
Monitoring of Tunneled IPv6 Traffic Using
Packet Decapsulation and IPFIX

Martin Elich1, Matěj Grégr2 and Pavel Čeleda1

1 CESNET, z.s.p.o., Zikova 4, 160 00 Prague, Czech Republic
martin.elich@gmail.com, celeda@liberouter.org

2 Brno University of Technology, FIT, Božetěchova 2, 612 66 Brno, Czech Republic
igregr@fit.vutbr.cz

Abstract. IPv6 is being deployed but many Internet Service Providers
have not implemented its support yet. Most of the end users have IPv6
ready computers but their network doesn’t support native IPv6 connec-
tion so they are forced to use transition mechanisms which transports
IPv6 packets through IPv4 network. Unfortunately deployment of IPv6
is slow and at this rate, completion of the migration from IPv4 to IPv6
will take several years. Until then tunneled IPv6 traffic will be present
on most networks. This means possible security risk because many of
nowadays network tools and firewalls just see IPv4 traffic and content of
the encapsulated IPv6 traffic is hidden. We do not know, what kind of
traffic is inside of these tunnels, which services are used and if the traffic
does not bypass security policy. This paper proposes an approach, how to
monitor IPv6 tunnels even on high-speed networks. The contribution of
this approach is a possibility of monitoring what is inside IPv6 tunnels.
This gives network administrators a way to detect security threats which
would be otherwise considered as harmless IPv4 traffic. This approach is
also suitable for long term network monitoring. This is achieved by the
usage of IPFIX (IP Flow Information Export) as the information car-
rying format. The proposed approach also allows to monitor traffic on
10 Gbps links, because it supports hardware-accelerated packet distribu-
tion to multiple processors. A system based on the proposed approach is
deployed at the CESNET2 network, which is the largest academic net-
work in the Czech Republic. This paper also presents statistics about
tunneled traffic on the CESNET2 backbone links.

Keywords: IPv6, Teredo, ISATAP, 6to4, network monitoring, IPv6 tun-
nel, IPFIX, FlowMon

1 Introduction

Unallocated IPv4 addresses are almost exhausted [1]. Depletion of addresses
does not mean end of Internet, but it seems to be reasonable to implement
support also for IPv6 protocol. End users have nowadays IPv6 ready comput-
ers, because support for this protocol is available in main operating systems
(Windows, Unix, Mac OS). Unfortunately, not every ISP has implemented IPv6

2 Martin Elich, Matěj Grégr, Pavel Čeleda

support yet, which together with IPv6 backward incompatibility with IPv4 pro-
tocol requires transition mechanisms. 6to4, Teredo and ISATAP are the most
used transition techniques. Using these techniques, the end user can access the
IPv6 network, even if his ISP does not provide native IPv6 connectivity. These
three methods use encapsulation of IPv6 protocol inside IPv4 protocol - tun-
neling. Encapsulation of IPv6 protocol in IPv4 hides the IPv6 traffic from the
network administrator. Tunneled traffic may look like ordinary IPv4 traffic us-
ing UDP protocol, so administrators do not know, which IPv6 network service is
requested, how much traffic flows through tunnels etc. IPv6 tunnels are created
automatically so there is no need for a user intervention. This can cause security
problems such as bypassing firewalls, unauthorized use of services etc.

We propose an approach how it is possible to overcome this limitation and
to be able to monitor tunneled IPv6 traffic. It features hardware-accelerated
packet distribution inside FPGA based network interface card. 10 Gbps line rate
processing speed is achieved by packet distribution on multi-core processors.
Traffic statistics presented in this paper are generated from IPFIX data collected
on CESNET2, which is the largest academic network in the Czech Republic.

The paper is organized as follows. Section 3 describes related work. IPv6
transition techniques are described in Section 4. Proposal of architecture for
monitoring tunneled data is in Section 5.3. Section 6 shows several statistics and
analysis from network monitoring and Conclusion is in Section 7.

2 Contribution

Contribution of this paper consists of several parts. First, we propose an ap-
proach, how to extend IPFIX to provide possibility to monitor tunneled IPv6
traffic. This approach is scalable and can be used in large networks for mon-
itoring IPv4, native IPv6 and tunneled IPv6 traffic. It is possible to use our
concept to collect these traffic on high-speeds 10 Gbps links without sampling.
Thus statistics, accounting or security problem detection using these data are
more accurate. Second, we present several statistics for tunneling mechanisms
such as tunneled traffic distribution, protocols used in tunnels and traffic vol-
umes compared to native IPv6 and IPv4 traffic. Deployment of IPv6 protocol is
on the rise because new operating systems use this protocol by default. There-
fore more services are accessible through IPv6 protocol and traffic distribution
is nowadays completely different than before. Hence current statistics are very
useful.

3 State-of-the-Art

Several papers discuss and present IPv6 address and traffic analysis. Authors
in [6] analyze traffic from a US Tier-1 ISP. Analyzed traffic in their data-set
consist mainly of DNS and ICMP packets. They believe that it is because ISP’s
customers consider IPv6 traffic still as experimental. For IPv6 address assign-
ment they used methodology introduced in [7]. It is interesting to see, how small

Monitoring of Tunneled IPv6 Traffic . . . 3

amount of hosts in their data-set uses privacy extensions [4]. Nowadays tempo-
rary addresses should occur more often, because privacy extensions are enabled
by default in Windows 7, Vista or XP. Linux and Mac OS use auto-configured
addresses by default. Statistics from a China Tier-1 ISP are presented in [5].
Their observation about address assignment and application usage are similar
to ours with some exceptions. Their traffic contains higher proportion of native
IPv6 traffic. We believe, that it is due to higher rate of IPv6 deployment in
China and Asia. 6to4 is the most used transition mechanism there. This should
be same also in Europe, because if a device has public IPv4 address, 6to4 tun-
neling mechanism is used first. However Teredo is nowadays on the rise, because
peer-to-peer programs use Teredo to share data with more peers.

Unfortunately analysis of tunneled IPv6 traffic is missing in many papers.
Some statistics are presented in [6] but just for Teredo traffic. Paper [8] observes
IPv6 traffic on 6to4 relay but it is quite old. Despite our best efforts we did
not find publications about tunneled IPv6 traffic in ISATAP tunnels. Statistics
about 6to4 tunnels or Teredo are not so detailed and up to date. This paper
tries to update knowledge about nowadays native and tunneled IPv6 traffic.

4 Transition Techniques

IPv6 connectivity is preferred in systems like Windows Vista, or Windows 7 by
default. If a Windows station is connected to some local IPv4 network without
native IPv6 connectivity and web site or another network service is accessi-
ble through both protocols, IPv6 has priority and a host tries to communicate
through this protocol first. Because IPv6 is not compatible with the IPv4 proto-
col, different types of transition techniques were proposed [13]. The most inter-
esting are tunneling techniques, because we do not know, which protocols and
services are used inside the tunnels. 6to4, Teredo and ISATAP are todays most
used tunneling mechanisms for connection to IPv6 network. These mechanisms
are described in the next sections.

4.1 6to4 Tunneling

6to4 tunneling is the most used transition technique today [10]. According to
priority in operating systems as Windows 7 or Windows Vista, if a network
device has public IPv4 address, 6to4 is the first mechanism to be used. A host
with public IPv4 address construct an IPv6 prefix according to following rule.
After IPv6 format prefix (001) another 13 bits (0x0002) are assigned by IANA.
Expressed as an IPv6 prefix it is 2002::/16. Next 32 bits are taken from globally
unique IPv4 address and another 16 bits are site-level aggregation identifier for
creating local addressing hierarchy and to identify a subnet. Last 64 bits are
used as EUI (End Unit Identifier). Several techniques can be used to create
the identifier such as auto-configuration based on EUI-64, manual assignment or
randomly generated identifier according to [4]. Default configuration in Windows
or Linux use well-known EUI values in practice. Linux use the value 1 by default

4 Martin Elich, Matěj Grégr, Pavel Čeleda

and Windows XP, Vista, 7 use IPv4 address in lower 32 bits of the EUI [15].
When sending packets, the 6to4 tunnel wraps an IPv6 datagram into an IPv4
datagram with protocol number 41. Then it sends it to the first available 6to4
relay router. 6to4 relay routers use any-cast prefix 192.88.99.0/24.

4.2 Teredo

Teredo was designed to be able to send network traffic through NAT [9]. It
does not encapsulate IPv6 packet in protocol 41 but send it via UDP packet on
default port 3544. Teredo tunneling mechanism consists of three components:
clients, relays and servers. Teredo client adds or removes tunneling headers and
sends a packet to the Teredo server. Servers are usually statically configured on
the client and in Windows OS the address is teredo.ipv6.microsoft.com. Teredo
relays are used for routing and bridging the IPv4 and IPv6 networks. Teredo
address is more complicated then 6to4 because relay needs to reach a client
behind NAT. The assigned prefix for Teredo is 2001:0::/32. Next 32 bits are IPv4
address of the client’s Teredo server following with 16 bits for the flags field and
48 bits corresponding with the Teredo port and client’s external address. IPv6
packet is carried in UDP payload that can have four different formats as shown
in Figure 1. When simple encapsulation is used only the IPv6 packet is carried
as the payload of a UDP. Server may insert origin field in the first bytes of the
UDP payload to indicate that some packets were received from third parties [9].
Another possibility can be usage of authentication field when exchanging router
solicitation and router advertisement messages between a client and its server.
Qualification, secure qualification and creating a NAT hole is behind the scope
of this article.

IPv6 packet

Origin IPv6 packet

Authentication IPv6 packet

Authentication Origin IPv6 packet

Fig. 1. The format of UDP payload in Teredo packet. In case of the simplest encap-
sulation whole UDP payload consists of encapsulated IPv6 packet only. In other cases
there are also Teredo specific headers before IPv6 packet. Order of these headers is
specified in [9].

4.3 ISATAP

ISATAP (Intra-Site Automatic Tunnel Addressing Protocol) is an IPv6 transi-
tion mechanism used in local networks to connect islands of IPv6 nodes over IPv4
networks. Connection to the Internet is made by another mechanism similar to
6to4. ISATAP[11] like 6to4 mechanism uses encapsulation of an IPv6 datagram
into an IPv4 datagram with protocol number 41. IPv4 addresses are encoded in

Monitoring of Tunneled IPv6 Traffic . . . 5

the low-order bits of the IPv6 addresses, allowing automated tunneling. Since
ISATAP does not support multicast and IPv6 Neighbor Discovery protocol, host
must be configured with potential routers list as next-hops. In practice, this list
is automatically obtained by querying DNS for isatap.domain record. Nowadays
ISATAP is usually the last used transition technique. Transition techniques or-
der which a host tries when does not have native IPv6 connectivity is usually
6to4, Teredo, ISATAP.

5 Architecture and Implementation

The proposed approach for tunneled IPv6 traffic monitoring describes whole pro-
cess of flow generation, exportion and collection. The flow generation is handled
by the FlowMon exporter based on preprocessed data from input plug-in. The
FlowMon exporter is a software probe which is able to export flow statistics in
NetFlow and IPFIX format. The exporter supports input plug-ins, so it is able
to generate flow statistics from any source supported by the input plug-in [2].

5.1 Architecture

The proposed approach consist of three layers (see Figure 6). The first layer can
be a network card or a more specialized hardware. The purpose of this layer
is capturing packets and sending them over the software interface to the input
plug-in. What software interface is used depends on the capturing device. If
standard network card is used the interface can be provided by PCAP (Packet
Capture) library. If a specialized hardware is used, for example FPGA (Field
Programmable Gate Array) hardware accelerator like the COMBOv2 card, a
more appropriate software interface can be used. In case of the COMBOv2 card
it is SZE2(Straight Zero Copy) data interface. This software interface is more
suitable for this task as it provides high-speed transfers.

We developed design for the COMBOv2 card which generates a nanoseconds
timestamp for each packet and can be distribute packets to several DMA (Direct
Memory Access) channels. Packet distribution is one of benefits of proposed
approach and is described in Section 5.2.

Input
Plug-in

FlowMonExp (n)

COMBO Card HANIC

sze2data

IPFIX

Input
Plug-in

FlowMonExp (1)

Input
Plug-in

FlowMonExp (2)

IPFIX

IPFIX
IPFIX Collector

Fig. 2. Architecture overview. Packets are captured by the COMBOv2 card and can
be distributed to up to 16 FlowMon exporter instances with loaded input plug-in. IP
flows are generated based on processed packets and later exported in IPFIX format.

6 Martin Elich, Matěj Grégr, Pavel Čeleda

The second layer reads packets from the software interface and pass them
to the input plug-in of the FlowMon exporter. The exporter is able to export
NetFlow and IPFIX data. Thanks to the input plug-in support, it is able to
generate flow statistics from any source as long as input plug-in supports it [2].
We designed and implemented plug-in for monitoring of IPv6 tunneled traffic
but plug-ins can have any other functionality. We have also implemented plug-in
for monitoring the regular traffic. Multiple instances of exporter with different
plug-ins can read data from the same SZE2 interface so it is possible to process
same packet by multiple input plug-ins.

The plug-in for tunneled IPv6 traffic monitoring detects packets, which are
part of tunnels, using a defined set of rules. After tunnel is detected, IPv4 header
is stripped out and packets are processed by IPv6 header parser. Relevant in-
formation from packet are stored to a data structure representing a part of flow
(in this case flow containing single packet). This filled data structure is passed
to the exporter. More about plug-in functionality can be found in Section 5.3.
The exporter generates flow statistics based on data structures from the input
plug-in. Flow statistics are exported in IPFIX format using custom IPFIX tem-
plates with enterprise-specific information elements to carry information about
the tunnel (see Figure 3 for example of template). [12]

The third and last layer is an IPFIX collector.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Set ID Length = 82

Template ID Field Count = 14

0 sourceIPv6Address 27 Field Length = 16

0 destinationIPv6Address 28 Field Length = 16

0 flowStartSysUpTime 22 Field Length = 4

0 flowEndSysUpTime 21 Field Length = 4

0 nextHeaderIPv6 193 Field Length = 4

0 sourceTransportPort 7 Field Length = 4

0 destinationTransportPort 11 Field Length = 4

0 OctetDeltaCount 1 Field Length = 8

0 PacketDeltaCount 2 Field Length = 8

1 TunnelIPv4SrcAddr Id. 10 Field Length = 4

Private Enterprise Number

1 TunnelIPv4DstAddr Id. 11 Field Length = 4

Private Enterprise Number

1 TunnelSrcPort Id. 12 Field Length = 2

Private Enterprise Number

1 TunnelDstPort Id. 13 Field Length = 2

Private Enterprise Number

1 TunnelType Id. 14 Field Length = 2

Private Enterprise Number

Fig. 3. An example of the proposed IPFIX template. Enterprise-specific information
elements are used to carry information about the tunnel.

Monitoring of Tunneled IPv6 Traffic . . . 7

5.2 Packet Distribution

This section describes packet distribution on the hardware level. Packet distri-
bution is implemented in the HANIC (Hash Network Interface Card) design for
the COMBOv2 card. Its purpose is to distribute packets between several in-
stances of the FlowMon exporter. An example of distribution method can be
round-robin. This simple method is very effective and provides almost even load
on all instances of the FlowMon exporter. Unfortunately it is not suitable for
a flow generation because every instance of the FlowMon exporter has its own
flow cache. Distribution of packets from one flow to different instances of the
exporter would break the flow into more noncontinuous flows. This behavior is
unwanted, so more advanced distribution, which meets requirements for correct
flow export, is implemented in the HANIC design.

The HANIC design provides more suitable packet distribution using its own
packet header parser. The parser can extracts necessary fields for flow identifi-
cation. Extracted fields are source and destination IP address (128 bits), source
and destination port (16 bits), protocol number (8 bits), IP version (4 bits) and
number of input interface on the card (1 bit).

If the field is not present in the packet header, all bits of this field are set to 0.
Also all missing bits are set to 0 to extend length of IPv4 addresses from 32 bits
to 128 bits. The output of parsing unit is a sequence of bits with fixed length of
301 bits. This sequence is then passed to the HASH unit which computes CRC
hash with length of log2(number of channels). Each packet is send to one of
channels according to its hash (the hash is used to address a channel). Current
version of the design use hash length of four bits. That allows addressing of 16
channels.

This allows to distribute packets to up to 16 instances of the FlowMonExp
without breaking the flow cache. Another advantage is a possibility to process
packets on multiple processors which greatly improve overall performance.

5.3 Plug-in Implementation

The input plug-in is implemented as a shared library for Linux operating system.
It filters and preprocess each packet to data structure compatible with the Flow-
Mon exporter plug-in API (principle of packet processing is shown in Figure 4).
The input plug-in is written to be used with the HANIC design loaded into
COMBOv2 card. Packets reading is handled by SZE2 library, which provides
complex and low level I/O operations for the COMBOv2 card. The plug-in can
be easily modified to use another library, e.g. libpcap, allows reading packets
from standard network card. Thus the COMBOv2 card is not needed.

The input plug-in reads packets from the COMBOv2 card in a form of mem-
ory chunks. These memory chunks consist of whole packet together with high pre-
cision timestamp and card’s interface from which packet was read. Each packet
is processed by sequence of simple filters. The first filter handles detection of
MPLS label. If MPLS label is detected it is stripped until all MPLS labels are
processed and MPLS presence is marked. If there was a MPLS label the plug-in

8 Martin Elich, Matěj Grégr, Pavel Čeleda

MPLS? Remove MPLS

Mark MPLS
presence

Packet

NO

YES

Parse IPv6

Mark ISATAP Mark 6to4

Parse IPv4

Drop

Drop

Mark Teredo

Flowmonexp

NO
NO

NO

NO

NO

NO

YES

YES

YES

YES

YESYES

IPv4? IPv6?

Proto 41?

Teredo?

6to4?ISATAP?
NO

Mark Other

NO

NO

Fig. 4. Input plug-in overview. This diagram describes process of packet filtering and
preprocessing. On input is single packet and for IPv6 and tunneled IPv6 packets is
filled data structure on output.

determines what kind of header is following the last MPLS label otherwise it ex-
tracts protocol number from Ethernet header. If IPv4 or IPv6 header is detected
the processing continues, otherwise it stops and the packet is discarded.

In the next stage of processing are IPv6 packets passed directly to IPv6 packet
parser. All IPv4 packets are processed by the rest of the filters to detect pres-
ence of tunneling. Current version supports the following tunneling mechanisms:
Teredo, 6to4 and ISATAP.

The first rule of Teredo detection is IPv4 protocol set to UDP. If this rule is
passed then the plug-in tries to determine if there is any sort of Teredo encapsu-
lation in the UDP payload. There are four types of encapsulation of IPv6 packet
in UPD payload. The payload must be in one of these forms (see Section 4.2 for
more details). If one of these forms of encapsulation is found, pointer to begin-
ning of IPv6 packet is passed to IPv6 packet parser. Last step of processing is
confirmation if at least one IPv6 address from IPv6 header is in format which
is specified in [9]. If this is confirmed, the plug-in sets type of tunnel to indicate
usage of Teredo and pass filled data structure to exporter.

Detection of ISATAP and 6to4 packets is similar as they share some charac-
teristic. IPv4 protocol must be set to value 41. In both mechanisms IPv4 header
is followed by IPv6 header. The plug-in checks if there is IPv6 header and pass
it to IPv6 packet parser. To decide if IPv6 packet is encapsulated by ISATAP or

Monitoring of Tunneled IPv6 Traffic . . . 9

6to4 plug-in checks IPv6 addresses and looks for address in format specified for
6to4 or ISATAP. If it is found then type of tunnel is set to corresponding tunnel-
ing mechanism. If ISATAP or 6to4 address is not found, the type of tunneling
mechanism is set to indicate usage of unknown tunneling mechanism. Filled data
structure is passed to the FlowMon exporter.

5.4 Packet Processing Performance

Packet processing performance was measured by throughput test, during which
were processed packets from 10 Gbps Ethernet network link. The measurement
run on 2.0GHz quad-core CPU and beside throughput was also monitored CPU
usage. Throughput was measured for Teredo and 6to4 packets (throughput of
ISATAP packets is the same as throughput of 6to4 packets). In the first scenario
all packets were processed by single instance of the FlowMon exporter with
loaded input plug-in. This setup was unable to process all packets on small
packet lengths even with full load on one CPU core. In the second scenario
packets were distributed to 4 instances of the FlowMon exporter with loaded
input plug-in. Each instance of the FlowMon exporter was running on different
CPU core providing more computing power for processing. All packets on all
feasible lengths were processed with medium to low CPU load on every core.
Results are shown in Figure 5.

 0

 2

 4

 6

 8

 10

 128 256 512 800 1024 1280 1518

Th
ro

ug
hp

ut
 [G

bp
s]

Packet Length [B]

Plug-in Throughput Results at 10 Gbps Ethernet

4 Cores - 6to4, ISATAP
4 Cores - Teredo

1 Core - 6to4, ISATAP
1 Core - Teredo

 0

 20

 40

 60

 80

 100

 128 256 512 800 1024 1280 1518

CP
U

Us
ag

e
pe

r C
or

e
[%

]

Packet Length [B]

CPU Usage in Plug-in Throughput Test

4 Cores - 6to4, ISATAP
4 Cores - Teredo

1 Core - 6to4, ISATAP
1 Core - Teredo

Fig. 5. Throughput of the plug-in at 10 Gbps Ethernet and CPU usage during the test
on single and on 4 CPU cores.

To minimize impact of flow generation on performance results all packets in
the first scenario originated from single flow. In case of the second scenario four
different flows were used. Every flow of the four flows was selected in way so
that the hash generated in the COMBOv2 card was different for packets from
different flow.

10 Martin Elich, Matěj Grégr, Pavel Čeleda

6 System Evaluation - Monitoring of Real Network
Traffic

We deployed monitoring system based on the proposed approach on the CES-
NET2 network (Czech Republic’s National Research and Education Network).
Three 10 Gbps backbone links which are connecting the CESNET2 network
to SANET (Slovak academic network), PIONIER (Polish optical Internet) and
NIX.CZ (Neutral Internet eXchange of not only Czech Republic) networks were
monitored (for more details see Figure 6). Each network link was monitored by
one probe with the COMBOv2 card installed and both directions of network link
were connected to it. These probes ran the FlowMon exporter with the input
plug-in. Up to this point everything was according to the proposed approach
but in this experiment we were forced to slightly change the IPFIX templates in
way that they don’t satisfy the IPFIX standard. An example of used template
is shown in Figure 7. The reason for this change was a IPFIX collector which we
used. It was NfSen collector with added support for IPFIX. It doesn’t have full
support for IPFIX as it doesn’t support enterprise-specific elements [16].

We selected 14 days long interval from collected flow statistics and analyzed
it. The results are shown is Section 6.1 and Section 6.2.

Probe
to PIONIER
(Ostrava)

Probe
to SANET

(Brno)

Probe
to NIX

(Prague)

Collector
(NfSen)

Other

Teredo

6to4

ISATAP

IPv6

Statistics

Geolocation

NfSen Plug-ins

10 Gbps link

10 Gbps link

10 Gbps link

IPFIX

IPFIX

IPFIX

Profiles Possible Outputs

Fig. 6. Overview of monitoring setup. The probes generate flow statistics from IPv4,
IPv6 and tunneled IPv6 traffic and send them using IPFIX format to the collector.
The collector stores flow statistics and provides them for further processing.

6.1 Observed IPv6 Address Assignment

A host in an IPv4 network obtains a IPv4 address usually from a DHCP server
together with default gateway, network mask etc. Address assignment is a little
bit different in IPv6 networks. There is also a possibility to use a DHCPv6 server,
but usually stateless auto-configuration is used [14], so a host learns just network
prefix and default gateway. The lower part of IPv6 address (last 64 bits) is a host
identifier and can be assigned manually, based on EUI-64 algorithm or gener-
ated randomly according [4]. Tunneling mechanisms use different techniques as
described in Section 4. IPv6 address analysis shows some interesting results. We

Monitoring of Tunneled IPv6 Traffic . . . 11

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Set ID Length = 62

Template ID Field Count = 14

0 sourceIPv6Address 27 Field Length = 16

0 destinationIPv6Address 28 Field Length = 16

0 flowStartSysUpTime 22 Field Length = 4

0 flowEndSysUpTime 21 Field Length = 4

0 nextHeaderIPv6 193 Field Length = 4

0 sourceTransportPort 7 Field Length = 4

0 destinationTransportPort 11 Field Length = 4

0 OctetDeltaCount 1 Field Length = 8

0 PacketDeltaCount 2 Field Length = 8

0 TunnelIPv4SrcAddr 410 Field Length = 4

0 TunnelIPv4DstAddr 411 Field Length = 4

0 TunnelSrcPort 412 Field Length = 2

0 TunnelDstPort 413 Field Length = 2

0 TunnelType 414 Field Length = 2

Fig. 7. An example of used IPFIX template. Enterprise-specific information elements
are replaced by regular elements with nonstandard IDs.

use similar methodology for address classification as in [7] but some addresses
are analyzed in detail.

Table 1 shows average number of unique IPv6 addresses in native, 6to4,
Teredo and ISATAP traffic per day. There is very high number of Teredo ad-
dresses. Further examinations shown that Teredo is used mainly for p2p sharing.
We believe that it is because bittorrent clients such as µTorrent have imple-
mented Teredo support, to be able to share data with more peers. Teredo is first
mechanism used when a device is behind a NAT. It provides global IPv6 address
so the device can be accessed same way as with public IPv4 address.

We detected several Teredo servers as well. Native and 6to4 addresses are
more analyzed and results are showed in Table 2. One table describes in de-
tail 6to4 addresses in native and tunneled traffic. Autoconf means, that EUI is
generated according to EUI-64. Linux and Windows rows describes, how many
hosts use Windows and Linux/Unix operating systems. This detection is based
on default values for the EUI fields [15]. Privacy means, that EUI is generated
according to privacy extensions. The table confirms, that tunneling protocols
are use by default in recent Windows operating systems (Vista, 7). The other
table shows address structure of global IPv6 addresses in native and tunneled
traffic. This also confirms, that privacy extensions are used by default in Win-
dows operating systems. Low addresses are usually configured statically and
auto-configuration is used by operating systems such as Linux, Unix and Mac
OS.

6.2 Observed Tunneled Traffic Characteristics

The first interesting fact about IPv6 tunneled traffic is, according to our findings,
that it generates more traffic then native IPv6 traffic. This fact is true for all
of three metrics (by flow, by packets and by bytes) and is shown in Table 3. As

12 Martin Elich, Matěj Grégr, Pavel Čeleda

Traffic Unique Addresses Notes

Native IPv6 8059 (10.1%) details in Table 2

6to4 20090 (25.3%) details in Table 2

Teredo 51330 (64.5%) detected 13 Teredo servers

ISATAP 82 (0.1%)

Table 1. IPv6 unique addresses - average per day.

6to4 Native Tunneled Traffic

Autoconf 2.7% 1.4%

Linux 1.2% 0.3%

Windows 91.2% 85.6%

Privacy 4.9% 12.7%

IPv6 Native Tunneled Traffic

Autoconf 9% 4.2%

Privacy 69.2% 69%

Low 21.8% 26.8%

Table 2. 6to4 and other global IPv6 addresses in detail.

described earlier, the reason for this can be presence of tunneling mechanisms
in recent versions of Windows operating system. Traffic is mostly generated by
universities. This can be another reason small IPv6 traffic, because even thou
universities should be deploying IPv6 they still prefer IPv4 in academic networks.
Most universities have enough global IPv4 addresses so they are not forced to
deploy IPv6.

Flows Packets Bytes

IPv4 98.39% 99.19% 99.13%

Native IPv6 0.10% 0.12% 0.21%

Tunneled IPv6 1.50% 0.69% 0.66%

Table 3. Traffic shares of IPv4, IPv6 and tunneled IPv6 traffic.

Majority of IPv6 tunneled traffic use Teredo mechanism (see Table 4). This
corresponds with previous analysis of IPv6 addresses, where Teredo addresses
are also the most significant traffic contributors. The least used mechanism is
ISATAP that may be given by fact that it is the least preferred option of tun-
neling in Windows operating systems.

Flows Packets Bytes

Teredo 88.18% 89.10% 88.85%

ISATAP 0.06% 0.03% 0.03%

6to4 11.76% 11.76% 11.12%

Table 4. Monitored tunneling mechanisms distribution.

Another interesting fact is that in tunnels are computers communicating
mainly with hosts which use the same tunneling mechanism on their side. More

Monitoring of Tunneled IPv6 Traffic . . . 13

details can be found in Table 5. Only small part of communication is with hosts
using native IPv6 addresses.

to Teredo to 6to4 to ISATAP to Native IPv6

Teredo Tunnel 59.6% 30.0% 0.1% 10.3%

6to4 Tunnel 2.5% 89.8% <0.1% 7.7%

ISATAP Tunnel 1.2% 19.4% 64.4% 15.1%

Table 5. Distribution of traffic inside IPv6 tunnels by number of flows.

We also observed very different distribution of application protocols in tun-
neled IPv6 traffic. One of the most used protocols in IPv4 and native IPv6 traffic
is HTTP (Hypertext Transfer Protocol). In tunneled IPv6 traffic its share was
very small and the traffic was overall spread to hundreds of UDP and TCP
ports with high numbers. This and the fact that majority of tunneled traffic is
transferred over Teredo was reason for further examination of IPFIX data. We
come to conclusion that tunneled IPv6 especially Teredo is used for p2p sharing.
Reasons, why p2p programs use Teredo are described in Section 6.1.

By Flows IPv4 Native IPv6 Tunneled IPv6

HTTP 38.25% 1.99% 0.35%

HTTPS 3.26% <0.01% 0.08%

DNS 10.39% 61.76% 0.45%

By Packets IPv4 Native IPv6 Tunneled IPv6

HTTP 49.99% 65.50% 2.98%

HTTPS 1.72% <0.01% 2.85%

DNS 0.45% 1.68% 0.05%

By Bytes IPv4 Native IPv6 Tunneled IPv6

HTTP 56.80% 76.16% 0.38%

HTTPS 1.17% <0.01% 0.33%

DNS 0.07% 0.42% 0.01%

Table 6. Protocol distribution in tunneled and native traffic.

7 Conclusion

Current flow-based traffic monitoring techniques can not easily analyze tun-
neled traffic. It is especially problem in IPv6 networks. In IPv6 networks tunnels
are created automatically, without users or administrators intervention. Because
IPv6 protocol is not compatible with current IPv4, these tunneling mechanisms
would be needed for several years. Network administrators need an approach,

14 Martin Elich, Matěj Grégr, Pavel Čeleda

which is able to monitor tunneled traffic on high-speed networks, is scalable and
can be integrated into current monitoring systems. In this paper we propose such
approach.

Monitoring of 10 Gbps link is possible using hardware-accelerated network
cards. We implemented plug-in for the FlowMon exporter, which can monitor
tunneled IPv6 traffic and export obtained data using IPFIX format. Collected
data can be further analyzed by network security monitoring tools including IPS
and IDS. We successfully deployed the proposed solution on academics backbone
links in the Czech Republic and analyzed the collected data.

Acknowledgments. This work is supported by the Research Intent of the
Czech Ministry of Education MSM6383917201.

References

1. IPv4 Address Report, [online], cited [30.09.2010] http://www.potaroo.net/tools/
ipv4/index.html.

2. INVEA-TECH a.s., [online], cited [30.09.2010] http://www.invea-tech.com/

products-and-services/flowmon/flowmon-probes.
3. Aben, E., Measuring IPv6 at Web Clients and Caching Resolvers,

[online] cited [2010-10-04] http://labs.ripe.net/Members/emileaben/

content-measuring-ipv6-web-clients-and-caching-resolvers-part-1/.
4. Narten, T., Draves R., Krishnan S., RFC 4941, Privacy Extensions for Stateless

Address Autoconfiguration in IPv6,September, 2007.
5. Shen W., Chen Y., Zhang Q., et al., Observations of IPv6 traffic, In Computing,

Communication, Control, and Management, 2009, vol. 2, ISBN 978-1-4244-4247-8,
p. 278 - 282.

6. Karpilovsky E., Gerber A., Pei D., Rexford J., Shaikh A., Quantifying the Extent
of IPv6 Deployment, In Passive and Active Network Measurement, 2009, p. 13 - 22.

7. Malone D., Observation of IPv6 Addresses, In Passive and Active Network Mea-
surement, 2008, p. 21 - 30.

8. Savola P., Observations of IPv6 Traffic on a 6to4 Relay, ACM SIGCOMM CCR vol.
35, no. 1, pp. 23-28, Jan. 2005.

9. Huitema C. Teredo: Tunneling IPv6 over UDP through Network Address Transla-
tions (NATs). RFC 4380, February 2006.

10. Carpenter B., Moore K. Connection of IPv6 Domains via IPv4 Clouds. RFC 3056,
February 2001.

11. Templin D. T. F., Gleeson T., Intra-Site Automatic Tunnel Addressing Protocol
(ISATAP). RFC 5214, March 2008.

12. Claise B., Specification of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of IP Traffic Flow Information. RFC 5101, January 2008.

13. Nordmark E., Gilligan R., Basic Transition Mechanisms for IPv6 Hosts and
Routers. RFC4213, October 2005.

14. Thomson S., Narten T., Jinmei T., IPv6 Stateless Address Autoconfiguration.
RFC4862, September 2007.

15. Warfield H. M., Security Implication of IPv6, Internet Security Systems, 2003.
16. Krejč́ı R., Network Traffic Collection with IPFIX Protocol, [online], cited [2010-

10-04] http://is.muni.cz/th/98863/fi_m/xkrejc14_dp.pdf .

