
Precise IPv4/IPv6 Packet Generator

Based on NetCOPE Platform

Jiff Matousek, Pavol Korcek

Faculty of Information Technology

Brno University of Technology

Bozetechova 2, Brno, 612 66, Czech Republic

xmatou06@stud.fit.vutbr.cz, ikorcek@fit.vutbLcz

Abstract-This paper presents an architecture of a hardware
network packet generator designed for the COMBOv2 cards
using the NetCOPE development platform. The packet generator
internal structure allows synthetic IPv4 and IPv6 network packet
creation as well as the real network packet transmission. Based
on COMBOv2 add-on interface card, the generator is able to
transmit packets at speed of 2xlO Gbitls or 4xl Gbitls. Synthetic
data are created using high quality pseudo-random number
generator. If desired, previously captured network packets can
be transmitted back to the network with exactly the same time
drift as were captured. This is accomplished by extremely precise
timestamps, which can be generated by the Timestamp Module
included in the NetCOPE platform.

Index Terms-Packet Generator, IPv6, NetCOPE, COMBOv2,
Pseudo-Random Numbers, Timestamp.

I. INTRODUCTION

Generating network traffic that reflects different network

conditions and topologies is critical for performing valid ex­

periments in network testbeds. Any new network component,

protocol or design requires extensive and accurate testing in

sufficiently realistic settings. While network simulation tools

can be very helpful in understanding the impact of a given

change to a network, their predictions might not be accurate

due to their simplified and restricted models and settings.

Generating synthetic and real network traffic is becoming

crucial. Moreover, it becomes important to generate network

packets with high precision. The precise emission of network

packets can very accurately simulate different topologies and

can also reflect the behaviour of the network very realistically.

Towards this issue, our paper presents an architecture of

a network packet generator for new generation of IPv6 Internet

infrastructure. Similarly, the generator can be used in mixed

or in strict IPv4 networks. Our highly precise generator is

based on the COMBOv2 cards [1] utilizing the NetCOPE

platform [2]. This platform is generally used for rapid de­

velopment of hardware accelerated network applications. But

until now, it has only been used for applications aimed to

capturing, filtering or monitoring of the high-speed networks

at the wire speed.

II. RELATED WORK

The most common way of generating network traffic is

to use open source software tools for capturing packets and

their subsequent replay (e.g. tcpdump [3] for capturing and

978-1-4244-9756-0/11/$26.00 ©2011 IEEE

tcpreplay [4] for replaying). The advantage of this ap­

proach is the use of ordinarily available software and hardware

components. Unfortunately, generic hardware components can,

depending on a vendor, vary in their behaviour and therefore

the output traffic might be also very inaccurate as shown

for example in [5]. Another disadvantage of this approach is

also a very low throughput. For high-speed networks, it is

impossible to use this approach for generating network traffic

at full wire speed mainly because of the system IP stack.

Another possibility of generating network traffic is repre­

sented by commercial hardware network traffic generators.

They are powerful tools for generating network traffic at full

wire speed. These hardware generators provide broad options

for setting the properties of generated traffic, so they are

useful for many kinds of network tests and experiments. Their

disadvantages include mainly very high price and also their

proprietary nature makes them very inflexible for the research

on new techniques and protocols. As the representants of

this category, we can mention systems from Spirent [6] or

stochastically based hardware generators from Ixia [7]. Ixia

systems allow the users to create and save synthetic traces to

be rerun in the future. These systems can be useful, however,

they do not allow replaying of previously captured real traffic.

Also, it has been shown that properties of this kind of devices

are not accurate enough for some experiments [8].

To the best of our knowledge, there is only one similar

network packet generator [9]. This Stanford University Packet

Generator (SPG) is based on a so-called the NetFPGA plat­

form. It uses 4xl Gbitls hardware card with the FPGA chip

and a quite small on-board memory. Packets to be sent by

SPG must first be loaded into the platform's memory from

a PCAP file stored on a host, and only after that they can

be transmitted to the network. This two-stage process means

that SPG can only replay short previously captured traces.

The largest memory on the board is 64 MB which is about

only 0.5 second of traffic at the speed of 1 Gbitls. Using on­

board memory for buffering network traffic rises from the need

of sending packets to the card over the PCI bus. There is

a 33 MHz 32-bit bus on the NetFPGA platform with a theoret­

ical top transfer rate of 1056 Mbitls, but there is a significant

overhead even in a host where the bus is not shared. Most

importantly, the number of DMA transfers between the driver

and the platform is limited such that the total throughput is

only 260 Mbitls when individually transferring 1518 B long

packets. Some software improvements were made to SPG to

increase its ability to generate longer sequences at full wire

speed of 1 Gbitls [5]. However, these improvements caused

sending only zero data in packets.

Our work differs from the previous approach in two impor­

tant aspects. Firstly, for sending packets from a host to a card,

we are using the NetCOPE DMA controllers which can ensure,

jointly with PCI Express bus, high throughput. It allows using

our packet generator without any on-board data buffering in

configuration with the 4x 1 Gbitls interface card. Secondly, the

NetFPGA based generator expects captured network traffic.

Our generator can also be used in a different way, where

no real network traffic is available, by virtue of generating

network traffic with the high speed synthetic network packet

generator used in our architecture.

III. NETCOPE PLATFORM ON COMBOv2 CARDS

The family of COMBO cards was designed by CES­

NET [10] and dedicated for building hardware accelerated

network applications. The main idea of this family of cards

is the maximum flexibility provided both by the mother card

extendable by a set of add-on cards and by the FPGA chip on

the mother card. Thanks to using add-on cards, it is possible

e.g. to change a number of network interfaces or to connect an

external precise clock signal generator. On the other hand, the

FPGA chip allows changing of COMBO card's functionality

while maintaining the benefits of hardware acceleration.

Currently, second generation of the COMBO cards family

(COMBOv2) is in use [11]. The mother card of this generation

is the PCI Express x8 vl.l card equipped with the Xilinx

Virtex-5 LXTIFXT FPGA chip for a hardware accelerated ap­

plication, and the Xilinx Spartan-3E FPGA chip for rebooting

the mother card on the fly. Equipment of the mother card

includes among others the DDR2 SODIMM memory (up to

2 GB) as well as the Low Speed Connectors and the high speed

Interface Connectors for connection of add-on cards. From the

set of add-on cards we use interface cards (in configuration

2x I 0 Gbitls or 4x 1 Gbitls) and COMBOL-GPS card providing

precise clock (CLK) signal and pulse per second (PPS) signal

based on information gathered from a GPS receiver.

For the rapid development of hardware accelerated network

applications on the COMBOv2 cards, the NetCOPE platform

has been developed. This platform consists of the firmware

for the FPGA chip on the mother card and the software for

accessing the card's functionality from the operating system.

A. Hardware

Firmware of the NetCOPE platform comprises three main

components: the Generic Interconnection System (GICS) [12],

the DMA Module and the Network Module [13]. The user

application is tied with all three modules as shown in Fig. l.

Main components of the NetCOPE platform provide the

most important functionality for the user application - con­

nection to the PCI Express bus (implemented by GICS),

COMBOL-GPS card DDR2SDRAM

.............. ··············N�icoPE·A;�·hi;��i�·;�········· .. J t············

DDR2 Controller

User
Application

PCI Express
Interface

Network
Module

Fig. I. Firmware of the NetCOPE platform

Network
Interface

Network
Interface

hardware support for fast DMA transfers (the DMA Mod­

ule) and simple and uniform access to network interfaces

independent of their type (the Network Module). Except

these integral parts of the NetCOPE platform, there are also

some expansion modules providing extra functionality - the

Timestamp Module able to generate precise 64-bit hardware

timestamps (thanks to signals from COMBOL-GPS card) and

the DDR2 Controller making available memory placed in the

DDR2 SODIMM connector on COMBOv2 mother card.

B. Software

The NetCOPE platform software layer handles the control

of the COMBOv2 cards and allows the user to use function­

ality implemented as a part of this platform in the FPGA.

Software layer of the NetCOPE platform is built hierarchically

and it can be divided horizontally (device drivers, libraries and

tools) or vertically (basic inputloutput operations and support

for the fast DMA transfers) [14]. Software provided together

with the NetCOPE platform can thus be used to control any

user application without any futher changes.

IV. NETCOPE PLATFORM PERFORMANCE

Since related documents about the COMBOv2 cards family

and the NetCOPE platform (e.g. [2] and [1]) describe only

high performance operation in receive (RX) direction, we had

to examine its performance in transmit (TX) direction, mainly

between the host and the card. The reachable throughput from

the RAM on host computer to the COMBOv2 internal memory

has been tested using DMA transfers over the PCI Express x8

link. Two different configurations of the host computer were

chosen, as shown in Tab. I. First one is a standard server

platform and second a powerful gaming platform.

TABLE I
CONFIGURATION OF TESTED HOST COMPUTERS

Parameter l Ist Configuration I 2nd Configuration

CPU 2 x Xeon®CPU E5420 @ Intel®Core1MO CPU
2.50 GHz 920 @ 2.67 GHz

Mainboard Supermicro X7DB8 Supermicro X8STE
Chipset Inte1®5000P Inte1®X58

12
Data throughput

11
IGb/s]

r
/

10

/
r

/ /
/ / -+-1st configuration

I /
/ j

___ 2nd configuration

./ /
./ ./'

----£ ------- Block size [8]

16 32 64 128 256 512 1024 2048 4096

Fig. 2. Host RAM to FPGA throughput test results-FPGA design work­
ing frequency: 218.75 MHz, MaxReadRequestSize (PCI Express parameter):
2048B

All other parameters not shown in Tab. I, were kept un­

changed. It is especially the host RAM memory (4 GB) and

the operating system version (32-bit Linux-2,626,3), DMA

engine runs in our test design at 218.75MHz, and one data

transfer bulk consists of 20 * 103 transfers. Each test was

performed with a different data block size from 4 Bytes up

to PCI Express maximum of 4 kB (4096 Bytes). Measurement

was performed by utilizing the FPGA internal counter, which

started to count before and stopped immediately after all the

transfers were done. The results are shown in Fig. 2. It clearly

demonstrates that two different configurations reached highly

different results. By this test, it was shown that it is not possi­

ble to reliably generate packets from software on an arbitrary

server platform. For higher packet rates it is necessary to use

the DDR2 memory on COMBOv2 card for storing packets

(capture & replay scenario). Another possibility, if there is

no sufficient platform, is generating the packets synthetically

without fruitless loading of PCI Express bus.

V. P RECISE PACKET GENERATOR ARCHITECT URE

Our Precise IPv4IIPv6 Packet Generator is based on the

NetCOPE platform and fully uses functionality provided by

platform modules. The generator represents a user application

for the NetCOPE platform and it consists of newly imple­

mented modules depicted in Fig. 3. This is the architecture

for one network interface. In designs with multiple network

interfaces the basic architecture is repeated for each network

interface and some other minor changes are made.

L PSEUDORANDOM

�
GENERATOR

FromlTo J L GICS

REGISTER
CONTROL PACKET

� AND COMPLETER
STATUS FILE

f
'-

I-
MAIN CONTROL

FSM

FromlTo
DMA Moduie

From
Timestamp Module

PACKET LIMITER

�

I
MEMORY

READERlWRITER

FromlTo
DDR2 Controller

To
Network
Module

From
Network
Module

Fig. 3. Precise Packet Generator architecture for one network interface

The main function is to generate synthetic IPv4IIPv6 net­

work traffic at wire speed. For this purpose, the generator

architecture includes high quality pseudo-random number gen­

erator. In addition to generating synthetic network traffic, our

generator is able to replay previously captured real network

traffic at speed of 2x 1 0 Gbitls or 4x 1 Gbitls. In this case, the

DDR2 memory present on the COMBOv2 mother card is

used for storing network traffic, which is then transmitted via

chosen network interface. Content of the DDR2 memory can

be loaded either from a PCAP file stored in the host memory or

directly from the network interface. Because of the possibility

in generating very precise hardware timestamps, it allows to

transmit previously captured network traffic with exactly the

same time drift as packets were captured.

When the generator is not in operation, the system works

as a standard network interface card. In such a case, it is

possible to use software tools for capturing and replaying

network traffic (tcpdump, tcpreplay). As we have shown

in the previous paragraph, on some platforms it is possible to

transfer data from the host memory to the COMBOv2 card

with a bit rate higher than 10 Gbitls. Thanks to this, we could

transmit data via one 10 Gbitls network interface at full wire

speed. Unfortunately, this mode of operation cannot guarantee

wire speed for both 10 Gbitls interfaces of an add-on card.

To overcome this, DDR2 memory must be used as described

above.

A. Pseudo-Random Generator

Our pseudo-random number generator is based on LFSR,

which can effectively be implemented in FPGAs [15]. This

type of generators are based on a shift register with feedback

function. The input of the feedback function is driven by

two or more bits from registers. Bit positions are given by

the primitive polynomial coefficients, also called taps. The

computed output value is fed to the input of whole shift

register (Fibonacci scheme) or alternatively to the input of

TABLE IT
SCORE FROM DIEHARD TEST (LOWER IS BETTER) [17]

Generator Type Effective Score

true 22
11LFSR 154
LFSR 756

next register (Galois scheme). For more details, see [16]. As

the feedback function, exclusive-OR or its negation is often

chosen.

LFSRs are easily implementable in the FPGA, but, on

the other hand, generated sequence of numbers has not very

good properties, which can be shown e.g. by so-called serial

test [17]. To overcome this issue, a new architecture of

multiple LFSR used in parallel (MLFSR) was proposed and

firstly introduced in [16]. This improved version of LFSR

can successfully pass even the Diehard battery test of ran­

domness [18]. Table II shows effective score from Diehard of

simple LFSR, MLFSR and also true random generator, where

the randomness comes from atmospheric noise [19]. Because

of these very good properties, MLFSR was used as a pseudo­

random number generator in our packet generator.

Generating synthetic data in IP network packets often re­

quires values from predefined interval (e.g. for IP addresses,

TCPIUDP port numbers, etc.). We used normalization for

number conversion to desired interval. For fast FPGA imple­

mentation, division in normalization was done by shifting and

multiplication utilizes hard DSP48 slices. It is also important

to note, that MLFSR is capable of generating zero values [16].

This could not be normally reached with a standard LFSR (not

allowed state).

B. Packet Completer

In this module of the packet generator, all data forming

the Ethernet frame of IPv4 or IPv6 packet are put together

into one Ethernet frame. These data include mainly fields of

IPv4 or IPv6 header, which can be either generated using

pseudorandom generators or specified as constants.

First of all, the completer needs to know the version of

IP protocol. When this is clear, it acquires the information

about the header fields which are generated and which are

constant. Based on this knowledge, it chooses generated value

or constant value for each header field.

By default, the payload of the IP packet is filled by

pre-defined data pattern. Nevertheless, it is also possible to

generate IP packet's payload similarly as IP header fields.

In both cases, the length of the payload can be constant or

generated as a number from a sequence or as a random value.

The Ethernet header for already formed IP packet is added

and whole Ethernet frame is sent to the Packet Limiter using

the FrameLink protocol.

C. Memory ReaderlWriter

This module of the packet generator is dedicated to take care

mainly about communication with the memory on the COM­

BOv2 mother card (through the DDR2 Controller), where

SWITCHING LOGIC L To

From/To
I - -- -- -- -- :::::: ::: Packet

=, rmm
T

, f 'I ��

FRAMELINK-DDR2
TRANSFORMER

To/From
DDR2 Controller

Fig. 4. Memory ReaderlWriter internal structure

real network traffic is stored. Another task of this part is to

ensure correct interconnection between three different types

of data interface (the Network Module interface, the DMA

Module interface and the DDR2 Controller interface), all of

them are full-duplex. As Fig. 4 shows, there is the FrameLink­

DDR2 Transformer for transforming data from the FrameLink

protocol (similar to Xilinx LocalLink protocol [20]) used

on the Network Module interface and the DMA Module

Interface to format used on the DDR2 Controller interface and

vice versa. Second submodule implements the interconnection

between data interfaces requested in different modes of gen­

erator's operation. When the generator is not in operation, the

DMA Module interface is connected directly to the Network

Module interface. Input of the DDR2 memory interface can

be connected to both the DMA Module and the Network

module, because storing real network traffic to the memory

is possible from the host PC memory as well as directly from

the network interface. Output memory interface is connected

to the Network Module interface in order to transmit stored

real network traffic to the network. Before the transmitted data

reach the Network Module, they must pass through the Packet

Limiter, which can be either active or inactive.

D. Packet Limiter

This part of the generator plans and controls the data

transmission. Structure of this module is depicted in Fig. 5.

Processing of incoming data, as well as the module they come

from, depends again on selected mode of operation.

During transmission of previously captured real network

traffic, the data come from the Memory ReaderlWriter module.

These data can contain timestamps which can be used for

delaying transmission of packet until designated time. For

such operation, it is necessary to edit packets' timestamps

in software (to shift them forward in time) before packets

are loaded back to the COMBOv2 card's memory. In the

Packet Limiter, timestamps are extracted from packets and

each component is stored in separate FIFO. Packet is then kept

in the FIFO until the corresponding timestamp does not match

the currently generated one. If all timestamps were shifted the

From
Packet

Completer
or

Memory
Reader

TIMESTAMP
EXTRACTOR

Timestamp FIFO

Packet FIFO ..

From
Timestamp Module

J1
TIMESTAMP

COMPARATOR

To
Network

----- Module

LENGTH
COUNTER

,

LIMITING
ALGORITHM

Fig. 5. Packet Limiter internal structure

same time, this mechanism ensures transmISSIOn of packets

with exactly the same time drift as they were captured.

In the same mode of operation, as well as during generation

of synthetic network packets, it is possible to limit transmis­

sion of packets to the specified bit rate. This functionality is

provided by limiting algorithm. Based on the selected bit rate

and a length of the last transmitted packet, this algorithm insert

delay before transmission of next packet, so the average link

bit rate is at the specified value before next transmission starts.

Length of previously transmitted packet is determined during

its transmission through the length counter.

Transmission of packets can also be unrestricted, i.e. done at

the full wire speed. This is allowed in each mode of operation.

E. Register Control and Status File

Set of registers included in this module serves as a place to

store all control and status information of the packet generator.

Most of the generator modules use the information stored in

registers belonging to this component. A brief description of

registers of different modules follows.

A significant number of registers belong to the Pseudo­

random Generator. For each field of IPv4/IPv6 header, there

is place to store three important values for generating field's

content. These values are called from, to and incremenCsize.

Data for the IP headers are then generated starting at value

from with given incremencsize and restarting at value to. The

information whether IPv4 or IPv6 header fields are generated

is also present. Another part of the register set is used by the

Main Control FSM. This module controls other components

of the generator design, so information about the actual mode

of operation is crucial for its function. Some registers are

dedicated also to the Packet Completer. It has to know which

fields of IPv4/IPv6 header are generated by Pseudorandom

Generator and which should be considered as constant. The

value of such constant field is then expected to be stored in the

register dedicated for value from. The last part of the control

register file belongs to the Packet Limiter. For this module of

the generator, there is stored the information about required

packet output bit rate. This can be specified either absolutely

or relatively.

F. Main Control FSM

To control the operation of all packet generator modules, the

Main Control FSM was implemented. Based on selected mode

of operation and also on feedback from controlled components,

it controls these components and ensures their correct settings

according to the actual mode. These modes include generating

synthetic network traffic, loading data to the DDR2 memory

either from a PCAP file stored in the host memory or from the

network interface, transmitting previously captured network

traffic from the DDR2 memory to the network interface and

operating as a standard network interface card.

Most settings take place in the Memory ReaderlWriter,

where the interconnection of data interfaces must change in

almost each mode. Another important component to control

is the Packet Limiter, where two different types of packet

transmission limitation can take place. According to an actual

mode of operation and also on presence of timestamps, the

Main FSM must select an appropriate way of limitation.

When the limitation according to timestamps is selected,

the Main Control FSM must also ensure a generation of

actual timestamps for comparison with those recorded during

packet's capturing.

VI. GENERATOR EVALUATION

The Precise IPv4IIPv6 Packet Generator is together with

the NetCOPE platform targeted primarily for the COMBOv2

mother card with Virtex-5 XC5VLX155T FPGA chips. It

also expects attached COMBOL-GPS card and one of the

inteface add-on cards (4x 1 Gbitls or 2x 10 Gbit/s). It will also

be possible to implement the generator on a different network

device, if the NetCOPE platform is implementable on it.

Nevertheless, in further text we consider its implementation

on the COMBOv2 card.

Proposed packet generator was designed in compliance

with the main idea of COMBOv2 cards family - maximum

flexibility and scalability. It is therefore possible to easily

implement it for configurations with different number of

network interfaces. The user is also allowed to select preferred

implementation of pseudo-random generators and to adjust

size of the Packet and the Timestamp FIFOs in the Packet

Limiter module. Because all of these nonfixed parameters of

the system we present only upper limit of device utilization,

which should not be exceeded in any configuration. The

values presented in the Tab. III refer to design for one

network interface. The expected device utilization of designs

with multiple network interfaces can be computed simply by

multiplication of these values by number of network interfaces.

For comparison and also in order to clarify total device

utilization (together with the NetCOPE platform), values for

empty NetCOPE design are also shown in Tab. III.

Based on information presented in Tab. III, it is clear that

the packet generator together with the NetCOPE platform

can be implemented on the COMBOv2 mother card even in

configuration with four network interfaces. The most resource

consuming parts of the generator's design are the Pseudo­

Random Generator and the Register Control and Status File.

TABLE III
DEVICE UTILIZATION OF VIRTEX-5 XC5VLX155T

Resource

Precise Packet Generator (one interface)
NetCOPE platform (2xlOGbitis interfaces)

Summary
Available
Utilization (%)

TABLE IV
COMPARISON OF P ROPOSED PACKET GENERATOR AND PACKET

GENERATOR ON THE NETFPGA PLATFORM

Property Proposed Packet NetFPGA

Generator Packet
Generator

10 Gigabit Ethernet support YES NO
SW based traffic replaying YES NO
DRAM based traffic replaying YES YES
Synthetic traffic generation YES NO
IPv6 support YES YES
Output rate limitation YES YES
Timestamp based transmission YES YES

This is due to need for generating/storing some information

for each IPv4 and IPv6 header field and therefore it would be

very difficult to omptimize device utilization caused by these

two modules. On the other hand, the least device utilization is

caused by the Main Control FSM and the Packet Completer.

Another important parameter is maximal operation fre­

quency. Requirements on generator's frequency raises mainly

from connection to the Network Module. Interface of this

module contains 64-bit wide data paths with clock signal at

frequency of 156.25 MHz. This corresponds to the definition

of XGMII protocol [21], where frequency is the same, data

path is half of width and DDR transferring is used. This

operation frequency is easily achievable for the proposed

packet generator.

If we are looking for some similar application, the only one

comparable possibility is represented by the packet generator

implemented on the NetFPGA platform [9]. To evaluate bene­

fits of our solution, we compare some basic characteristics of

these two FPGA-based packet generating applications. Results

of this comparison are shown in Tab. IV.

This comparison clearly shows, that proposed packet gen­

erator beats that one built on the NetFPGA platform mainly

by supporting faster Ethernet standard and by possibility to

generate synthetic network traffic. On the other hand, we have

to admit, that except the support for generation of synthetic

network traffic, all other advantages of our solution are based

on differences in selected implementation platforms.

VII. CONCLUSION

In this paper, we have presented an architecture of the

packet generator based on the COMBOv2 cards and the

NetCOPE platform. Our generator is able to replay previously

captured network traffic either directly from software (up to

rate 10 Gbitls) or with usage of an on-board DDR2 memory (at

full speed of 2xIOGbitls). Another possibility is to generate

synthetic network traffic at full speed of 2x I 0 Gbit/s. Thanks

to a possibility in generating extremely precise hardware

timestamps, the generator is also able to replay captured

network traffic with exactly the same time drift as it was

captured.

ACKNOW LEDGMENT

This work was partially supported by the Grant Agency of

the CzechRepublic under contract No. GDI02/09/H042 Math­

ematical and Engineering Approaches to Developing Reliable

and Secure Concurrent and Distributed Computer Systems and

by the Research Plan No. MSM0021630528 Security Oriented

Research in Information Technology and by the FIT-S-ll-l

project.

REFERENCES

[I] J. Novotny and M. Zactnik. (2008) COMBOv2 - hardware accelerators
for high-speed networking. [Online]. Available: http://www.liberouter.
org/docs/2008-02-10_COMBOv2.Academic]orum.pdf

[2] T. Martinek and M. Kosek, "NetCOPE: Platform for rapid development
of network applications," in Proc. of 2008 IEEE Design and Diagnostics

of Electronic Circuits and Systems Workshop, Apr. 2008, pp. 1-6.
[3] Tcpdump. (2010) Web site of tcpdump and libpcap. [Online]. Available:

http://www.tcpdump.org/
[4] tcpreplay developers. (20 I 0) tcpreplay website. [Online]. Available:

http://tcprepla y. s ynfin.netitrac/wiki/tcprepla y
[5] G. Salmon, M. Ghobadi, Y. Ganjali, M. Labrecque, and J. G. Stetfan,

"NetFPGA-based precise traffic generation;' in Proc. of NetFPGA

Developers Workshop'09, 2009.
[6] Spirent Communications. (2011) Spirent homepage. [Online]. Available:

http://www.spirent.com/
[7] lxia. (2011) lxia homepage. [Online]. Available: http://www.ixiacom.

coml
[8] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown, J. Naous, and

G. Salmon, "Performing time-sensitive network experiments," in Pro­

ceedings of the 4th ACMIIEEE Symposium on Architectures for Net­
working and Communications Systems, Apr. 2008, pp. 127-128.

[9] G. A. Covington, G. Gibb, J. Lockwood, and N. McKeown, "A packet
generator on the NetFPGA platform," in 17th IEEE Symposium on Field

Programmable Custom Computing Machines, 2009. FCCM '09, Apr.
2009, pp. 235-238.

[10] CESNET. (2011) CESNET homepage. [Online]. Available: http:
Ilwww.cesnet.cz/

[II] --. (2009) Our hardware website. [Online]. Available: http:
Ilwww.liberouter.org/hardware.php?ftag=U

[12] T. Mrilek, T. Martinek, and J. Korenek, "GICS: Generic interconnection
system," in 2008 International Conference on Field Programmable Logic

and Applications, Sep. 2008, pp. 263-268.
[13] J. Matousek, "Implementation and verification of network interface

blocks," bachelor's thesis, FIT BUT, Brno, 2009.
[14] The Liberouter Project Team. (2010) NetCOPE platform handbook.

[Online]. Available: http://www.liberouter.org/netcope/handbook.html
[15] P. Alfke, "Efficient shift registers, LFSR counters, and long

pseudo-random sequence generators," Application Note, Xilinx,
Inc., Jul. 1996. [Online]. Available: http://www.xilinx.com/supportl
documentation/application_notes/xapp052.pdf

[16] P. L'Ecuyer and F. Panneton, "A new class of linear feedback shift
register generators," in Winter Simulation Conference Proceedings, 2000,

2000, pp. 690-696.
[17] P. Korcek, "Pseudorandom number generation in FPGA," bachelor's

thesis, FIT BUT, Brno, 2007.
[18] G. Marsaglia. (1995) Diehard battery of tests of randomness. [Online].

Available: http://www.statfsu.edu/pub/diehard/
[19] M. Haahr. (2011) RANDOM.ORG homepage. [Online]. Available:

http://www.random.org/
[20] Xilinx Inc. (2010) LocalLink user interface. [Online]. Available:

http://www.xilinx.com/products/ipcenterlLocaILink_UserInterface.htm
[21] Part 3: Carrier Sense Multiple Access with Collision Detection

(CSMAlCD) Access Method and Physical Layer Specifications, IEEE
Std. 802.3, 2005.

