 

[149] Oliver, I. M., Smith, D. J., and Holland, J. A study of permutation crossover 
operators on the travelling salesman problem. In Proceedings of the 2nd Interna-
tional Conference on Genetic Algorithms and Their Applications, Lawrence 
Erlbaum, Hillsdale, New Jersey, pages 224-230, 1987. 

[150] Ono, I, Yananyra, M., and Kobayashi, S. A genetic algorithm for job-based order 
crossover. In Proceedings of the IEEE International Conference on Evolutionary 
Computation, IEEE Press, Piscataway, NJ, pages 547-552, 1996. 

[151] Orvosh, D. and Davis, L. Using a genetic algorithm to optimize problems with 
feasibility constraints. In Proceedings of the First IEEE Conference on Evolu-
tionary Computation, IEEE Press, Piscataway, NJ, pages 548-552, 1994. 



154 References 
 
[152] Pande, P. P., Grecu, C., Ivanov, A., Saleh, R., and De Micheli, G. Design, Syn-

thesis, and Test of Networks on Chips. In IEEE Design and Test of Computers, 
vol. 22, no. 5, pages 404-413, 2005. 

[153] Park, J.-Y. L., Lee, S.-K., and Choi, H.-A. New algorithms for broadcasting in 

Meshes. George Washington University, Technical Report GWUIIST-93-03, 
1993. 

[154] Pegg, Ed Jr., Rowland, T., Weisstein, E. W. Cayley Graph. In MathWorld-A 

Wolfram Web Resource, 2009, URL: <http://mathworld.wolfram.com/Cayley 
Graph.html>. 

[155] Pelikan M. Hierarchical Bayesian Optimization Algorithm, Springer-Verlag, 
Berlin, pages 13-31, 2005. 

[156] Pelikan, M., Goldberg, D. E., and Cantú-Paz, E. BOA: The Bayesian optimiza-
tion algorithm. In Proceedings of the Genetic and Evolutionary Computation 

Conference GECCO-99, vol. 1, Morgan Kaufmann Publishers, San Fransisco, 
CA, pp 525-532, 1999. 

[157] Pelikan, M., Goldberg, D. E., and Cantú-Paz, E. Linkage problem, distribution 

estimation, and Bayesian networks. IlliGAL Report No. 98013, University of 
Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, 
IL. 1998. 

[158] Pelikan, M., Goldberg, D. E., and Lobo, F. G. A survey of optimization by 
building and using probabilistic models. In Computational Optimization and 
Applications, vol. 21, pages 5-20, 2002. 

[159] Pelikan, M. and Mühlenbein, H. The bivariate marginal distribution algorithm. In 
Advances in Soft Computing-Engineering Design and Manufacturing, Springer-
Verlag, London, pages 521-535, 1999. 

[160] Peters, J. and Syska, M. Circuit-switched broadcasting in torus networks. Simon 
Fraser University, Technical Report, CMPT TR 93-04, May 1993. 

[161] Peterson, H., Sen, S., Chandrashekar, J., Gao, L., Guérin, R. A, and Zhang, Z-L. 
Message-Efficient Dissemination for Loop-Free Centralized Routing. In ACM 
Computer Communication, vol. 38, no. 3, pages 65-74, 2008. 

[162] Preparata, F. P., and Vuillemin, J. The cube connected cycles: A versatile 
network for parallel computation. In Communications of the ACM, vol. 24, pages 
300-309, May 1981. 

[163] Prim, R. Shortest connection networks and some generalizations. In Bell Systems 
Technical Journal, vol. 36, pages 1389-1401, 1957. 

[164] Rechenberg, I. Evolutionsstrategie - Optimierung technischer Systeme nach 
Prinzipien der biologischen Evolution, Frommann-Holzboog, Stuttgart, Ger-
many, 1973. 

[165] Reeves, C. Diversity and diversification in genetic algorithms: some connection 
with tabu search. In Artificial Neural Nets and Genetic Algorithms, Springer-
Verlag, New York, pages 344-451, 1993.  

[166] Rissanen, J. J. Modelling by shortest data description. In Automatica, vol. 14, 
pages 465–471, 1978. 

[167] Rothlauf, F., Goldberg, D. E., and Heinzl, A. Bad codings and the utility of well-

designed genetic algorithms. IlliGAL Report No. 200007, University of Illinois 
at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL. 2000. 

[168] Russell, S. J. and Norving, P. Artificial Intelligence: A Modern Approach, 2nd 
edition, Prentice Hall, pages 137-160, 2002. 



 References 155 

[169] Rytter W. Context-free recognition via shortest paths computation: a version of 
Valiant's algorithm. In Theoretical Computer Science, vol. 143, no. 2, pages 343-
352, 1995. 

[170] Saad, Y. and Schultz, M. H. Topological properties of hypercubes. In IEEE 
Transactions on Computers, vol. 37, pages 867-872, July 1988. 

[171] Salinger, P. and Tvrdík, P. All-to-All Scatter in Kautz networks. In Lecture Notes 

in Computer Science, Springer Berlin / Heidelberg, vol. 1470, pages 1057-1061, 
1998. 

[172] Sarbazi-Azad, H. and Khonsari, A., Ould-Khaoua, M. Analysis of k-ary n-cubes 
with dimension-ordered routing. In The IEEE/ACM International Symposium on 

Cluster Computing and the Grid, Berlin-Brandenburg Academy of Sciences and 
Humanities, Berlin, Germany, pages 493-502, 2003. 

[173] Sastry, K., Efficient atomic cluster optimization using a hybrid extended compact 

genetic algorithm with seeded population. IlliGAL Report No. 2001018, Univer-
sity of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, 
Urbana, IL. 2001. 

[174] Sathish, S. V., Graham, E. F., and Jack, D. Automatically tuned collective com-
munications. Dallas, Texas, United States, IEEE Computer Society, 2000. 

[175] Schewefel, H. Evolution and Optimization Seeking, Wiley, New York, 1995. 

[176] Schmaltz, J. and Borrione, D. A Generic On Chip Network Model. Tima Lab. 
Research Report ISRN TIMA-RR-05/03-06-FR, 2005. 

[177] Schwarz, G., Estimating the dimension of a model. In The Annals of Statistics, 
vol. 6, pages 461-464, 1978. 

[178] Schwarz, J. and Ocenasek, J. Experimental study: Hypergraph partitioning based 
on the simple and advanced algorithms BMDA and BOA. In Proceedings of the 
International Conference on Soft Computing, pages 124–130, 1999. 

[179] Scott, D. S. Efficient All-to-All Communication Patterns in Hypercube and Mesh 
Topologies. In Proceeding of the Sixth Conference Distributed Memory Concur-
rent Computers, Portland, OR, pages 398-403, 1991. 

[180] Seidel, S. R. Circuit switched vs. store and forward solutions to symmetric 
communication problems. In Proceedings of the 4th Conference on Hypercube 

Computers and Concurrent Applications, pages 253-255, 1989. 

[181] Seitz, C. L. The Cosmic Cube. In Communication of ACM, vol. 28, pages 22-33, 
January 1985. 

[182] Sendhoff, B., Kreuts, M., and Seelen, W. A condition for the genotype-phenotype 
mapping: causality. In Proceedings of the 7th International Conference on Ge-

netic Algorithms, Morgan Kaufmann Publishers, San Francisco, pages 354-361, 
1997. 

[183] Shmoys, D. B. and Stein, C. Improved approximation algorithms for shop 
scheduling problems. In SIAM Journal on Computing, pages 617-632, 1994. 

[184] Sicortex, Inc. The webpage of SiCortex SC5832 system, 2009. URL: <http:// 
www.sicortex.com/ 
products/high_capability_system_sc5832>. 

[185] Silicon Graphics International. SGI Origin 3000 web page, 2009 URL: <http:// 
www.sgi.com/products/remarketed/origin3000/overview.html>. 

[186] Sony Corporation. The Playsation 3 web page, 2009, URL: <http://www 
.us.playstation.com/PS3/Systems?ref=http%3A//www.sony.com/index.php>. 



156 References 
 
[187] Spencer, C. Circuit-Switched Structured Communications on Toroidal Meshes, 

Master thesis, Simon Fraser University, 1994. 

[188] Stewart, L. C. and Gingold, D. A New Generation of Cluster Interconnect. White 
Paper, SiCortex Inc., 2006. 

[189]  Suh Y. J. and Shin, K. G. All-to-All Personalized Communication in Multi-
dimensional Torus and Mesh Networks. In IEEE Transactions on Parallel and 
Distributed Systems, vol. 12, no. 1, pages 38-59, 2001. 

[190] Sullivan H. and Bashkow T. R., A large scale, homogeneous, fully distributed 
parallel machine. In Proceedings of the 4th International Symposium on Com-
puter Architecture, 1997. 

[191] Sundar, N. S., Jayasimha, D. N., Panda, D. K., and Sadayappan, P. Hybrid Algo-
rithms for Complete Exchange in 2D Meshes. In IEEE Transactions on Parallel 
and Distributed Systems, vol. 12, no. 12, pages 1201-1218, December 2001. 

[192] Sur, S., Jin, H. W., and Panda, D. K. Efficient and scalable All-to-All personal-
ized exchange for infiniband-based clusters. In Proceedings of the 2004 Interna-
tional Conference on Parallel Processing, pages 275-282, 2004. 

[193] Syswerda, G. Schedule optimization using genetic algorithms. In Handbook of 
genetic algorithms, Van Nostrand Reinhold, pages 332-349, 1991. 

[194] Syswerda, G. Uniform crossover in genetic algorithms. In Proceedings of the 3rd 
International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, 
San Francisco, pages 2-9, 1989. 

[195]  Szymanski T. and Hamacher V. On the permutation capability of multistage 
interconnection networks. In IEEE Transactions on Computers, vol. 36, no. 7, 
pages 810-822, July 1987. 

[196] Thakur, R. and Choudhary, A. All-to-all communication on mesh with wormhole 
routing. In Proceedings of the 1994 International Parallel Processing Sympo-
sium, pages 561 -565, 1994. 

[197] Thierens, D. and Goldberg, D. Convergence models of genetic algorithm 
selection schemes. In Parallel Problem Solving from Nature, PPSN III, Springer-
Verlag, Berlin, pages 119-129, 1994. 

[198] Thomas, C. H., Charles, L. E., and Ronald, R. L. Introduction to Algorithms, 
MIT Press, 2000. 

[199] Tilera Copropration. The web page of Tile-Gx processor, 2009, URL: <http:// 
www.tilera.com/products/TILE-Gx.php>.  

[200] Tipparaju, V. and Nieplocha, J. Optimizing All-to-All Collective Communication 
by Exploiting Concurrency in Modern Networks. In Proceedings of the 2005 
ACM/IEEE conference on Supercomputing, IEEE Computer Society, Washing-
ton, DC, USA, ISBN 1-59593-061-2, 2005. 

[201] Tipparaju, V., Nieplocha, J., and Panda, D. Fast collective operations using 
shared and remote memory access protocols on clusters. In Proceedings of the 
international Parallel and Distributed Processing Symposium, 2003. 

[202] Top500.org. The webpage of the Roadrunner, 2009, URL: <http://www.top500. 
org/system/10377>. 

[203] Topkis, D.M. All-to-All Broadcast by Flooding in Communications Networks. In 
IEEE Transactions on Computers, n. 9, vol. 38, 1330-1333, 1989. 

[204] Toueg, S. Deadlock- and livelock-free packet switching networks. In Proceed-
ings of the twelfth annual ACM symposium on Theory of computing, Los Ange-
les, CA, USA, pages 94-99, 1980. 



 References 157 

[205] Towles, B. and Dally W. J. Worst-case traffic for oblivious routing functions. In 
Proceedings of the fourteenth annual ACM symposium on Parallel algorithms 
and architectures, ACM Press, NY, USA, pages 1-8, 2002. 

[206] Tsai, Y. and McKinley, P. K. A Broadcast Algorithm for All-Port Wormhole 
Routed Torus Networks. In IEEE Transactions on Parallel and Distributed Sys-

tems, vol.7, no.8, 1996. 

[207] Tsai, Y. and McKinley, P. K. An Extended Dominating Node Approach to 
Broadcast and Global Combine in Multiport Wormhole-Routed Mesh Networks. 
In IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 1, 1997. 

[208] Tseng, Y. C., Lin, T. H., Gupta, S. K. S., and Panda, D. K. Bandwidth-Optimal 
Complete Exchange on Wormhole- Routed 2D/3D torus Networks: A Diagonal-
Propagation Approach. In IEEE Transactions on Parallel and Distributed 
Systems, vol. 8, no. 4, pages 380-396, April 1997. 

[209] Tseng, Y. C., Ni, S. Y., and Sheu, J. P. Toward Optimal Complete Exchange on 
Wormhole-Routed Tori. In IEEE Transaction on Computers, vol. 48, no. 10, 
pages 1065-1082, October 1999. 

[210] Tusch, D. and Hommel, G. Multicast routing in Clos networks. In: Proceedings 
of 2004 Design, Analysis, and Simulation of Distributed Systems, Arlington, 
pages 21-27, 2004. 

[211] Tutte, W. T. Graph Thory, Cambridge university press, New York, ISBN 0-521-
79489-9, 2001. 

[212] Tvrdík P. Parallel Systems and Algorithms, Czech Technical University in 
Prague, Lecture Notes, Prague, p. 177, ISBN 80-01-01559-9, 1997. 

[213] Tzeng, N. F. Reliable butterfly distributed-memory multiprocessors. In IEEE 
Transactions on computers, vol. 43, no. 9. pages 1004-1013, 1994.  

[214] University of Tennessee. Parallel Basic Linear Algebra Subprograms (PBLAS) 
web page, 2009, URL <http://www.netlib.org/scalapack/pblas_qref.html>. 

[215] US Patent 7039058. Switched interconnection network with increased bandwidth 

and port count, 2006, URL: <http://www.patentstorm.us/patents/7039058 
/fulltext.html>. 

[216] Valiant, L. General context-free recognition in less than cubic time, In Journal of 
Computers and Systems, vol. 10, no. 2, pages 308-315, 1975. 

[217] Vignaux, G. A., Michalewicz Z. A genetic algorithm for the linear transportation 
problem. In IEEE Transaction on Systems, Man and Cybernetics, vol. 21, pages 
445-452, 1991. 

[218] Wall, M. GAlib: Matthew's Genetic Algorithms Library, Massachusetts Institute 
of Technology, 1999, URL <http://lancet.mit.edu/ga/>. 

[219] Walters, G. A., and Smith, D. K. Evolutionary design algorithm for optimal 
layout of tree networks. In Engineering Optimization, vol. 24, pages 261-281, 
1995. 

[220] Weisstein, E. W. Heawood Graph. In MathWorld - A Wolfram Web Resource, 
2009, URL: <http://mathworld.wolfram.com/HeawoodGraph.html>. 

[221] Weisstein, E. W. Utility Graph. In MathWorld - A Wolfram Web Resource, 2009, 
URL: <http://mathworld.wolfram.com/UtilityGraph.html>. 

[222] Weisstein, E., W. Hypercube. In From MathWorld - A Wolfram Web Resource. 
2009, URL <http://mathworld.wolfram.com/Hypercube.html>. 

[223] Weisstein, E., W. Torus. In MathWorld - A Wolfram Web Resource. 2009, URL: 
<http://mathworld.wolfram.com/Torus.html>. 



158 References 
 
[224] Weisstein, W. E. Fast Fourier Transform. In MathWorld - A Wolfram Web 

Resource. 2009, URL <http://mathworld.wolfram.com/FastFourierTransform 
.html>. 

[225] Wetzel A. Evaluation of the effectiveness of genetic algorithms in combinatorial 
optimization, Technical report, University of Pittsburgh, 1983. 

[226] Whitley, D. A different genetic algorithm. In Proceedings of the Rocky Mountain 

Conference on Artificial Intelligence, Denver, 1989.  

[227] Youssef, A. S. and Narahari, B. Banyan-hypercube networks. In IEEE Transac-
tions on Parallel Distributed Systems. vol. 1, no. 2, pages 160-169, April 1990. 

[228] Zhigljavsky, A. Theory of Global Random Search, Kluwer Academic Publishers, 
1991. 

[229] Zhuang, X., Liberatore, V. A Recursion-Based Broadcast Paradigm in Wormhole 
Routed Networks. In IEEE Transactions on parallel and distributed systems, vol. 
16, no. 11, November 2005. 



 

 

Appendix  

The following tables summarize the upper bounds τCC (G) in terms of numbers 
of communication steps achieved on investigated topologies using the UMDA 
algorithm. Two integers in one cell separated by a slash indicate that the lower 
bound (a smaller integer) has not been reached while a single integer represents 
both the lower and the upper identical bounds reached by UMDA. Empty cells 
(illustrated by hyphens) denote the cases that have not been tested for their time 
complexity yet 
 

Topology OAS AAS OAB AAB 

Hypercube-8 3 4 2 3 
Hypercube-16 4 9 2 4 
Hypercube-32 7 16 2 7 
Hypercube-64 11 35/32 3 11 
Hypercube-128 19 - 3 - 
Hypercube-256 32 - 4/3 - 
Ring-bi-8 4 8 2 4 
Ring-bi-16 8 34/32 3 8 
Ring-bi-24 12 78/72 4/3 12 
Ring-bi-32 16 140/128 4 16 
Ring-uni-8 7 28 3 7 
Ring-uni-16 15 128/120 4 15 
Ring-uni-24 23 300/276 5 23 
Ring-uni-32 31 550/496 5 31 
Mesh-3x3 4,3,2 6 2,2,2 4 
Mesh-3x4 6,4,3 12 3,2,2 6 
Mesh-4x4 8,6,4 16 3,2,2 8 
Mesh-5x5 12,8,6 32 3,3,3, 12 
Mesh-4x8 16,11,8 64 3,3,3 16 
Mesh-6x6 18,12,9 56/54 4,3,3 18 
Mesh-7x7 24,16,12 - 4,4,3 24 
Mesh-8x8 32,22,16 - 4,4,3 32 
Mesh-9x9 40,27,20 - 4,4,4 - 
Mesh-10x10 50,33,25 - 5,5,5 - 
Torus-3x3 2 4 2 3 
Torus-3x4 3 6 2 3 
Torus-4x4 4 9/8 2 4 
Torus-5x5 6 16/15 2 6 
Torus-4x8 8 33/32 3 11/8 
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Topology OAS AAS OAB AAB 

Torus-6x6 9 30/27 3 9 
Torus-7x7 12 - 3 13/12 
Torus-8x8 16 - 3 18/16 
Torus-9x9 20 - 4/3 - 
Torus-10x10 25 - 4/3 - 
Petersen-10 3 5 2 3 
Kautz-12 4 7 2 4 
Heawood-14 5 10/9 2 5 
Levi-30 10 31/28 3 10 
Kautz-36 12* 34/31 3 12 
K-Ring-8 2 3 2 2 
Midimew-8 2 3 2 2 
Spidergon-6 2 3 2 2 
Spidergon-8 3 4 2 3 
Spidergon-12 4 9 2 4 
Spidergon-16 5 17/16 2 5 
Spidergon-20 7 26/25 3 7 
Spidergon-24 8 37/36 3 8 
Spidergon-28 9 51/49 3 9 
Spidergon-32 11 70/64 3 11 
Spidergon-36 12 91/81 3 12 
Spidergon-64 21 - 3 24 
AMP-8 2 3 2 2 
AMP-23 6 14 2 8/6 
AMP-32 8 22 3 8 
AMP-42 11 31 3 14/11 
AMP-53 13 46 3 14/13 
Omega-8 7 7 3 8 
Omega-16 15 16/15 4 16/15 
Butterfly-8 7 7 3 7 
Butterfly-16 15 16/15 4 16/15 
Clos-8 11 12/11 4 12/11 
Clos-16 15 16/15 4 16/15 
B-Tree-4 3 4 2 3 
B-Tree-8 7 16 3 8/7 
B-Tree-16 15 64 4 20/15 
B-Tree-32 31 256 5 64/31 
Fat-Tree-4 3 3 2 3 
Fat-Tree-8 7 7 3 7 
Fat-Tree-16 15 15 4 15 
Fat-Tree-32 31 32/31 5 31 
Full-Tree-7 6,4,3 12 3,2,2 7 
Full-Tree-15 14,12,8,7 56 3,3,3,3 15 
Full-Tree-31 30,28,24,16,15 240 4,4,4,4,4 31 

Full-Tree-63 
62,60,56, 
50,48,32 

992 5,5,5,5,5,5 64 

2-fat-hypercube-4 7 8 3 7 
2-fat-hypercube-8 15 17 4 15 
2-fat-hypercube-16 31 36 6 33 
2-fat-hypercube-32 63 - 7 - 
2-fat-spidergon-6 11 12 4 12 
2-fat-spidergon-8 15 17 4 16 
2-fat-spidergon-10 19 25 5 20 
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Topology OAS AAS OAB AAB 

2-fat-spidergon-12 23 37 5 24 
2-fat-spidergon-14 27 50 5 29 
2-fat-spidergon-16 31 66 6 37 
2-fat-spidergon-18 35 86 6 42 
3-fat-spidergon-4 11 11 4 11 
3-fat-spidergon-8 23 38 5 24 
3-fat-spidergon-12 35 82 6 42 
4-fat-spidergon-4 15 16 4 16 
4-fat-spidergon-6 23 38 5 24 
4-fat-spidergon-8 31 64 6 34 

 
 
Performance of the Kauz-12 network with a single faulty link (reduced perform-
ance is in bold). 
 

link OAS AAS OAB AAB 

no fault 4 7 2 4 
0→3 6 9 3 6 

0→5 6 9 3 6 

0→4 6 9 3 6 

1→7 4 9 2 6 

1→6 4 9 2 6 

1→8 4 9 2 6 

2→B 4 9 2 6 

2→A 4 9 2 6 

2→9 4 9 2 6 

3→0 4 9 2 6 

3→1 5 9 2 6 

3→2 5 9 2 6 

5→7 4 9 2 6 

all other 4 9 2 6 

 
Performance of the 4×4 2D mesh network with a single faulty link (reduced 
performance is in bold). 

 
link OAS AAS OAB AAB 

no fault 8 16 3 8 
0→1 15 22 3 15 

0→4 15 22 3 15 

all other 8 22 3 8 

 

Performance of the 4×4 2D mesh network with a single faulty node. (reduced 
performance is in bold). 

 
node OAS AAS OAB AAB 

no fault 8 16 3 8 
0 15 22 3 15 

4 15 22 3 15 

all other 8 22 3 8 
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Time complexity of the evolved schedules for the 8-node hypercube and spider-
gon for a few M-to-N CC patterns. 
 

Topology Pattern MMS MMB 

Within the same base 2 2 
Between the bases 4 2 
Lower base to all 4 3 

Hypercube-8 

diagonal to the lower base 2 2 
Within the left half 2 2 
Left half to right half 3 3 
Left half to all 3 3 

Spidergon-8 

Odd nodes to even nodes 3 2 
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