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Abstract. This paper addresses automatic calibration of images, where
the main goal is to extract information about objects and relations in
the scene based on the information contained in the image itself. The
purpose of such calibration is to enable, for example, determination of
object coordinates, measurements of distances or areas between objects
in the image, etc. The idea of the presented work here is to detect objects
in the image whose size is known (e.g. traffic signs in the presented case)
and to exploit their relative sizes and positions in the image in order to
perform the calibration under some assumptions about possible spatial
distribution of the objects (e.g. their positioning on a plane in the pre-
sented case). This paper describes related research and the method itself.
It also shows and discusses the results and proposes possible extensions.
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1 Introduction

The quality of cameras as well as computational power of devices has been in-
creasing steadily in last few years which has led to a growing interest in computer
vision methods and their utilisation in a variety of applications. Many applica-
tions exist which do not need to work with calibrated images; however, some
applications demand scene calibration in order to perform successfully. Mobile
robot navigation, forensic engineering, object parameters estimation, or different
kinds of scene reconstruction are typical classes of algorithms which benefit from
the calibrated scene.

A dependence exists between precision of the calibration process and the
amount and quality of input information required for it. On one side of the scale
lies the approaches such as image-based rendering, which do not extract too much
geometric information. They are not very precise in terms of the reconstructed
3D structure, but they do not have special demands on the input data. On the
other side of the scale lies the more precise methods, such as stereometry, which
can be very accurate but can also demand complex and exact input data (i.e.
precise camera locations and their internal parameters). A similar dependence
often arises between the precision and complexity of the calibration process and



further – between the complexity and type of structure which can be extracted
from the scene. Methods generating projective description of the scene tend to
be simpler than methods working with an affine description. However, Euclidean
reconstruction usually requires far more complex methods [1].

We developed a simple method of scene calibration which does not have
comprehensive demands on the input data. It requires only one image of the scene
without knowledge of either external or internal camera parameters. However,
objects of a known size must be present in the scene and their distance from
a planar surface or ground-plane must be known. Also, some basic assumptions
about the camera are made. Our goal is to obtain a partial Euclidean description
of the scene. In order to be more specific, we want to estimate certain parameters
of objects in the scene, such as their size, distance between them, or sizes of
specific areas in the scene. This can be achieved by estimating parameters of the
ground-plane and real object positions.

1.1 Related Work

As uncalibrated images allow only projective reconstruction, either camera or
scene calibration is needed to obtain an affine or Euclidean scene description.
Scene calibration is a task of setting-up a relation between real-world coordinates
and image coordinates by exploiting the scene constraints. This task has often
been confused with (internal or external) camera calibration, which is a different
task altogether and is generally not needed for scene calibration.

Methods of scene calibration vary considerably, mainly between single and
multiple-view approaches. When using two views of a scene, enough information
is provided for depth reconstruction. More than two views help us to reduce
uncertainty or allow us to check the consistency of features matched between in-
dividual images [2]. When the camera motion between views is known, we speak
about stereo vision and principles of epipolar geometry that can be exploited.
Such methods are able to produce an Euclidean description of the scene but
often require knowledge of internal camera parameters in addition to external
ones - i.e. Salman and Yvinec [3] produce a highly accurate scene representation
in the form of a triangle mesh. When camera motion between views is unknown,
we speak about structure from motion problem where epipolar geometry is also
very useful. Szelisky and Kang [4] do not perform camera calibration which
makes only projective reconstruction possible, but their achievement was to re-
cover a dense depth map of the scene from multiple views. Koenderink and Van
Doorn [5] use just two views for affine structure recovery, but they require the
internal camera parameters to be known. Christy and Horaud [6] showed in their
work that it is possible to obtain even a Euclidean scene description efficiently.
Multiple views of the scene are often not available in practise, so single view
techniques are needed.

In general, one view alone does not provide enough information for a com-
plete 3D reconstruction. Ambiguity has to be resolved by using some apriori in-
formation (i.e. by utilising geometric relations of objects in real world). Avitzour



assumes that objects rest on a planar ground and that the camera internal pa-
rameters are known in his calibration procedure [7]. Based on these precondi-
tions, it is possible to estimate parameters of the ground-plane. Criminisi et al.
does not need to know anything about the camera, he only needs some special
geometric primitives like parallel lines to be present in the image. It is then
possible to determine the vanishing line and vanishing points with use of affine
geometry and perform affine measurements in the scene [8]. Similarly Masoud
and Papanikolopoulos use regular geometric primitives like directional roadway
markings to calibrate traffic scenes [9]. Huynh does not work with either external
or internal camera parameters; however he specialises in scenes which contain
some symmetrical objects or object configurations [10].

Our method described in the following sections works with only a single view
of the scene and it does not require knowledge of any camera parameters. It is
able to calibrate scenes without regular geometric primitives, in contrast to the
majority of other single view methods.

2 Proposed Calibration Method

Let us suppose that objects in the image, whose approximate size is known,
exist and that they rest on a planar surface or their distance from that surface is
known. The goal of scene calibration is to find optimal projection parameters in
the described case. These parameters affect backprojection of image coordinates
of captured objects onto real-world coordinates. Optimal projection parameters
are achieved when backprojected points form a plane. Because 3 points in any
configuration in the space define a plane, at least 4 points (i.e. objects of the
known size) are needed to determine optimal parameters of the ground-plane
and to successfully perform the calibration.

2.1 Projection Model

We use a model of perspective projection because images acquired by most of the
cameras are produced through the naturally occurring perspective projection.
Since dimensions of the sensing element are not known, it is modelled as a planar
lattice with an arbitrary aperture which can be arbitrarily positioned on the
optical axis. As the freedom of both of these variables is redundant we choose to
fix the aperture, thus working with the position of the screen in our calculations.
We presume that the rays coming from the scene converge in the centre of
projection and draw an image on the screen.

Three types of entities are used – entities related to real-world objects (de-
noted by symbols without any index, e.g. A, x); entities related to planar images
of objects (denoted by symbols with one apostrophe, e.g. A′, x′); and entities
related to spherical images of objects (denoted by symbols with two apostrophes,
e.g. A′′, x′′). A right-handed Cartesian coordinate system, which is attached to
the camera, has been used to determine world coordinates. Its origin is iden-
tical with the centre of projection, where x-axis goes horizontally from left to



right, y-axis goes vertically from top to bottom and z-axis goes perpendicularly
through the screen into the scene as shown in Fig. 1. We assume that the z-axis
is identical with the optical axis of the camera (i.e. the principal point of the
camera is in the middle of the image). Practically, the principal point is often
displaced by a few pixels from the centre of the image. However, experiments
show that inaccuracy caused by this fact is insignificant. The origin of the image
coordinate system is in the middle of the image and the x′-axis and y′-axis are
parallel to their real-world counterparts, x-axis and y-axis respectively. Transi-
tion from a world coordinate system to an image coordinate system is, therefore,
simply done by discarding the z-coordinate.

Fig. 1. Object image A′ on the planar screen is backprojected using rays r1 and r2
which belong to a conic beam. The real distance of star-shaped object A from the
centre of projection O is determined by the position in which the object clips precisely
into the beam.

Real-world object coordinates are computed from image coordinates using
backprojection together with a known size of real objects. The procedure can be
visualised by casting rays from the centre of projection through border points of
an object image. Such rays form a conic beam. The real object must be situated
inside this beam. The distance of the object from the centre of projection can
be determined by exploiting the fact that a real object must clip precisely into
the beam (see Fig. 1 for illustration). In practice, only one ray per object has to
be cast to determine its distance. This ray should go through the same point of
each object (e.g. centre of gravity, bottom left corner, etc.).

In order to determine the object coordinates, it is necessary to know the
scale of the map between the real object and its spherical image. The scale s is
computed as a fraction of object height h and the height of its spherical image
h′′:

s =
h

h′′
. (1)



Sizes of both planar and spherical images of the object depend on out-of-
plane rotation of the object (regarding the image plane here). If the chosen
object detector does not provide information about out-of-plane rotation, it is
necessary to introduce an abstraction – for example, to assume that bounding
spheres of objects are detected instead of the objects themselves. In cases where
the chosen object detector does not detect bounding spheres of objects, it is
possible to simulate such behaviour simply: based on the knowledge of width and
height of the real object, it is possible to decide which of its dimensions is less
distorted in the image. The other dimension can then be appropriately enlarged
so the distortion will be virtually equal in both dimensions. This abstraction
causes exactly the same consequence as if all the detected objects were oriented
towards the camera. Sizes of images of object bounding spheres, which are of
equal size and of equal distance from the centre of projection, depend on the
distance of the object from the optical axis – objects further from the optical axis
has larger planar images. It is possible to eliminate this dependency by converting
the planar image into the spherical image. That is why we compute with sizes of
spherical images instead of planar images (see Fig. 2 for an illustration and [11]
for a proof of this phenomenon).

Fig. 2. Perspective projection on a plane and on a sphere. Objects A and B and their
bounding spheres of equal size hA = hB are in equal distance from the centre of
projection O. Size h′

A of planar image and size h′′

A of spherical image of the object A

are of nearly equal size, because A is situated near the optical axis z. However, this is
not true for size h′

B of planar image and size h′′

B of spherical image of the object B.
Sizes h′

A and h′

B of planar images of both objects differ significantly, whereas spherical
images of both objects are of the same size h′′

A = h′′

B .

the height of a spherical image h′′ is given by top and bottom y-coordinates
y′t and y′

b
of the planar image and also by distance k of the screen from the

centre of projection.
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Vector v
′ going from the centre of projection O to the planar image A′ is

created afterwards:

v
′ =

−−→
OA′ . (3)

Consequently, this vector is normalised to the magnitude of k (which means
a conversion from a planar image to a spherical image) and multiplied by the
map scale s:

v =
k · v′

‖v′‖
s . (4)

The resulting vector v has its initial point in the centre of projection O and
its terminal point in some point A of the real-world object. Thus, the object is
at coordinates

A = O + v . (5)

The described procedure is only valid if all objects are elevated at the same
known height e above the surface. If this height is nonzero, it is necessary to
shift the computed plane vertically downwards by e to approximate the real
ground-plane. Although the vertical direction in the scene is not known, it can
very well be estimated from the average top-down orientation of all detected
objects. If the assumption about no out-of-plane rotation of objects is made,
as stated above, the vertical direction can then be estimated as an average in-
plane rotation angle ᾱ of all detected objects, where α is provided by the object
detector. If the objects are elevated at different heights above the surface, it is
first necessary to unify their heights in order to be able to estimate the ground-
plane. The unification can then be done (e.g. by a vertical projection of the
centre of each object on the surface). Such points will be called a “foot” of the
object A and will be referred to as Af . Image coordinates A′

f
of the foot must

be estimated by shifting image coordinates A′ of the object by vector d
′ given

by the known object elevation e and its in-plane rotation angle α.

A′

f = A′ + d
′ , (6)

where

d
′ =

[

sinα · e ·
h′

h
; cosα · e ·

h′

h

]

. (7)

Image coordinates A′

f
of the foot will replace image coordinates A′ of the object

itself in further calculations, assuming the foot is approximately at the same
distance from the camera as the object itself.



2.2 Finding Optimal Solution

It is possible to search for the optimal value of projection parameter k with
the ability to determine real-world 3D coordinates of objects of known size for
a certain value of k. The assumption that all objects rest on the ground, or are
situated at the known height above it, is exploited here.

This means we search for such a k when it is possible to lay a plane through
a cluster of 3D points with minimal effort (minimising an error function). Param-
eters of the plane can be determined by means of Principal Component Analysis
(PCA) [12], because we actually search for the subspace (i.e. the plane), in which
the 3D points will be orthogonally projected by minimising the error, expressed
as the sum of squared distances of the points from such a plane.

First, the mean [x̄, ȳ, z̄]T of all 3D coordinates is subtracted from each coor-
dinate to eliminate the bias of the coordinate set. This mean expresses the point,
through which the resulting plane will pass. Then, n×3 matrix M is constructed

M =





x0 x1 · · · xn−1

y0 y1 · · · yn−1

z0 z1 · · · zn−1



 , (8)

where n is the number of objects whose 3D coordinates have been computed.
Each column of the matrix contains coordinates of one object. Therefore, it is
possible to create a covariance matrix Σ of matrix M

Σ = MMT . (9)

Afterwards, a triplet of eigenvalues and eigenvectors of 3×3 matrix Σ is com-
puted by means of PCA. Eigenvectors associated with the two largest eigenvalues
lie in the searched plane. The third eigenvector associated with the smallest
eigenvalue is perpendicular to both of the other eigenvectors and it is a normal
vector of the plane. The smallest eigenvalue is equal to the sum of squared dis-
tances of all 3D points from the given plane; thereby, it expresses a mean square
error of the solution for a given k.

Because we work with a non-linear system, analytical calculation of eigen-
values and eigenvectors is very complex. Therefore, we search for an optimal
projection parameter k by searching for the minimum of an error function. It
has been experimentally found that the solution error as a function of k has
a typical behaviour as depicted in Fig. 3. It usually has several smooth maxima
alternating with sharp minima for small values of k. For large values of k, the
function asymptotically approaches some value dependent on the input param-
eters of the calibration problem. Based on the behaviour of the error function,
it is possible to find its global minimum and thereby also the optimal projection
parameter k.

The function value can be sampled, for example, with an exponentially grow-
ing step. If some minimum is found, its location is refined by dividing the sam-
pling step repeatedly. Afterwards, the step size is reinitialised and the search for
another minimum takes place. If there has been a global minimum in the course
of the function, this approach has led to its localization in every examined case.



Fig. 3. Typical behaviour of the solution error (logarithmic scale) as a function of
k (distance of the screen from the centre of projection). For small values of k sev-
eral smooth maxima alternating with sharp minima appear. For large values of k the
function asymptotically approaches some value dependent on input parameters of the
calibration problem. Global minimum occurs at optimal value ko of the projection
parameter k.

3 Experimental Results

The described method has been implemented in C++ language and tested on
a set of artificial as well as real scenes. Traffic signs were used as objects of known
size because they appear quite frequently in urban scenes, most of them are of
a unified size and good traffic sign detectors were also available. The examined
scenes contained typically 4 – 7 traffic signs. Every time the surface in the scene
was planar, the minimum of the error function was found. The order of error of
the optimal solution was usually about 10−5 – 10−17. If the scene surface was
not planar but curved, the error function did not contain any minima, thus the
method could not be applied. Examples of both artificial and real calibrated
scenes follow in Fig. 4 and Fig. 5.

The whole procedure suffers from small inaccuracies, the main sources of
them being a geometric distortion of the image caused by the acquisition process
and imperfect detection of objects. The inaccuracies are further amplified when
backprojecting object images back onto real-world coordinates, which are later
utilised in the surface plane estimation.

If parameters of the camera are not known, geometric distortion of the image
cannot be easily dealt with. However, the accuracy of the object detection can be
controlled very well. The effect of detection inaccuracy on the calculation of ob-
ject real-world coordinates is considerable, especially when the images of objects
are small (i.e. far or small objects). See Fig. 6 for an illustration of displacement.
For example, 1 px detection inaccuracy causes approximately 28% displacement
for an object whose image is only 10 px large. The detection inaccuracy affects
much less objects with larger images, because the linear growth of object image
size causes quadratic growth of maximal tolerable detection inaccuracy, which
will cause constant displacement. When maximal acceptable displacement is,



Fig. 4. Artificial scene. Top: scheme of the captured image – circles represent detected
traffic signs with a diameter 0.7m on 2.27m long rods. The image has been constructed
using perspective projection of the scene on a screen with a pixel size of 1.651µm, which
was positioned 1 cm away from the centre of the projection. Each traffic sign is marked
(from top to bottom) with actual coordinates of the contact point with the ground-
plane (the foot), its computed coordinates and displacement relative to the real size of
each object. Bottom: course of the error function for the depicted scene. Our method
has found the minimum at value k = 0.0103192m = 1.03192 cm with error 5.82 · 10−6,
which is very close to the actual distance of the screen from the centre of the projection.



Fig. 5. Real scene with a roundabout. Top: image of the scene with 4 detected traffic
signs (black rectangles). Computed distances between signs are stated (black lines).
Bottom: course of the error function of the solution for the depicted scene. Our method
has found the global minimum at value k = 0.00305137m with error 2.86114 · 10−14.
(note that the error function has 2 minima in this case). However, the ground truth is
unknown in this case.



for example, 5%, the uttermost detection inaccuracy can only be a fraction of
a pixel for object images which are about 10 px large, 3 px for images that are
about 40 px large and 10 px for images which are about 70 px large. Thus, it is
desirable to exploit the presence of rather bigger and nearer objects when cal-
ibrating a scene. A crucial aspect of automatic calibration is also the choice of
an accurate object detector or an accurate manual marking of the objects when
using semi-automatic calibration.

Fig. 6. Object displacement (in %) is the relative error of computed real-world coordi-
nates with respect to object size. The displayed chart shows how displacement depends
on the size of the object image and on the error of object detection. Objects with small
images suffer from immense displacement while, objects with mid-sized and big images
are much more resistant to object detection inaccuracies.

4 Conclusions

We developed a simple scene calibration method, which demands only a single
view of the scene. The basic idea of the described method is to exploit relative
sizes and positions of known-sized objects in the image under the assumption
that the objects lie in a plane. This method is able to work semi-automatically
if objects are marked manually, as well as automatically if object detectors are
used. The calibrated scene makes possible the determination of coordinates of
objects lying on the ground-plane, measurement of distances between the objects
or measurement of areas between them.

Our approach is limited by the fact that it works only with planar scenes;
despite this limitation, the method is practically usable in various environments
(e.g. in urban environment). The prerequisite is the presence of known-sized



objects in the image and the knowledge of their positions with respect to the
ground-plane.

The method has been tested on a set of artificial and real scenes. In the
scenes with planar surface, a solution has been always found. The precision of
the solution is sufficient for many applications, which demand a calibrated scene.
Future research includes processing of the scenes with a non-planar surface and
deeper sensitivity analysis of the method.
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