
Hardware Architecture for Packet Classification

with Prefix Coloring

Viktor Puš, Michal Kajan, Jan Kořenek

Faculty of Information Technology

Brno University of Technology

Božetěchova 2, Brno, Czech Republic

Email: ipus,ikajan,korenek@fit.vutbr.cz

Abstract—Packet classification is a widely used operation in
network security devices. As network speeds are increasing, the
demand for hardware acceleration of packet classification in
FPGAs or ASICs is growing. Nowadays algorithms implemented
in hardware can achieve multigigabit speeds, but suffer with great
memory overhead. We propose a new algorithm and hardware
architecture which reduces memory requirements of decomposi-
tion based methods for packet classification. The algorithm uses
prefix coloring to reduce large amount of Cartesian product
rules at the cost of an additional pipelined processing and a
few bits added into results of the longest prefix match operation.
The proposed hardware architecture is designed as a processing
pipeline with the throughput of 266 million packets per second
using commodity FPGA and one external memory. The greatest
strength of the algorithm is the constant time complexity of the
search operation, which makes the solution resistant to various
classes of network security attacks.

I. INTRODUCTION

The growth of computer networks provides more opportu-

nities for new applications and services, but also gives new

possibilities for suspicious activities. Malicious traffic is usu-

ally detected by Intrusion Detection Systems (IDS) and then

filtered by firewalls which performs per-packet classification

based on the given set of rules.

Packet classification is a problem of assigning each network

packet into one or more classes. Classes are unambiguously

determined by rules. Each rule defines a condition for all

significant packet header fields (or dimensions). These fields

are usually a 5-tuple (Source IP Address, Destination IP

Address, Source Port, Destination Port, Protocol). A condition

may be exact match, prefix match (usually for IP addresses),

range match (for ports), or a wildcard, which matches any

value. The goal of a packet classification algorithm is to find

the matching rule with the highest priority. The output of the

algorithm is the number of the matched rule.

As network speeds are increasing, the demand for a high

speed packet classification is also growing. Usually, constant

time complexity is required in order to achieve wire speed

processing and avoid vulnerability to attacks. Classification

algorithms commonly use preprocessing of rules to create a

data structure that supports high-speed searching. Nowadays

algorithms and hardware architectures can achieve multigiga-

bit speeds only at the cost of high memory requirements.

We propose a novel method how to reduce memory require-

ments and still achieve high-speed packet classification. The

proposed reduction significantly decreases overhead given by

the Cartesian product nature of classification rules at the cost

of additional pipelined processing which is performed by only

small amount of logic resources.

The rest of the paper is organized as follows: in the next

section we discuss the related work and explain the reason

of the excessive memory overhead. Section III introduces

our new method of lowering memory overheads of these

algorithms, as well as a proposed architecture of the whole

packet classification algorithm. We provide a detailed example

of algorithm function in section IV. Experimental results of

our work are summed up in Section VI and Section VII

concludes the paper.

II. RELATED WORK

The simplest classification scheme uses only one packet

header field. Packet routing in IP networks is a common

example of one-dimensional classification (only destination

IP address is important for routing). This search on prefixes

is called the Longest Prefix Match (LPM) operation. From

the given set of prefixes with various lengths, the LPM

algorithm finds the one that best fits the given full-length value.

This corresponds to both IPv4 and IPv6 addressing schemes.

Because the LPM operation is performed in IP packet routing,

it is well studied topic. Basic algorithm and data structure for

the LPM is a trie – the tree algorithm processing one input bit

at each tree level and returning the last valid prefix visited.

Trie is often modified to process more input bits in each

step and to reduce memory requirements. Popular examples

of such algorithms are the Tree Bitmap [1] and the Shape

Shifting Trie [2], both having a strong potential for hardware

implementation. Fig. 1 shows an example of trie data structure

for the longest prefix match operation. Black circles represent

valid prefixes (possible results of LPM operation).

From the wide choice of available algorithms for classifica-

tion in multiple fields, we discuss those which are related to

our work. All of them belong to the family of decomposition-

based methods. We focus on these algorithms because of their

potential to achieve the constant time complexity of the search

operation. In decomposition methods, packet classification

is divided into several steps (or pipeline stages in case of

hardware implementation). Figure 2 shows the basic scheme

of decomposition algorithms.



1

0 1

11

1

0

10*

1010*

10101

111*

Fig. 1. Example of trie with four stored prefixes. Result for input 10100
will be 1010*.

Rule number

...LPM LPM

Rule Search

Field 1 Field n

Packet

...

LPM vector

Fig. 2. Basic scheme of decomposition algorithms.

The input of packet classification is a vector of packet

header fields. LPM operation is a first step which is performed

for every packet header field independently. LPM is well

studied and can be performed very fast: recently published

approaches achieve billions of lookups per second using a

dedicated hardware (ASIC or FPGA) [3]. Each LPM search

engine returns one item from the prefix set, where prefix set

is the set of all LPM results for the given ruleset and the

given dimension. Result of the LPM Stage is the LPM vector,

containing one prefix for each dimension. After the LPM, all

fields of the resulting LPM vector must be processed in some

way (this is specific for each algorithm) to get the correct rule

number. Key issue is that the state space of LPM vectors can

be extremely large. This is because all possible values of the

LPM vector are obtained by creating the Cartesian product of

prefix sets.

One possible method of combining LPM results together

is the Distributed Crossproducting of Field Labels [4]. LPM

is modified to return all valid prefixes (not only the longest

one) for the given field value. What follows is the hierarchical

structure of small crossproduct engines. Inputs of each engine

are two sets of prefixes (or Labels, in general). Engine then

performs set membership query for each possible pair of

Labels. Result of the engine is another set of Labels. The

result of the last engine is in fact a set of rules, from which

the one with the highest priority is selected.

Multi Subset Crossproduct Algorithm [5] brings further im-

provements to decomposition methods. In this work, Dharma-

purikar et al. replace Cartesian products by pseudorules.

Because pseudorules expansion is still similar to Cartesian

product, authors provide heuristics on how to break ruleset

into several subsets, eliminating the majority of pseudorules.

The paper also identifies rules that generate excessive amount

of pseudorules. These rules are called spoilers and are treated

in a separate algorithm branch (in hardware implementation,

spoilers are moved to small on-chip TCAM) to further reduce

number of pseudorules. The LPM operation is slightly mod-

ified to return a result for each subset, because subsets may

contain different prefixes. A Bloom filter is associated with

each subset to perform set membership query. If the Bloom

filter output is true, one rule table memory access is performed

to retrieve the resulting rule or pseudorule.

We have recently published another Cartesian product-

based approach: the Perfect Hashing Crossproduct Algorithm

(PHCA) [6]. Our method uses specifically constructed hash

function to map all pseudorules (in the form of LPM vectors)

onto correct rules. This way, it is no longer necessary to store

pseudorules, which saves a considerable amount of memory.

The algorithm achieves high packet rate due to very simple

Rule Search Stage. The processing time for each packet is

guaranteed to be constant and PHCA is probably the first

packet classification algorithm with constant time complexity

of the search operation. However, the number of pseudorules

affects the size of data structures of the hash function. This

means that even this memory-optimized algorithm may be

significantly improved if the number of pseudorules is reduced.

The algorithms mentioned in this section achieve very good

speeds in case of implementation in FPGA, but their memory

requirements may be limiting and should be improved. Our

current goal is to design a new algorithm inspired by previous

Cartesian product-based algorithms. The two memory opti-

mization techniques introduced in [5] (spoilers removal and

use of subsets) are orthogonal to the method presented in this

paper, which means that they are direct competition, but also

that all memory reduction methods may be used together to

produce even better results.

III. MEMORY OPTIMIZATION

We describe in detail how pseudorules are created and why

this process increases the size of data structures in packet

classification algorithms.

To cover all valid combinations of LPM results, pseudorules

must be added to the ruleset. In fact, a pseudorule is always

a special case of some rule. This is best explained by the

example of pseudorules generation in Fig. 3. We can see a

simplified classification in two three-bit dimensions with three

rules. In each dimension, trie is shown to illustrate the LPM

operation. Colored arcs are the rules.

For example, LPM vector for packet with header fields

(111, 100) will be (1∗, 100). This combination is not in

the original ruleset, but it is clear that the correct result is

rule R1(1∗, ∗)1. Therefore, pseudorule P1(1∗, 100) has to be

added to handle this situation. Tab. I contains all rules and

pseudorules together. Target rule in this table points to the

correct classification result.

1Symbol * denotes prefix or wildcard



Fig. 3. Three rules R1, R2, R3 and three added pseudorules.

Rule Dimension 1 Dimension 2 Target rule

R1 1* * R1
R2 1* 00* R2
R3 101 100 R3

P1 1* 100 R1
P2 101 00* R2
P3 101 * R1

TABLE I
RULES AND PSEUDORULES.

The generation of pseudorules is similar to Cartesian prod-

uct, and may potentially expand the ruleset significantly, but

not all possible combinations of prefixes need to be added. If

the universal rule (a rule covering all possible packets) was in

the ruleset, then all possible combinations would have to be

added. However, this rule can be removed from the ruleset and

returned as a result only if no other rule matches the packet.

Therefore, pseudorules are a subset of Cartesian product of all

prefix sets.

Let’s now focus on the fact that the LPM operation is per-

formed independently for each field in decomposition-based

packet classification algorithms (see Fig. 2). The advantage of

this scheme is the strong potential for parallel computation.

On the other hand, LPM results are logically related – only

certain combinations of LPM results form a rule, the rest of

them are unwished pseudorules. Thus, the knowledge of LPM

result from one dimension should affect LPM result in other

dimensions.

A. Color Processing Stage

Let’s suppose that the LPM operation is modified to return

all matching prefixes, not only the longest one. Then, let each

prefix P contain a precomputed bitmap for each of remaining

dimensions. In the bitmap, there is one bit for each prefix.

The bit corresponding to prefix R is set to 1, if prefixes P
and R appear together in some rule. Otherwise, the bit is set

to 0. This way, it is possible to remove almost all pseudorules

easily by a simple logic, because each LPM result contains

an information about ”allowed” and ”suppressed” prefixes

from other dimensions. To be able to remove all pseudorules,

information about rules priority would have to be attached.

This approach has a disadvantage in adding large memory

overhead to the LPM results. Number of prefixes may be large,

therefore LPM results table would use very wide data words.

To illustrate sizes of bitmaps, we provide numbers of unique

prefixes in each dimension for several real-life rulesets from

university network firewalls (rules1-4), as well as synthetic

rulesets generated by ClassBench [7] (synth1-2). ClassBench

is a tool that produces synthetic rulesets that accurately model

the characteristics of real rulesets. Basic properties of rulesets

are shown in Tab. II.

Ruleset Rules SRC DST Protocols SRC DST
IPs IPs Ports Ports

synth1 219 55 53 1 13 1
synth2 394 65 57 1 13 1

rules1 103 28 48 3 5 39
rules2 173 84 84 2 1 15
rules3 275 46 64 2 1 17
rules4 1107 158 80 3 1 55

TABLE II
NUMBERS OF UNIQUE VALUES IN RULESETS.

As can be seen, numbers of prefixes are prohibitive for per-

prefix bitmaps in bigger rulesets. Therefore, we will create

groups of prefixes, and store only small bitmaps for these

groups.

We assign an abstract color property to each prefix. Number

of colors is set to be much smaller than the number of prefixes.

Instead of carrying large bitmaps of prefixes, each prefix

contains its own color, and only a small bitmap of colors

for each other dimension. We call this bitmap Allowed Colors

Bitmap (ACB). Instead of returning all matching prefixes, the

LPM operation returns the longest matching prefix for each

color. Also, it returns the Aggregate Allowed Colors Bitmap

(AACB) which is a bitwise logical disjunction (OR) of ACBs

observed during the LPM tree descent.

The Color Processing Stage is added after the LPM Stage.

It performs the operations shown in Alg. 1.

The method of assigning colors to prefixes is based on

observation made by us and also other researchers [4], [8]: The

number of prefixes matching a given value is small, typically

less than five. To gain as much information as possible, it

is good if each of prefixes returned by one LPM search has

different color. Therefore, we assign numbers sequentially

down the tree. If the number of colors does not suffice, the

last color is repeated, because lower levels of tree usually do

not generate greater amount of pseudorules.

We continue to the method filling ACBs in prefixes: At the

beginning, all bitmaps contain zeros. Then for each rule R and

each prefix P of rule R, set bits in the ACB to one, such that

bitmaps allow colors of all other prefixes of the rule R.

It remains to find an algorithm that generates pseudorules.

Thanks to colors and color bitmaps, majority of pseudorules

will not exist in our algorithm. However, some pseudorules

will be generated for most rulesets. Our experience with al-

gorithms from Related work is that generating all pseudorules

during the software precomputation phase may be very time-

consuming operation. Therefore it is undesirable to generate



Algorithm 1 Operations of the Color Processing Stage.

Input: AACB for each dimension, prefix for each dimension

and color.

for all dimension d do

create the Present Colors Bitmap (PCBd) where bits

correspond to colors in dimension d. Each bit is set to 1
if some prefix with that color was returned by the LPM,

and to 0 otherwise.

end for

for all dimension d do

Final Allowed Colors Bitmap FACBd ←
bitwise and (PCBd, corresponding AACBs from

all other dimensions ).
end for

if some FACB contained all zeros then

Packet matches no rule.

else

Create empty output LPM vector V .

for all dimension d do

Add the longest matching prefix allowed by FACBd

to V .

end for

end if

Output: V

all pseudorules and then remove some of them. Instead, we

present an algorithm that directly generates only pseudorules

that are really needed (Alg. 2).

B. Rule Search Stage

We propose the Rule Search Stage to be the same as in

our previous algorithm PHCA [6]: a special hash function

mapping all rules and pseudorules directly onto correct rule

number. Perfect hash function construction algorithm [9] is

used to create the hash function. The perfect hash construction

algorithm creates acyclic graph, where edges are the keys, and

vertices are results of two different hash functions. Vertices are

then assigned values so that they sum up to the desired hash

value. In our algorithm, keys are rules and pseudorules in the

form of LPM vectors, and associated numbers are numbers

of the correct rule. This way, we get a function that hashes

rule and all its associated pseudorules directly to the correct

rule number. In fact, we introduce intended collisions of the

hash function. The idea of intended hash collisions is a non-

traditional usage of perfect hash functions.

After the graph is created, the hash value computation is

simple and well suitable for hardware implementation: At first,

two ordinary hash functions f1 and f2 of the input LPM

vector are computed. Then two vertex values are read from

the Vertex Table and added. For each vertex, only one integer

is stored. We propose the Vertex Table to be stored in off-

chip SRAM, while the rest of the algorithm be implemented

in FPGA. The important point is that none of pseudorules is

stored in our scheme. Therefore, we save significant amount

of on-chip memory.

Algorithm 2 Pseudorules generating with respect to colors.

Input: Rules with prefixes containing ACBs and their own

color.

Create empty list of pseudorules P .

The ruleset is traversed from the highest to lowest priority:

for all rule R do

for all dimension d do

Ld ← list of all prefixes from dimension d matching

the rule R. In this list, there is the prefix from the rule

R, and all more specific (longer) prefixes from other

rules.

end for

A decision tree is traversed. Each tree level corresponds to

one dimension, dimension ordering is unimportant. Tree

edges are prefixes from L. The tree is traversed by a

depth-first traversal algorithm. Descent is performed only

if colors and ACBs in prefixes allow the combination of

prefixes from tree root to the current leaf.

if the lowest tree level is reached then

if the combination of prefixes from root to leaf /∈ P
then

Add the prefix combination into P . (R is also added

by this operation)

end if

end if

end for

Output: P

IV. COLOR PROCESSING EXAMPLE

To demonstrate function of the algorithm, we use example

ruleset from Fig. 3. Fig. 4 shows how colors are assigned

to prefixes, and how the color bitmaps are filled. Bitmaps

are shown as sets. Two colors are used in each dimension.

Fig. 5 is a decision tree, according which the pseudorules

are generated. In our example, one pseudorule is generated.

Tree paths (f1p2, f2p1) and (f1p2, f2p2) are not examined,

because prefix f1p2 has color c1, and color bitmaps of prefixes

f2p1 and f2p2 do not allow color c1.

We continue by showing how a packet is processed. Suppose

packet with header fields (101, 000). In the Field 1, the LPM

returns:

• For each color, name and length of the longest matching

prefix: c0 : (f1p1, 0) and c1 : (f1p2, 3).
• AACB gathered from visited prefixes: {d0, d1}

In the Field 2, the LPM returns:

• For each color, name and length of the longest matching

prefix: d0 : (f2p1, 0) and d1 : (f2p2, 2).
• AACB gathered from visited prefixes: {c0}

The result in the Field 1 is f1p1, because only color c0 is

allowed by Field 2 results, and f1p1 is the longest matching

prefix of this color. The result in the Field 2 is f2p2, because
both colors d0 and d1 are allowed by Field 1 results, and f2p2
is the longest matching prefix.



Field 1 Field 2

0

1

R1

R2

R3

1

10

0 0

0

Prefix name = f1p1

Color = c0

Field 2 ACB = {d0, d1}

Prefix name = f1p2

Color = c1

Field 2 ACB = {d1}

Prefix name = f2p2

Color = d1

Field 2 ACB = {c0}

Prefix name = f2p3

Color = d1

Field 1 ACB = {c1}

Prefix name = f2p1

Color = d0

Field 1 ACB = {c0}

P1

Fig. 4. Prefix colors and color bitmaps.

Fig. 5. Decision tree for generating pseudorules.

To sum up the example, our prefix colors and color bitmaps

avoided unwanted combination of LPM results (f1p2, f2p2),
which would be returned in case of unmodified LPM opera-

tion. Instead, combination (f1p1, f2p2) is the output of the

Color Processing Stage.

V. ARCHITECTURE

The algorithm is by design targeted to use FPGA to imple-

ment required logic and one external SRAM with only narrow

data bus (see Sec. VI-B) to store the data for the perfect hash

function. Software precomputation and filling of memories

is used for the architecture initialization. The architecture is

shown in Fig. 6, while one part of the Color Processing Stage

is shown in more detail in Fig. 7.

VI. RESULTS

A. Memory

We have compared memory requirements of our solution

to other algorithms based on Cartesian product: MSCA and

PHCA. DCFL algorithm is added as an example of slightly

different approach, which has lower memory requirements, but

has typically lower speed. For MSCA and PHCA, as well

as for the presented Prefix Coloring Classification Algorithm

(PCCA), we remove eight spoilers which generate excessive

amount of pseudorules in each ruleset. For algorithms using

Bloom filters (DCFL and MSCA) we set probability of false

positive to 0.005. For the PCCA we use eight prefix colors

Rule number

...

SRC IP

DST IP

SRC Port

DST Port

Protocol

CP
Prefixes

AACB

A
A
C
B

A
A
C
B

A
A
C
B

LPM vector

SRAM

Address Data

CP

h2

+
Rule

Table

FIFO

Universal rule

FPGA

Software

precomputation

h1LPM

LPM

LPM

LPM

LPM

Rule

Check

Fig. 6. FPGA architecture. CP blocks are parts of the Color Processing
Stage, shown in detail in the following Fig.

Color 0 prefix

Color 0 length

Color 0 valid

Color C-1 prefix

Color C-1 length

Color C-1 valid

...

Dimension 1 AACB

Dimension D-1 AACB

&
PCB FACB

Find

longest

allowed

...

Fig. 7. Color processing in dimension 0 (supposing C colors and D

dimensions).

in each dimension. Because MSCA, PHCA and PCCA use

LPM as a first stage, we do not compare LPM operation

implementation, we only measure memory added to LPM

results by each algorithm (Tab III, DCFL algorithm is not

shown because it has no separate LPM Stage). In Tab. IV we

measure amount of memory needed to implement the Rule

Search Stage.

Ruleset MSCA PHCA PCCA

synth1 5.77 0 4.16
synth2 6.69 0 4.79

rules1 4.34 0 3.52
rules2 6.37 0 5.90
rules3 4.41 0 4.75
rules4 10.11 0 10.37

TABLE III
MEMORY ADDED TO LPM RESULTS TABLE (KBITS).

Ruleset DCFL MSCA PHCA PCCA

synth1 15.69 1020.63 251.52 164.93
synth2 25.12 1921.63 415.66 327.68

rules1 11.08 958.54 11028.54 1643.28
rules2 14.76 34.44 3266.64 671.68
rules3 30.31 92.65 346.85 119.03
rules4 93.67 368.54 599.21 433.65

TABLE IV
MEMORY SIZE OF THE RULE SEARCH STAGE (KBITS).

We have also tried different numbers of prefix colors.



Results are in Tab. V. As can be seen, adding more bits into

the LPM Stage brings significant improvements to the size of

required memory for the Rule Search Stage, while additional

information in the LPM Stage has linear growth. This fact

shows that the method is well scalable. Number of colors is

a parameter of the algorithm, therefore the algorithm may be

tuned for particular needs.

Ruleset 4 colors 16 colors
LPM RS LPM RS

synth1 2.14 205.80 8.09 80.76
synth2 2.46 394.38 9.31 191.29

rules1 2.23 5284.53 8.43 1400.63
rules2 3.27 1109.79 12.37 285.91
rules3 2.26 273.62 8.568 60.27
rules4 5.20 500.83 19.65 290.16

TABLE V
MEMORY ADDED TO LPM STAGE AND TO RULE SEARCH (RS) STAGE FOR

DIFFERENT NUMBERS OF COLORS (KBITS).

B. Throughput

We analyze the throughput of separate stages.

The modification of the LPM algorithm required by PCCA

is to return more prefixes instead only the longest matching

one, and to have a wider data word (for ACBs). However,

this modification should not affect LPM throughput.

The Color Processing Stage uses only simple logic opera-

tions. Implementation of the Color Processing Stage in Virtex-

6 FPGA logic consumes 1364 LUT-FlipFlop pairs, and can run

at 262MHz (after synthesis for 5 dimensions and 8 colors). It

only adds four cycles of latency. Moreover, this small logic can

be easily replicated to achieve almost any required throughput.

Therefore, the overall throughput of the PCCA is deter-

mined by the Rule Search Stage. The perfect hash function

evaluation requires only to compute two ordinary hash func-

tions and to read and add two integers from the external

memory. The width of integers must be enough to store the

rule number. For example, memory width of 16 bits will

support up to 65536 rules. The expected throughput with

commodity FPGA and SRAM is 266 million packets per

second (supposing RLDRAM2 running at 533MHz is used).

This must be compared to other mentioned algorithms:

DCFL [4] reports worst-case of up to 20 sequential memory

accesses for 36-bits wide memory. MSCA stores rules in the

external memory, and there can occur a situation when multi-

ple whole rules must be fetched from the external memory to

classify one packet. This fact slows down MSCA significantly.

Therefore, PCCA has higher memory requirements than

DCFL and comparable to MSCA, but is significantly faster,

while using narrower data bus to external memory. Moreover,

PCCA has a constant processing time for each packet, making

it less vulnerable to attacks.

VII. CONCLUSION

We have proposed a new packet classification architecture,

using a decomposition of problem into the longest prefix match

and the rule search operations. The Rule Search Stage uses

intended hash collisions to implement the searching in constant

time. The proposed memory reduction uses prefix coloring in

order to lower the amount of pseudorules and significantly

decrease memory requirements for rule searching. As can be

seen in experimental results, size of required main memory

was decreased by more than 85% for rule set rules1 and 54%

in average, compared to our previous PHCA algorithm, and is

comparable to algorithms from other authors.

The proposed memory reduction is applicable for all de-

composition based classification architectures, because it can

be implemented as an additional stage in processing pipeline.

Moreover, it is possible to combine designed method with

other memory reduction approaches. For example, more pseu-

dorules can be eliminated by division of rules into multiple

disjoint sets or by removing spoilers.

The main contribution of the proposed architecture over

existing approaches is a guaranteed throughput with small

memory requirements. The throughput can not be affected by

a ruleset or network traffic.

Our reference Python implementation of the

Prefix Coloring Classification Algorithm and VHDL

implementation of the Color Processing Stage is

available as a part of the NetBench Framework at

http://www.fit.vutbr.cz/netbench.

ACKNOWLEDGMENT

This research has been partially supported by the Research

Plan No. MSM, 0021630528 – Security-Oriented Research in

Information Technology and the grant BUT FIT-S-10-1.

REFERENCES

[1] W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap: hard-
ware/software IP lookups with incremental updates,” SIGCOMM Com-

puter Communication Review, vol. 34, no. 2, pp. 97–122, 2004.
[2] H. Song, J. Turner, and J. Lockwood, “Shape shifting tries for faster ip

route lookup,” in ICNP ’05: Proceedings of the 13TH IEEE International

Conference on Network Protocols. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 358–367.

[3] H. Lee, W. Jiang, and V. K. Prasanna, “Scalable High-Throughput SRAM-
Based Architecture for IP Lookup Using FPGA,” in FPL ’08. IEEE,
2008.

[4] D. Taylor and J. Turner, “Scalable packet classification using distributed
crossproducing of field labels,” in IEEE INFOCOM 2005, 24th Annual

Joint Conference of the IEEE Computer and Communications Societies.,
July 2005, pp. 269–280.

[5] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood, “Fast packet
classification using Bloom filters,” in ANCS ’06: Proceedings of the 2006

ACM/IEEE symposium on Architecture for networking and communica-

tions systems. New York, NY, USA: ACM, 2006, pp. 61–70.
[6] V. Puš and J. Kořenek, “Fast and scalable packet classification using per-

fect hash functions,” in FPGA ’09: Proceedings of the 17th international

ACM/SIGDA symposium on Field programmable gate arrays. New York,
NY, USA: ACM, 2009.

[7] D. E. Taylor and J. S. Turner, “Classbench: a packet classification
benchmark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499–511, 2007.

[8] P. Gupta and N. McKeown, “Packet classification on multiple fields,”
in SIGCOMM ’99: Proceedings of the conference on Applications,

technologies, architectures, and protocols for computer communication.
New York, NY, USA: ACM, 1999, pp. 147–160.

[9] Z. J. Czech, G. Havas, and B. S. Majewski, “An optimal algorithm
for generating minimal perfect hash functions,” Information Processing

Letters, vol. 43, no. 5, pp. 257–264, 1992.


