
SEU Simulation Framework for Xilinx FPGA:
First Step Towards Testing Fault Tolerant Systems

Martin Straka, Jan Kastil, Zdenek Kotasek
Brno University of Technology

Faculty of Information Technology
Bozetechova 2, Brno, 612 66, Czech Republic
Email: (strakam, ikastil, kotasek)@fit.vutbr.cz

Keywords: SEU, generator, framework, FPGA, fault tolerant system, partial reconfiguration, testing, simulation

Abstract—In the paper, the SEU simulation framework for
testing fault tolerant system designs implemented into FPGA is
presented. The framework is based on SEU generation outside
FPGA (in personal computer) and the transport of modified
bitstream through the JTAG interface and subsequent dynamic
reconfiguration of FPGA. It allows to select region of the FPGA
for SEU placing. The SEU simulator does not require any changes
in the tested design and is fully independent on the function
implemented into FPGA. The requirements on the SEU generator
and its properties are described in the paper as well. The external
SEU generator for Xilinx FPGA was implemented and verified
on evaluation board ML506 with Virtex5 for different types of
RTL circuits and fault tolerant architectures. The experimental
results demonstrated the effectiveness of the methodology.

I. INTRODUCTION

Recent developments of the microelectronics allow to build
complex system on chip into reconfigurable architectures such
as Field Programmable Gate Arrays (FPGA). The use of the
FPGA presents many advantages from the point of the industry
because FPGA can compute many problems hundreds times
faster than modern processors while their reconfigurability
allows almost the same flexibility as processors [1]. Moreover,
the power consumption of such FPGA is much lower than
the power consumptions of the processors because FPGA
operates on the lower frequency. Due to its reconfigurability,
FPGA allows to specify the function of the device after the
manufacturing process which can further reduce the cost of
the solution because several types of the same device can be
built in the same assembly line.

The use of the FPGA will probably increase in the future
with the expansion of the Partial Dynamic Reconfiguration
(PDR). PDR allows the user to change part of the functionality
in the FPGA without stopping the computational process. The
PDR can be used in many ways but the main idea behind it is
that requirements on systems change in time as user wants to
use different functionality of the system [2]. Therefore it is not
required to have all functionality implemented at once as long
as we can switch the functionality in the device according to
user needs. As the result system can be implemented in the
smaller chip with lower power consumption.

The downside of FPGAs came with the reconfiguration
memory. The functionality of the chip is defined by the

sequence of bits in the configuration memory. Most of the
modern FPGA has SRAM configuration memory. Even small-
est change in the configuration memory can lead to different
functionality implemented in the chip. Since FPGAs can be
used in highly reliable systems, such as space application or
car control, such changes can result in tragic consequences.

In a SRAM-based FPGA, the combinational and sequential
logic are implemented in programmable complex logic blocks
(CLBs), which are customized by loading configuration data
(bitstream) in SRAM cells of the program memory. When a
charged particle strikes a memory cell in the program memory,
the effect can produce an inversion in the stored value - this
can modify the function of design, (as a result of Single Event
Upset - SEU) [3]. Recently, SEU effects on SRAM-based
FPGA resources have been a field of research [4],[5].

FPGA based designs offer new possibilities for the activities
which aim at designing Fault Tolerant Systems (FTS) with
high reliability and availability of the system. The main
problems combined with the modern FT systems include error
detection caused by SEU during system operation, fast fault
location, quick recovery or repair from fault and bringing the
system back to the state in which it operates correctly [6].

In FPGA, a faulty module can be repaired by reconfiguring
the chip. In this situation, the function mode of the system
is interrupted and reconfiguration process of FPGA chip is
initiated. For this purpose, the principles of PDR can be used
where reconfiguration process is applied on the faulty module
without interrupting the system. This type of fault repair
during system runtime is supported by hardware redundancy
architectures, such as Triple Modular Redundancy (TMR)
or duplex system with Concurrent Error Detection (CED)
techniques [7],[8].

FU1

FU2

FU3

Voter
in

out

FU1

FU2 =
in

out

err

A) B)

Fig. 1. FT architectures: A) TMR system, B) Duplex system

2011 14th Euromicro Conference on Digital System Design

978-0-7695-4494-6/11 $26.00 © 2011 IEEE

DOI 10.1109/DSD.2011.32

223

2011 14th Euromicro Conference on Digital System Design

978-0-7695-4494-6/11 $26.00 © 2011 IEEE

DOI 10.1109/DSD.2011.32

223

TMR uses hardware redundancy to mask any single design
failure by voting on the result of three identical copies of
the circuit (see in Figure 1A). Duplication of system ensures
CED and is a popular technique used in many FT schemes. It
requires duplication of a functional module, a comparator and
a control path to propagate the error signal to various parts of
the system (see in Figure 1B).

Many methodologies to build reliable or even FT systems
in FPGA is presented in the literature while new ones are still
being developed [9],[10]. However, to build reliable FTS a
testing tool is needed to test developed system by producing or
simulating errors by changing the configuration memory [11].

The main contribution of this work is to present such
tool together with the discussion about possible problems
combined with the simulation of soft errors as SEUs in
FPGAs.

II. MOTIVATION AND GOALS OF THE RESEARCH

Today, the robustness and complexity of various systems
have a significant impact on testability and diagnostic features
of these systems. For some types of FPGAs, techniques exist
which allow to detect and repair any soft errors (SEUs) in
design implemented into FPGA by bitstream scrubbing with
TMR.

A. Previous Research in Fault Tolerant System Design

Our previous research was oriented to creating a method-
ology which allows to construct on-line checkers for com-
ponents on different levels, e.g. module or Register-Transfer
Level (RTL) components. An on-line checker can be used for
error detection and fault localization in the faulty module or
for identification of faulty units in the FT architecture (e.g.
duplex). The principle of methodology was presented in [12].

FU1

FU2

FU3

Voter

=

=

=

PRM1

PRM2

PRM3

PRM4

in

out

err1

err2

err3

FU1

FU2

PRM1

PRM2

CHCK1

Chck2

Mux

out

in

err1

err2

err

err

PRM

PRM

outin

DYNAMIC PART

STATIC PART FPGA

Other
units

out

in

Bitstreams storage

Partial
Reconfiguration

Controller

FT architecture 1 FT architecture 2 FT architecture n. . .

bus errors

PRM PRM PRM PRM PRM PRM

Partial
Reconfiguration
Controller (GPDRC)

PRM

ICAP

Single
module

PRM PRMPRM

PRM

Fig. 2. Fault Tolerant Structure for SRAM-based FPGA via Partial Dynamic
Reconfiguration Using GPDRC

The activities which aim at defining a methodology of
FT systems design into SRAM-based FPGA platforms were

presented in [13]. The main principles of PDR were described
together with the FT architectures based on TMR and duplex.
Several architectures using online checkers for error detection
were introduced in [12]. An error detected by the on-line
checker initiates reconfiguration process of the faulty unit. The
modification of FT architectures into Partial Reconfigurable
Modules (PRM) and positive features of PDR when used in
FT system design where demonstrated as well.

The FT structure for SRAM-based FPGA via PDR with
Generic Partial Dynamic Reconfiguration Controller (GPDRC)
inside FPGA was presented in [14]. The main role of GPDRC
in FT system is seen in the identification of faulty PRM and
the initiation of reconfiguration process of the faulty module
in FT architectures through Internal Configuration Access Port
(ICAP) interface. The problems with synchronization of PRMs
after reconfiguration of one of them were demonstrated as
well. The FT structure based on PRMs can be seen in Figure 2.

B. Another Fault Tolerant Design Methodologies

Attempts to categorize and compare various FT techniques
and discuss how they can work together to provide a syner-
gistic approach for fault tolerant FPGA design is presented
in [15], unfortunately no experimental comparisons were pre-
sented.

The adoption of the TMR coupled with the PDR of SRAM-
based FPGAs to mitigate the effects of SEU in such class
of device platforms is presented in [8]. The authors propose
an exploration of the design space with respect to several
parameters as area and recovery time in order to select the
most convenient way to apply this technique to the device
under consideration.

In [16], an innovative method that allows the use of PDR
combined with TMR in SRAM-based FPGAs FT designs is
presented. The method uses coarse-grain TMR with special
voters capable to identify faulty module and check point states
that allow the sequential synchronization of the recovered
module. The synchronization of the recovered module is
performed while the others are kept running.

The FT scheme for Xilinx FPGA Virtex4 is presented
in [17]. The scheme consists of two parts: the Partially Re-
configurable Functional Region (PRFR) with several PRM and
reconfiguration controller is based on built-in Xilinx PowerPC-
405 processor and ICAP interface.

C. Problem Definition and Goals of the Research

At the moment, many techniques how to develop SRAM-
based FPGA systems exist. Many of them are based on
replication of functional units (e. g. TMR architectures, duplex
architectures) combined with CED techniques. They are not
usually tested how vulnerable against SEU effects they are. It
is not also described which technique was used to verify FT
features of the architectures developed. It is important to say
that some tools based on the use of ICAP to insert SEUs
into FPGA bitstream exist [18],[19]. These techniques can
achieve high speed of the injection but their main disadvantage
is that the injector is implemented into the same FPGA as

224224

the application and thus can damage itself by injecting SEU.
Moreover, the presence of testing circuitry affect place and
route phases of the design and therefore produces different
designs with different fault tolerant properties.

Our approach is based on the external SEU generator which
allows us to test the behaviour of our FT architectures and
their reaction to SEU inserted into particular positions of the
bitstream.

To summarize, we present SEU simulation framework for
testing of fault tolerant system designs implemented into
FPGA. The framework is based on SEU generation from
Personal Computer (PC) through the JTAG interface and
dynamic reconfiguration into FPGA and allows to select region
of the FPGA for SEU placing.

The paper is organized as follows. Section III describes soft
errors (SEU) principles in FPGA caused by high energy parti-
cles. Section IV presents basic description of the configuration
process of the Virtex 5 chip. SEU simulation strategy and
requirements on the SEU generator are described in Section
V while the basic features and implementation of external
SEU generator are demonstrated in section VI. Then, SEU
simulation framework for testing fault tolerant system design
in FPGA is presented in section VII. Finally, the results of
our experiments (section VIII) together with the goals of our
future research are mentioned (section IX).

III. SINGLE EVENT UPSET

SEU effect is defined as a modification of memory cell
caused by the high energy particles that collided with memory
cell. The probability of the SEU for one memory cell in
earth condition is extremely small. However, this probability
increases with the memory size or with the radiation back-
ground. Therefore SEU presents a real problem for example
in space or aircraft designs. The FPGA vendors made large
measurement of the SEU probabilities [20].

The problem of SEU can be dealt with in two ways. The
first is in the prevention of the occurrence of the SEU. This is
done by FPGA vendors, however as the size of technology
decreases and the size of the device increases the devices
became even more susceptible to SEUs. The result of the
SEU prevention minimizes these effect but the SEU is still
a problem. The second way to deal with the SEU is at the
level of the designer. The system itself is responsible for
detection and the mitigation of SEUs. Many of these methods
are implemented by the FPGA vendors in form of additional
tools or IPcores [18].

A. Maintain Strategy

The idea behind this approach came from the observation
that SEU is relatively uncommon and therefore there is only
a small chance that system will be effected by it in the
limited amount of time. To mitigate SEU, system is shut down
and fully reconfigured. The maintain strategy divides to the
scheduled maintain and emergency maintain. The scheduled
maintain strategy periodically reconfigures the FPGA to make
sure that SEU effect cannot cumulate and that if SEU occurs

it is repaired at most after given time. Emergency maintain
has the ability to detect SEU in the configuration memory.
The reconfiguration process is initialized immediately after
detection of the SEU.

B. Bitstream Scrubbing

Bitstream scrubbing is used mostly for mitigation of SEU
effect in the configuration memory but it allows the correction
of the configuration memory once SEU is detected. The
bitstream is periodically read frame by frame and every frame
is checked with the reliable memory. If there is a difference,
it is supposed that it was caused by SEU and it can be
repaired by downloading the correct value back into the
configuration memory. This process can be seen as a partial
dynamic reconfiguration since part of the chip (one bit) is
reconfigured without disruption of the computation. Obviously,
the values of registers and RAMs must be masked out during
the scrubbing since its value changes during the computation.
The real life implementation of the bitstream scrubbing does
not use reliable memory to save whole configuration but only
its checksums to reduce memory overhead. Modern Xilinx
FPGA contain the checksum as the part of the configuration
memory. Therefore no additional memory is required for the
bitstream scrubbing.

IV. CONFIGURATION PROCESS

The configuration process of the FPGA is driven by com-
mands contained in the bitstream generated by the FPGA
tools. In this and the following sections we focus on the
Xilinx Virtex 5 FPGA. The configuration memory is divided
into frames with constant size of 1312 bits. Every frame
contains 12 bits of ECC information which allows to detect
two and correct one configuration error. According to the
Xilinx documentation [21] frames are the smallest addressable
parts of the configuration memory. Therefore, if the user wants
to write one bit change into the bitstream he or she has to
manipulate with the complete frame.

A. Reconfiguration Types

The reconfiguration process of the FPGA do not differenti-
ate between any types of the reconfiguration used by the devel-
opment tools. The basic sequence of the commands initialized
is described in the [21]. Only command sequence changes
according to the type of the configuration. For example, only
difference between full and partial reconfiguration from the
point of the configuration process is the beginning address
of the write into the configuration memory and smaller size
of written data. The difference between static and dynamic
reconfiguration is represented by the shutdown sequence at
the beginning of the bitstream.

V. SEU SIMULATION STRATEGY

SEU simulation is the process of changing one bit infor-
mation in the configuration memory or in the memory of the
FPGA design such as registers or BlockRAM. The SEU do not
cause any error since not all parts of the configuration memory

225225

are used in the design. According [22], only 10% of the
configuration memory is used to define the design functionality
in average. Unfortunately, it is not possible to predict if given
bit is required for the design functionality or not in general due
to the undocumented structure of the configuration memory
and non-deterministic nature of the routing process.

A. Requirements on Testing Platform and SEU Generator

Every SEU simulator should meet a few criteria to be useful
for the testing of the FTS. The proposed criteria was selected
according to the authors experience with developing a fault
tolerant methodology for FPGAs. The main requirements on
SEU generator are:

∙ Universality – the SEU generator should be able to
place SEU at any place of the FPGA not only to the
configuration memory but also to the circuity in which
the function is implemented. The universality property
is required for testing of the design level mitigation
techniques, such as TMR architecture or duplex system
with checkers and multiplexer.

∙ Locality – the SEU generator should be able to place
SEU into pre-determined area of FPGA and guarantee
that other areas will remain unmodified. This property al-
lows different level of testing to be used in different parts
of FT architectures. Every reliable architecture has its
weak points. For example, NMR and TMR architectures
have voter unit as a very weak point of the architecture.
If this unit fails then entire architecture fails as well.
However, if implemented correctly, TMR will mask any
error in the function unit. Property of locality ensures that
the SEU generator is able to do exhaustive testing of the
function unit without attacking voter.

∙ Separateness – the SEU generator should be separated
and independent on the function implemented into FPGA.
The separateness property also means that the SEU
generator should be able to operate on any FPGA design
without the need to rebuild the design. There are several
reasons for this property to be satisfied. First, if the design
is rebuilt for testing purposes, then the unit under test is
different from the unit used in production and therefore
the units can have different reactions to SEU injections.
The second reason for the separateness is to guarantee
that the generator will not damage itself. This reason is
valid only for some parts of the designs. The PDR is
the legitimate function of the FPGA and it can be also
used in an FT system. SEU generator has to be separated
from the design to ensure that it will not interfere with
the PDR done by the design itself.

∙ Atomicity – the SEU injection should be seen as an
atomic process from the design point of view to ensure
that for example SEU in the register will not be replaced
by a new value during its injection. The atomic property
means, that the SEU injection has to be performed faster
than the period between two pulses of maximal clock
frequency in the design or that the FPGA logic has to
be shut down during SEU injection. On the other hand,

shutting down the logic can cause problems if the design
is interacting with its environment, such as DRAM,
Ethernet or other external function unit. Since at least one
frame has to be written into the configuration memory, it
is virtually impossible to place SEU in one clock cycle
for any reasonable clock speed. For these reasons, the
implementation of the atomicity in the generator will
present problems and some users might wish to disable
it for specific situations.

B. Xilinx’s Solution

Xilinx offers its own solution called Soft Error Mitigation
(SEM) [18]. However, this solution is designed mostly for the
SEU mitigation and the SEU generation is only an additional
function. This presents a problem from the theoretical point
of view since one can argue that unit that is tested should not
be used for the test generation. SEM is an IPcore generated
only for Virtex6.

SEM has to be connected to the ICAP inside the FPGA to
be able to mitigate SEU and therefore SEM does not meet the
separateness property. Due to this fact, it is not possible to use
ICAP without the functional change in the design itself.

The previous version of the SEM was called SEU Controller
Macro and had only a limited support for locality. User was
able to address every bit in the bitstream by linear addressing
but it was not clear how the linear address was transferred
to the frame address to test specified part of the FPGA only.
The SEM supports a physical frame addressing which allows
easier support for locality.

The atomicity issue is not solved by SEM. The SEM
operates inside the FPGA and therefore it is not possible to
shut down the FPGA for the injection of SEU. According [23]
the switching characteristics of SelectMAP and therefore also
ICAP for Virtex6 is 100MHz. The injection of SEU at this
speed may take up to hundreds of clock cycles in the design.

It is important to point out that the purpose of SEM is not
to generate SEU but to mitigate them. The SEU generation is
only an additional function that may be used for the better
understanding of the design behaviour in the presence of
the SEU and even for simple tests. However, SEM is not
sufficient for the full evaluation of the fault tolerant designs.
Another problem may arise when the design itself is uses ICAP
interface.

VI. PROPOSED SOLUTION: EXTERNAL SEU GENERATOR

This work proposes to implement SEU generation as a dis-
tinct tool working outside FPGA. The SEU generator should
use JTAG interface since this interface has highest priority and
therefore it can interrupt any other configuration interface.

A. Properties of SEU Generator

The basic principle of the SEU generator is to combine
readback and dynamic reconfiguration. The process of the SEU
generation can be described in four steps.

1) Selecting frame – This step selects frame into SEU will
be generated. The selected frame has to be described

226226

by four variables (row index, column index and minor
address together with top or bottom bit). Generator then
constructs the frame address.

2) Readback of the frame – This step readbacks the whole
frame without stopping the computation in the FPGA.

3) SEU generation – This step changes one bit of the read
data. The position of the changed data can be generated
by random function or by the given SEU generation
policy.

4) Write frame – This step writes the changed frame back
into the configuration memory of the FPGA. The write
is currently implemented without stopping the FPGA.

B. Implementation of SEU Generator

The proposed solution was implemented in the TCL lan-
guage with the use of the ChipScope libraries. The correct
function of the implementation was experimentally verified
on the number of designs. No changes in the design were
needed. The external PC SEU generator structure can be seen
in Figure 3.

FPGA
Design under test

Bitstream Generation Layer

read/write frame

SEU Placing Layer
placing policy

JTAG interface

bitstream

Personal
Computer (PC)

Added Functions
 UART/USB

SEU generator

Fig. 3. External PC SEU generator structure

The TCL implementation is divided into two basic layers.
The first layer is responsible for communication with the
FPGA. It is called Bitstream Generation Layer. This layer
uses the ChipScope libraries to send and read data through
JTAG interface. However, it is possible to change this layer to
use any other JTAG drivers. Our decision to use ChipScope
was based on the fact that ChipScope offers TCL functions
for manipulation with JTAG. The Bitstream generation layer
accepts the frame address and frame data from the SEU
placing layer and generates bitstreams that will readback or
write data for the given frame. The frame address is specified
by four values corresponding to the parts of the FAR register
in FPGA. The first parameter is TOP. This variable can be 1 or
zero and specifies which half of the FPGA contains the frame.
The second parameter specifies the ROW of the FPGA in the
given half (top or bottom). The last two variables describe

the column. The first is called column and specifies which
column of device is used counting by the columns visible
in the PlanAhead software. Therefore by setting these three
values a user is able to address any given column of the CLB.
The configuration of the CLB is contained in 36 frames but
this number is different for other types of columns, such as
BlockRAMs. The fourth variable (Minor) is used to specify
which frame of the given CLBs should be addressed. It is
important to keep in mind that the frame contains configuration
of 20 CLBs.

SEU placing layer is responsible for generation of the read
and write frame requests according to the given SEU placing
policy. The user will probably make its own alterations in this
layer by adding a new functions for SEU placing. The typical
functionality of the function in this layer is to compute position
of the SEU according to the implemented policy, readback the
frame containing the affected part of the memory, change the
bit at the computed position and write the frame back into
the FPGA. Since the frame is the smallest addressable part of
the configuration memory, the SEU has to be placed into the
given position by the function of this layer.

Currently, several placing policies are implemented:
∙ change any bit in one frame of bitstream or change several

bits in frame (multiple SEU).
∙ change random bit in one frame of bitstream or change

randomly several bits in frame.
∙ fill one frame by zero value or several frames set on zero

values.
∙ fill one CLB with zero values.
The implemented solution was evaluated with four basic

requirements presented in this paper. The solution is universal,
since no requirements on the design in the FPGA exist. The
locality is guaranteed by the addressing scheme which is the
same as the addressing scheme used by the FPGA itself.
Therefore, SEU generator achieves the same locality as the
FPGA reconfiguration process. Separateness property is met
by the implementation in the TCL on the PC. Atomicity is
another feature available in the implementation. The extension
of atomicity is fairly simple by stopping the FPGA. However,
stopping the whole FPGA for the SEU generation can present
synchronization problems between FPGA and the other com-
ponents on the board. Therefore we chose to have shutdown
sequence as an additional feature that is not part of the SEU
generator.

The last block in the diagram of the SEU generator is called
Added Functions. This block contains functions for interfacing
the SEU generator to its environment. These functions make
it possible to drive SEU generation by external sources,
such as UART or external program. Currently, only serial
communication is implemented.

VII. SEU SIMULATION FRAMEWORK FOR TESTING FAULT

TOLERANT SYSTEMS BASED ON FPGA

The goal of our research was to develop an external SEU
generator and verify its ability to insert SEUs to the required
position in the bitstream. This gives us the opportunity to

227227

test the behaviour of FT architectures and their reaction to
SEUs. The framework allows us to insert multiple SEUs in one
run and simulate the occurrence of higher number of SEUs.
The architecture of the framework is shown in Figure 4. The
framework consists of two components.

Test design
&

FT architecture

PC
SEU generator

Evaluation design
&

FT architecture

data in data out

data out

error

SEU

report

UART/USB

placing

FPGA

into bitstream

UART/USB

Fig. 4. Proposed SEU Simulation Framework for testing of FT architectures

The first component is the unit under test developed as
a PRM or an architecture consisting of more PRMs. The
other component is used for the evaluation - it contains
another copy of functional unit, timing unit, control unit,
comparator and UART controller. The timing unit allows to
set the operation speed of the application related to the speed
of SEU generation, evaluation of SEU effect and the transport
of the result to PC through UART interface. To PC through
UART the following information can be transported:

∙ SEU position and the number of SEUs which changed
the behaviour of the unit under test,

∙ the number of incorrect values on outputs of sequential
logic caused by SEU together with the reaction of check-
ers to SEUs,

∙ the number of SEUs generated in the same time slice.

We intend to do extensive experiments with various FT
architectures and use the implemented SEU simulation frame-
work for these experiments. It will allow us to compare these
approaches.

VIII. EXPERIMENTAL EVALUATION

The proper function of the SEU generation was tested by
the readback verification in the Impact software. The SEU
generator was able to change all bits in the frame except
of four reserved bits in the middle of the frame. The SEU
simulation framework was used to test FT technique presented
in [11]. The evaluation logic on FPGA side (FU or FT
architecture, timing unit, control unit, comparator and UART
controller) were implemented in VHDL language, for the
synthesis XILINX ISE 11.3 was used. ISE 11.3 supports PDR
into FPGA Virtex5-XC5VSX50T on development board ML

506. For experimenting with framework, a digital circuit (FU)
was developed which contains 8-bit counter and 8-bit decoder.
The board was used to verify proper function of different types
of FT architectures. The tested designs and FT architectures
can be seen in Figure 5.

FU1

FU2

PRM1

PRM2

CHCK1

Mux
outin

CHCK2

err1

err2

FU1

FU2

PRM1

PRM2

CHCK1

Chck2

Mux
out

in

err1

err2

DUPLchck

DUPLchckcmp

FU

PRM3

PRM3
err

CHCK

in

out

PRM

FU+CHCK

FU

in

out

PRM

Only FU

Fig. 5. Tested designs and FT architectures

The basic parameters of tested designs and FT architectures
can be seen in Table 1. The meaning of the columns is as
follows: column 1 - the type of architecture, column 2 - design
size in Virtex5, column 3 - the number of LUTs, 4 - the number
of FlipFlop registers, column 4 - the number of frames and
last column 5 - the size of bitstream in bits for placing of
SEU.

Virtex5 XC5VSX50T Size # LUT # FF # Frame # bits
Counter8+Decoder8 [slices] [-] [-] [-] [-]

Only FU 8 23 8 36 47232
FU+CHCK 12 41 12 36 47232

TMRchckcmp 18 64 16 72 94464
DUPLchck 22 88 24 72 94464

TABLE I
SIZE OF TESTED DESIGNS AND FT ARCHITECTURES

The parameters of framework were set as follow: The
generation frequency of one SEU into tested design including
evaluation time (timer component) was set on 100 𝜇s. The
communication between FPGA UART controller and PC was
set on 115200 Baud per second, data 8-bits, parity even and
2 stop bits.

The goal of the first experiment was to verify how many
SEUs will effect the correct function of the architecture under
test and what will be the consequences for the architecture if
SEUs are injected into functional units only. One-bit errors
were injected into all positions of the bitstream. It was tested
how many injected errors will have an impact on the function

228228

and how many errors will be detected by checkers. The results
are provided in Table 2.

XC5VSX50T Bitsream # Detected SEU detected # Output
CNT8+DEC8 size [bits] SEUs in FUs by checker data errs

FU+CHCK 47232 1996 100% 1996
DUPLchckcmp 94464 4040 99% 2988

DUPLchck 94464 4423 100% 3064

TABLE II
NUMBER OF DETECTED SEU IN FUS OF ARCHITECTURE

The meaning of the columns is as follows: column 1 - the
type of architecture, column 2 - the size of bitstream in bits
for placing of SEU, column 3 - the number of detected SEUs
in FUs of architecture, 4 - the number of detected SEUs in
FUs by checkers and last column 5 - the number of incorrect
data on the outputs of architecture.

During another experiment it was verified how many SEUs
destroy the correct function of the architecture under test
including checkers and output logic. It was done in the same
way as other experiments, i. e. one bit errors were injected to
all bitstream positions. It was evaluated how many SEUs will
have an impact on the correct function and how many errors
cause complete non-operation of the system (see Table 3).

Virtex5 XC5VSX50T Bitsream # Detected # Total
Counter8+Decoder8 size [bits] SEU errors

Only FU 47232 1996 1348
DUPLchckcmp 94464 5857 1262

DUPLchck 94464 6850 1606

TABLE III
NUMBER OF DETECTED SEU IN FT ARCHITECTURE

The meaning of the columns is as follows: column 1 - the
type of architecture, column 2 - the size of bitstream in bits
for placing of SEU, column 3 - the number of detected SEUs
in architecture, 4 - the number of errors, where all states of
sequential logic were incorrect.

Fig. 6. Histogram of error states of FU

In Figure 6, the histogram reflecting the testing of FU is
provided. It demonstrates, how many different values appeared
on FU output (caused by SEU injection) in 8-bit counter and

how often they occurred. The X axis represent the number of
errors during one step of SEU generation process and the Y
axis represent the number of such SEU. In Figure 7 it is same
for DUPLchck FT architecture.

Fig. 7. Histogram of error states of FT architecture

Finally, it was verified that all checkers and other checking
units were able to detect SEU injected into architecture. The
digital component continued to cover its function during the
existence of the SEU and also during the reconfiguration
process and provided correct outputs. It was proven, that, if
correctly designed, the unit equipped with the checkers are FT.
However, routing tools routes signals through reconfiguration
region, which allowed damage of the static part of the design
by the SEU in the dynamic parts.

IX. CONCLUSION

In the paper, SEU simulation framework for testing fault
tolerant system designs implemented into FPGA was pre-
sented. The framework is based on SEU generation from
personal computer through JTAG interface and reconfiguration
of FPGA bitstream. The framework allows to select a region
of the FPGA for SEU placing. Four basic features which
must be satisfied by a reliable SEU generator were defined
and reflected in our SEU injector implementation. The SEU
simulator does not require any changes in the tested design and
is fully independent of the function implemented into FPGA.

The SEU simulation framework is based on the proposed
SEU generator and the ML506 development boards to allow
interaction of the tested unit with the environment and to be
able to evaluate exactly the number and relevance of mistakes
occurring in the unit under test. The experimental results
demonstrated that all checkers of FT architectures and other
checking units were able to detect SEUs injected into design.

Future work will be focused is on extensive testing of
various architectures of fault tolerant systems implemented
into FPGA, the presented SEU simulation framework will be
used. Results gained from experiments will be used to compute
parameters of reliability models of researched architectures.

Acknowledgements

This work was supported by the Grant Agency of the Czech
Republic (GACR) No.102/09/1668 - ”SoC circuits reliability

229229

and availability improvement” and by Research Project No.
MSM 0021630528 - ”Security-Oriented Research in Informa-
tion Technology” and the grant ”BUT FIT-S-10-1”.

REFERENCES

[1] P. Sundararajan, “High performance computing using fpgas.”
[2] B. Osterloh, H. Michalik, S. A. Habinc, and B. Fiethe, “Dynamic partial

reconfiguration in space applications,” vol. 0. Los Alamitos, CA, USA:
IEEE Computer Society, 2009, pp. 336–343.

[3] R. Oliveira, A. Jagirdar, and T. J. Chakraborty, “A tmr scheme for seu
mitigation in scan flip-flops,” in ISQED ’07: Proceedings of the 8th
International Symposium on Quality Electronic Design. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 905–910.

[4] P. Kenterlis, N. Kranitis, A. Paschalis, D. Gizopoulos, and M. Psarakis,
“A low-cost seu fault emulation platform for sram-based fpgas,” in 12th
IEEE International On-Line Testing Symposium (IOLTS’06). New York,
NY, USA: ACM, 2006, pp. 235–241.

[5] E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirthlin,
“Accelerator validation of an fpga seu simulator,” vol. 50, no. 6, 2003,
pp. 2147 – 2157.

[6] F. L. Kastensmidt, G. Neuberger, L. Carro, and R. Reis, “Designing
and testing fault-tolerant techniques for sram-based fpgas,” in CF ’04:
Proceedings of the 1st conference on Computing frontiers. New York,
NY, USA: ACM, 2004, pp. 419–432.

[7] J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici, “Dynamic
fault tolerance in fpgas via partial reconfiguration,” in FCCM ’00:
Proceedings of the 2000 IEEE Symposium on Field-Programmable
Custom Computing Machines. Washington, DC, USA: IEEE Computer
Society, 2000, pp. 165–170.

[8] C. Bolchini, A. Miele, and M. D. Santambrogio, “Tmr and partial
dynamic reconfiguration to mitigate seu faults in fpgas,” in DFT ’07:
Proceedings of the 22nd IEEE International Symposium on Defect
and Fault-Tolerance in VLSI Systems. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 87–95.

[9] J. A. Cheatham, J. M. Emmert, and S. Baumgart, “A survey of fault
tolerant methodologies for fpgas,” vol. 11, no. 2. New York, NY,
USA: ACM, 2006, pp. 501–533.

[10] L. Sterpone, M. Aguirre, J. Tombs, and H. Guzmán-Miranda, “On the
design of tunable fault tolerant circuits on sram-based fpgas for safety
critical applications,” in DATE ’08: Proceedings of the conference on
Design, automation and test in Europe. New York, NY, USA: ACM,
2008, pp. 336–341.

[11] M. Rebaudengo, M. S. Reorda, and M. Violante, “Simulation-based
analysis of seu effects on sram-based fpgas,” in Proceedings of the
Reconfigurable Computing Is Going Mainstream, 12th International
Conference on Field-Programmable Logic and Applications, ser. FPL
’02. London, UK, UK: Springer-Verlag, 2002, pp. 607–615.

[12] M. Straka, Z. Kotasek, and J. Winter, “Digital systems architectures
based on on-line checkers,” in 11th EUROMICRO Conference on Digital
System Design DSD 2008. IEEE Computer Society, 2008, pp. 81–87.

[13] M. Straka, J. Kastil, and Z. Kotasek, “Modern fault tolerant architectures
based on partial dynamic reconfiguration in fpgas,” in 13th IEEE Inter-
national Symposium on Design and Diagnostics of Electronic Circuits
and Systems. New York, NY, USA: IEEE Computer Society, 2010, pp.
336–341.

[14] ——, “Fault tolerant structure for sram-based fpga via partial dynamic
reconfiguration,” in 13th EUROMICRO Conference on Digital System
Design DSD 2010. Washington, DC, USA: IEEE Computer Society,
2010, pp. 87–95.

[15] U. Sharma, “Fault tolerant techniques for reconfigurable platforms,” in
A2CWiC ’10: Proceedings of the 1st Amrita ACM-W Celebration on
Women in Computing in India. New York, NY, USA: ACM, 2010, pp.
1–4.

[16] C. Pilotto, J. R. Azambuja, and F. L. Kastensmidt, “Synchronizing
triple modular redundant designs in dynamic partial reconfiguration
applications,” in SBCCI ’08: Proceedings of the 21st annual symposium
on Integrated circuits and system design. New York, NY, USA: ACM,
2008, pp. 199–204.

[17] X. Iturbe, M. Azkarate, I. Martinez, J. Perez, and A. Astarloa, “A novel
seu, mbu and she handling strategy for xilinx virtex-4 fpgas,” in Inter-
national Conference on Field Programmable Logic and Applications,
2009. FPL 2009. Washington, DC, USA: IEEE Computer Society,
2009, pp. 569–573.

[18] XILINX, “User guide: Logicoretm ip soft error mitigation controller
v1.1.”

[19] L. Sterpone and M. Violante, “A new partial reconfiguration-based fault-
injection system to evaluate seu effects in sram-based fpgas,” vol. 54,
no. 4, 2007, pp. 965 –970.

[20] A. Lesea, “Continuing experiments of atmospheric neutron effects on
deep submicron integrated circuits.”

[21] XILINX, “User guide: Virtex-5 fpga configuration user guide.”
[22] K. Chapman, “Xapp864: Seu strategies for virtex-5 devices.”
[23] XILINX, “Virtex-6 fpga data sheet:dc and switching characteristics.”

230230

