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Faculty of Information Technology, Brno University of Technology, Czech Republic

Polymorphic gates are unconventional circuit components that
are not supported by existing synthesis tools. This articlepresents
new methods for synthesis of polymorphic circuits. Proposed
methods, based on polymorphic binary decision diagrams and
polymorphic multiplexing, extend the ordinary circuit represen-
tations with the aim of including polymorphic gates. In order
to reduce the number of gates in circuits synthesized using pro-
posed methods, an evolutionary optimization based on Cartesian
Genetic Programming (CGP) is implemented. The implemen-
tations of polymorphic circuits optimized by CGP representthe
best known solutions if the number of gates is considered as the
decision criterion.

Key words:polymorphic circuit, digital circuit synthesis, evolutionary
computing, genetic programming

1 INTRODUCTION

Polymorphic electronics was introduced by A. Stoica’s group at NASA Jet
Propulsion Laboratory as a new class of electronic devices that exhibit a new
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style of (re)configuration [28]. Polymorphic gates play thecentral role in
the polymorphic electronics. A polymorphic gate is capableof switching
among two or more logic functions. However, selection of thefunction is
performed unconventionally. Logic function of a polymorphic gate depends
on some external factors, e.g. on the level of the power supply voltage (Vdd),
temperature, light or some other external signals [28, 29, 27, 32, 20]. For
example, Stoica’s polymorphic bifunctional NAND/NOR gatecontrolled by
Vdd operates as NOR forVdd = 1.8 V and NAND forVdd = 3.3 V [27]. In
fact, polymorphic gates merge the capability of performinglogic operations
with sensing. Hence polymorphic gates would be also very useful in building
theembodied intelligence—intelligent devices whose function emerges in an
interaction with a physical environment [3]. Although polymorphic gates can
be implemented relatively effectively using current CMOS technology, we
can expect an expansion of polymorphic devices with furtherdevelopment of
nanoelectronics and molecular electronics.

Having polymorphic gates, researchers have begun to develop new meth-
ods for synthesis of digital circuits that contain polymorphic gates [22, 15, 25,
7]. Main motivation is to obtain reconfigurable (and thus potentially adaptive)
circuits for a very low cost and without the need to implementa reconfigura-
tion infrastructure (switches, multiplexers, configuration registers etc.). The
goal of the polymorphic circuit synthesis can be formulatedas a problem of
finding such a circuit which performs required functionsf1 . . . fk in modes
1. . .k of polymorphic gates [22]. Figure 1 shows an example of polymorphic
digital circuit and its equivalent behavior in both modes ofthe polymorphic
NAND/NOR gate (i.e.,k = 2, f1 = i0∧ i1 ⊕ i2 and f2 = i0∨ i1 ⊕ i2). Note
that the method used to physically control the mode of polymorphic gates is
not important in the proposed synthesis problem formulation. Unfortunately,
conventional synthesis algorithms are not directly applicable for solving the
polymorphic circuit synthesis problem which is, in fact, a more difficult case
of the classic digital circuit synthesis problem.

In general, the design of an efficient digital circuit synthesis algorithm is
a well-known problem that has been approached by many researchers in the
recent decades. A synthesis algorithm operates over a circuit representation.
Various models have been devised to represent digital circuits in such a form
which is suitable for synthesis algorithms. Among others, Boolean expres-
sions, truth tables and binary decision diagrams (BDD) havebeen utilized.
The synthesis algorithms are capable of transforming the initial circuit repre-
sentation (which is derived from the behavioral specification) onto a circuit
representation which is suitable for subsequent circuit fabrication. The circuit
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FIGURE 1
a) Example of a polymorphic circuit; b) Equivalent circuit in mode 1; c) Equivalent
circuit in mode 2

representation together with the synthesis algorithm determines the space of
possible implementations that one can obtain as a result of the synthesis pro-
cess.

It remains unclear how to represent a gate-level polymorphic circuit and
how to define such transformations over a chosen representation which will
lead to an efficient implementation of the polymorphic circuit using a given
set of ordinary and polymorphic gates. A partial success wasachieved using
evolutionary design methods [22, 14, 25, 7] which do not poseany require-
ments on the representation or the set of transformations. However, because
the methods are search-based, they are not scalable and onlyrelatively small
polymorphic circuits were evolved (e.g., max. 7-input Multiplier/Sorter cir-
cuits [25]). Papers [7, 15] have exploited some conventional methods to syn-
thesize polymorphic circuits, however, achieving relatively inefficient imple-
mentations.

In this article, we extend the concept of combining conventional synthe-
sis with evolutionary synthesis that was developed in our previous work [7].
The goal is to propose a method that will be able to synthesizeand optimize
especially mid-size polymorphic circuits. The first problem (which this ar-
ticle deals with) is how to modify conventional circuit synthesis methods in
order to allow them to operate with polymorphic gates. Two approaches are
proposed and compared: polymorphic multiplexing and polymorphic BDDs.
Unfortunately, these approaches produce area-inefficientsolutions when ap-
plied solely. Hence the second problem targeted in this article is the optimiza-
tion of the number of gates in polymorphic circuits. The proposed optimiza-
tion algorithm is based on Cartesian Genetic Programming (CGP) [16]. Two
different fitness functions will be compared for this task. As there is not avail-
able any set of benchmark polymorphic circuits, we have introduced a new set
of benchmark circuits to evaluate the synthesis algorithms. The benchmark
set consists of 14 circuits with 4–13 inputs and 4–20 outputs. In order to fairly
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compare the results of various methods, solutions will be sought in the form
of circuits composed of two-input gates (inverters included). In addition to
ordinary gates, we restrict ourselves to use only the NAND/NOR polymor-
phic gate controlled byVdd because only this gate is currently available for
a physical implementation [27, 24]. However, in general, proposed methods
can utilize an arbitrary (but functionally complete) set ofgates.

The rest of the article is organized as follows. Section 2 introduces the
area of polymorphic electronics. Cartesian Genetic Programming, its advan-
tages and limitations are surveyed in Section 3. Section 4 formally defines
the polymorphic circuit synthesis problem. In Section 5, proposed methods
to the synthesis of polymorphic circuits are described. In particular, we use
Cartesian Genetic Programming, polymorphic multiplexingand polymorphic
binary decision diagrams. Subsection 5.4 deals with the optimization of poly-
morphic circuits. The optimization is performed using CGP,i.e. CGP is
’seeded’ with conventional designs. Section 6 presents theresults obtained
using proposed methods on a set of benchmark circuits. Discussion of ob-
tained results is presented in Section 7. Conclusions are given in Section 8.

2 POLYMORPHIC ELECTRONICS

Current research in the field of polymorphic electronics canbe split into three
areas: (i) design of reliable polymorphic gates, (ii) development of synthesis
algorithms and (iii) development of applications. As the problem of synthesis
will be dicussed in the remaining parts of the paper we will briefly summarize
(i) and (iii) in this section.

Table 1 surveys some polymorphic gates reported in literature. For each
polymorphic gate, logic functions performed by the gate aregiven together
with the values that represent recommended setting of the control signal vari-
able. The number of transistors characterizes the size of polymorphic gates
only partially as the transistors occupy different areas and the gates were fab-
ricated using different fabrication technologies.

Only two of the polymorphic gates have been fabricated so far; remaining
polymorphic gates were either simulated or tested in a field programmable
transistor array (FPTA-2). For instance, the 6-transistorNAND/NOR gate
controlled byVdd was fabricated in a 0.5-micron HP technology [27]. An-
other NAND/NOR gate controlled byVdd and introduced in [20] was utilized
in the REPOMO32 chip which is an experimental reconfigurableplatform
for development of polymorphic circuits [24]. REPOMO32 consists of 32
two-input Configurable Logic Elements; each of them can be programmed
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to perform one of the following functions: AND, OR, XOR and polymorphic
NAND/NOR (controlled byVdd). WhenVdd = 3.3V the NAND/NOR gate ex-
hibits the NOR function and whenVdd = 5V the gate exhibits the NAND func-
tion. Remaining gates do not change their logic functions with the changes
of Vdd (3–5 V). The chip was fabricated in a 0.7-micron AMIS technology.

TABLE 1
Existing polymorphic gates

Gate control values control transistors ref.
AND/OR 27/125◦C temperature 6 [28]
AND/OR/XOR 3.3/0.0/1.5V ext. voltage 10 [28]
AND/OR 3.3/0.0V ext. voltage 6 [28]
AND/OR 1.2/3.3V Vdd 8 [29]
NAND/NOR 3.3/1.8V Vdd 6 [27]
NAND/NOR/NXOR/AND 0/0.9/1.1/1.8V etx. voltage 11 [32]
NAND/NOR 5/3.3V Vdd 8 [20]

Papers [28, 29] indicate various areas in which polymorphicgates could
be utilized. The applications of polymorphic electronics reported or proposed
so far are given as references in the following summary.

• Automatic change of circuit behavior when a power supply is not suf-
ficient [23].

• Implementation of low-cost reconfigurable/adaptive systems that are
able to adjust their behavior inherently in response to certain control
variables (e.g., multifunctional counters [32, 19]).

• Implementation of novel concepts for testing and diagnosing of elec-
tronic circuits (e.g., self-checking adders [20] and reduction of test vec-
tor volume [26]).

• Implementation of a hidden function, invisible to the user,which can
be activated in a specific environment [28, 29].

• Intelligent sensors for biometrics, robotics and industrial measurement
[28, 29].

• Reverse engineering protection [28, 29].
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3 CARTESIAN GENETIC PROGRAMMING

Cartesian genetic programming was introduced by Miller andThompson a
decade ago [18]. It resembles the concept of genetic programming, but in-
troduces some important modifications: (i) a candidate circuit is modelled
using a directed acyclic graph; (ii) the graph is encoded as afixed-size string
of integers; and (iii) the search is performed using a mutation-based evolu-
tionary strategy (no crossover is employed). The main advantage of CGP is
that it generates very compact solutions, i.e. it can effectively reduce the total
number of gates in the case of circuit evolution (see evolvedmultipliers in
[30]).

In the basic version of CGP, a candidate circuit is modeled ina matrix of
u (columns)× v (rows) of programmablene-input elements (two-input gates,
in our case). The number of inputs,n, and outputs,m, of the circuit is fixed.
Each gate input can be connected either to the output of a gateplaced in the
previousL columns or to one of the circuit inputs (ne integers are devoted
to encode the connections of a single gate). TheL-back parameter, in fact,
defines the level of connectivity and thus it reduces/extends the search space.
Feedback is not allowed. Each gate can be programmed to perform one of
logic functions defined in the setΓ which contains ordinary and polymorphic
functions in our task. Figure 2 shows an example of the encoding used in
CGP.
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FIGURE 2
An example of a circuit in CGP with parameters:n = 3, m= 1, L = 6, u = 6, v = 1,
Γ = {and(0),or(1)}. Elements 4 and 8 are not utilized. Chromosome: 1,2,1, 2,2,0,
1,2,0, 0,5,1, 3,6,0, 0,7,1, 7. Functions of elements are typed in bold. The last integer
indicates the output of the circuit.

In case of the combinational circuit evolution, the fitness value of a candi-
date circuit is traditionally defined in CGP as [10]:

f itness= B+(uv−z) (1)

whereB is the number of correct output bits obtained as response forall
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possible assignments to the inputs,z denotes the number of gates utilized in
a particular candidate circuit anduv is the total number of available gates.
The last termuv− z is considered only if the circuit behavior is perfect, i.e.
B = m2n.

CGP operates with the population of 1+ λ individuals (typically,λ is
from 2 to 15). The initial population is either randomly generated or seeded
using existing designs. Every new population consists of the best individual
of the previous population and itsλ offspring created by a point mutation
(the number of mutated genes is a parameter of the mutation operator). In
case when two or more individuals have received the same fitness score in the
previous population, an individual which has not served as the parent in the
previous population will be selected as the new parent. Thisstrategy is used
to ensure diversity of population.

CGP has been successfully utilized in many applications (e.g., [16, 6, 21,
13, 11]), investigated experimentally [17] and extended tosupport modularity,
self-modification and other features [31, 9]. It has been shown that neutrality
(i.e. a neutral effect of inactive genes on genotype fitness)which is inherent
for CGP is very beneficial to the efficiency of evolutionary process [17].

However, the main problem is that in case of the combinational circuit evo-
lution, the evaluation time of a candidate circuit grows exponentially with the
increasing number of inputs (assuming that all possible input combinations
are tested in the fitness function) [30]. Hence, the evaluation time becomes
the main bottleneck of the evolutionary approach when complex circuits with
many inputs are evolved.

4 POLYMORPHIC CIRCUIT SYNTHESIS PROBLEM

In this article, the polymorphic circuit synthesis problemis restricted to the
gate level. Target circuits will consist of polymorphic andordinary gates. The
following problem formulation resembles the definition proposed in [22, 25].

Let Γ(1) denote a set of ordinary gates. LetΓ(2) denote a set of polymor-
phic gates. A polymorphic gate implements two⋆ functions according to a
control signal which can hold two different values. A gate isin mode j(and
so performing thej-th function) in the case whenj-th value of the control sig-
nal is activated. For purpose of this article, we denote a polymorphic gate as
X1/X2, whereXi is its i-th logic function. For example, NAND/NOR denotes
a gate operating as NAND in themode 1and as NOR in themode 2. Note

⋆ This can be naturally extended fork different functions.
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that ordinary gates can perform only one function, however,their functional-
ity must be fully defined for each mode. For example, a conventional NAND
gate considered for polymorphic circuits must perform the NAND function
in both modes (denoted as NAND/NAND). LetΓ denote a set of all gates,
Γ = Γ(1)∪Γ(2).

A polymorphic circuit can formally be represented by a graphG= (V,E,ϕ),
whereV is a set of vertices,E is a set of edges between the vertices,E =

{(a,b)|a,b∈V}, andϕ is a mapping assigning a function (gate) to each ver-
tex, ϕ : V → Γ. Note thatV models the gates andE models the connections
of the gates. A circuit (and also its graph) is in themode jin the case when
all gates are in themode j.

Given Γ and logic functionsf1 and f2 required in different modes, the
problem of the multifunctional circuit synthesis at the gate level is formu-
lated as follows: Find a graphG representing the digital circuit which per-
forms logic functionf1 in the mode 1and logic functionf2 in the mode 2.
Additional requirements can be specified, e.g. to minimize delay, area, power
consumption etc.

Unfortunately, this problem can not be approached by conventional syn-
thesis methods directly since they do not allow representing polymorphic
logic functions and manipulating with them.

Note that paper [15] also deals with the polymorphic circuits synthesis
problem; however, the goal of the synthesis is different: a target circuit is
constructed to perform a single function independently of the polymorphic
gates mode.

5 PROPOSED METHODS

This section describes three approaches to the polymorphiccircuit synthesis
problem. The first one is based on the evolutionary design using CGP. The
remaining approaches extend the conventional synthesis methods to be ap-
plicable for polymorphic circuits. While polymorphic multiplexing allows
polymorphic gates to be included to the output part of the target circuit the
polymorphic binary decision diagrams enable inserting thepolymorphic gates
to the input part of the target circuit. In both cases, CGP is used in the post-
sythesis phase to reduce the number of gates.

5.1 Direct Circuit Evolution Using CGP
In our previous work, we have used CGP to synthesize polymorphic circuits
[22, 25]. In contrast to equation 1 we have modified the fitnessfunction so
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that a candidate circuit is evaluated in both modes. The new fitness value is
defined as follows:

f it1 = 1+(B1+B2)(u.v+1)+z (2)

whereB1 (resp. B2) is the number of incorrect output bits forf1 (resp. f2)
obtained as response for all possible assignments to the inputs,z denotes the
number of gates utilized in a particular candidate circuit and u.v is the total
number of programmable gates available. The last termz is considered only
if the circuit behavior is perfect in both modes (B1 +B2 = 0). Here, the goal
of evolution is to minimize the output of Equation 2. However, this approach
is not scalable and thus new synthesis methods have to be proposed.

5.2 Polymorphic Multiplexing
A straightforward approach to the implementation of polymorphic circuits is
the utilization of a polymorphic multiplexer (pmux) which propagates signal
A in themode 1of polymorphic gates and signal B in themode 2of polymor-
phic gates. One of possible gate-level implementations ofpmux, based on
the NAND/NOR gates, is shown in Fig. 3. Its implementation cost is cpmux

= 5 gates. We will use this implementation for comparisons which will be
performed in this article. However, it is expected that a more compact and
efficient transistor-level solution ofpmuxwill be available in the future.

FIGURE 3
Polymorphic multiplexer at the gate-level

The polymorphic multiplexing works as follows: Consider that a target
polymorphic circuit has to implementf1 and f2. A conventional approach is
used to synthesize a circuit (moduleM1) implementingf1 and another circuit
(moduleM2) implementingf2 independently. The outputs of the circuits are
then multiplexed using polymorphic multiplexers as shown in Fig. 4a. This
approach will be denoted as Independent Modules (IM). Note that especially
for smaller circuits it is also possible to use evolutionarycircuit design instead
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of conventional methods to create the modules. Larger modules are usually
designed by conventional design methods.
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FIGURE 4
Multiplexing conventional circuits by polymorphic multiplexers: a) independent mod-
ules, b) sharing some gates between modules

In order to reduce the number of gates, the goal of synthesis can be to
maximize the number of gates that are shared by both circuits(see the in-
tersection in Figure 4b). Espresso [2] and ABC [1] are conventional circuit
synthesis methods that we chose to synthesize particular modules. We ap-
plied them with the aim of minimizing the number of gates in both modules,
sharing as much gates as possible between the modules and minimizing the
number of outputs that have to be equipped with polymorphic multiplexers.

5.3 Polymorphic BDD-based Synthesis
We proposepolymorphic binary decision diagrams(PolyBDD) to extend
standard decision diagrams. We will show how to construct PolyBDDs and
transform them to corresponding polymorphic circuits.

Decision Diagrams
Decision diagram (DD) [4] over a set of Boolean variablesXn = {x1, ...,xn}

and a non-empty terminal setT is defined as a directed acyclic graphG =

(V,E) with exactly one root node and the following properties:

• A node inV is a non-terminal or terminal node.

• A non-terminal node is labeled by variablexi and has two successors
low(xi) andhigh(xi) in V.

• A terminal node is labeled with a value fromT.

The size of DD is given by the number of its nodes. The levelxi is the set
of nodes labeled byxi . A DD is ordered, if each variable is encountered at
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most once on each path from the root to a terminal node and the variables are
encountered in the same order on each path.

Binary decision diagram (BDD) [4] is defined as DD overXn; however, its
terminal set isT = {0,1}. If the BDD has root nodev, then BDD represents a
Boolean functionfv defined as follows: Ifv is a terminal node of value 0 (1)
then fv = 0 ( fv = 1); If v is a non-terminal node labeled with indexxi then fv is
the functionfv(x1, ...,xn) = x̄i . flow(v)(x1, ...,xn)+xi . fhigh(v)(x1, ...,xn), where
flow(v) ( fhigh(v)) denotes the function represented bylow(v) (high(v)). We can
also call the non-terminal nodes as if-then-else nodes: ifxi then fv = fhigh

else fv = flow.
Multi-Terminal BDD (MTBDD) [5] is an extension of BDDs whichallows

integers to be placed in terminal nodes. Decision variablesare still Boolean.
We define a PolyBDD as a MTBDD in which terminal integers determine

elementary polymorphic functions.

Design of PolyBDD

Let f1 denote a target function in modej = 1 and f2 denote a target function
in mode j = 2 (according to Section 4;f j : {0,1}n → {0,1}). Let R1 andR2

be truth tables forf1 and f2. Assume thatR1 andR2 are fully defined and
ordered. The design of PolyBDD which representsf1 and f2 is a three-step
procedure:

1. Create truth tableR of the polymorphic circuit as composition ofR1

andR2. Truth tableRhas 2n lines,n columns with all the input variable
assignments and two columns with logic values forf1 and f2.

2. Choose a decision variablexc (wherec = 0...n−1) and divideR into
2n/2 segments (rows) in such a way that the input assignment differs
only in xc in each segment. From each segment, extract a signatureS=

23.s21+22.s20+21.s11+20.s10 = (s21s20s11s10)2; the least significant
bits come fromf1 and the most significant bits come fromf2; the values
of variabless21,s20,s11,s10 are determined according to a conversion
matrix (see Figure 5b). LetR

′
denote the resulting truth table.

3. Process the resulting 2n/2-row truth tableR′ using a standard algorithm
for MTBDD processing to create an optimized if-then-else structure.

Figure 5 shows an example: the original truth tableR of the 3-bit Major-
ity/Parity function, transformed truth table (according to inputx0) and exam-
ple of the signature. Terminal nodes represent simple polymorphic functions,
see Table 2.
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FIGURE 5
Transformation process of the 3-bit Majority/Parity truthtable (s1 denotes the ma-
jority; s2 denotes the parity): a) Truth tableR before transformation; b) Conversion
matrix of the signature; c) Transformed truth tableR

′

TABLE 2
Signature semantics of the PolyBDD (’neg’ denotes the logicinversion; ’id’ denotes

the identity function)

S s1 / s2 S s1 / s2 S s1 / s2 S s1 / s2

0 0 / 0 4 0 / neg 8 0 / id 12 0 / 1
1 neg / 0 5 neg / neg 9 neg / id 13 neg / 1
2 id / 0 6 id / neg 10 id / id 14 id / 1
3 1 / 0 7 1 / neg 11 1 / id 15 1 / 1

A PolyBDD which has been constructed using the proposed algorithm can
be further optimized using standard techniques that are applicable for MTB-
DDs. The optimization techniques includes:

• Reducing identical (redundant) branches (type I [4]).

• Reducing (redundant) if-then-else node with the same branches (type S
[4]).

• Reordering the input variables.
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Synthesis of PolyBDD into Polymorphic Circuit

A transformation of the PolyBDD to a polymorphic circuit is straightfor-
ward. Firstly, the if-then-else nodes are directly mapped onto 2-input ordi-
nary multiplexers. Then, terminal nodes are implemented using elementary
polymorphic circuits according to the conversion table shown in Fig. 6. The
elementary polymorphic circuits utilize ordinary gates and the NAND/NOR
polymorphic gate. If, for some reasons, another set of gateshas to be used,
a different conversion table has to be created. Finally, theelementary poly-
morphic circuits are connected with multiplexers. Figure 7shows reduced
PolyBDD for the 3-bit Majority/Parity benchmark and its implementation us-
ing polymorphic gates.
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FIGURE 6
Conversion table for the PolyBDD method. Elementary polymorphic circuits com-
posed of NAND/NOR and ordinary gates were constructed for signatures 0. . .15.

5.4 Optimization of Polymorphic Circuits

Polymorphic circuits created using polymorphic multiplexing or PolyBDDs
are large in many cases and thus inefficient. In the case of polymorphic mul-
tiplexing, polymorphic gates are solely located around theprimary outputs of
the circuit. In the case of PolyBDDs, the polymorphic gates are located close
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FIGURE 7
Reduced PolyBDD and a corresponding polymorphic circuit for the 3-bit Major-
ity/Parity problem.

to the primary inputs. In order to minimize the total number of gates, it is de-
sirable to integrate polymorphic gates deeply to the circuit structure and also
increase the ratio of polymorphic gates to ordinary gates. We will show later
that increasing the ratio of polymorphic gates usually leads to decreasing the
total number of gates.

For purposes of optimization, polymorphic circuits are converted to the
CGP representation. Since CGP uses two-input nodes, all components have
to utilize up to two inputs. Hence a 3-input multiplexer is converted into
four 2-input gates (in the PolyBDD-based design), a 3-inputAND-gate is
converted into two 2-input gates (in the Espresso-based designs) etc.

CGP is, in fact, seeded with a fully functional but non-optimal design with
respect to the number of gates. The goal of the optimization is the reduction
of the number of gates. We will compare the traditional fitness function from
Equation 2 which explicitly counts the number of gates with anew fitness
function defined as:

f it2 = 1+(B1+B2) (3)

We will show in Section 6.5 that the new fitness function (Eq. 3) significantly
improves the results of optimization although it does not take into account
the number of gates. This phenomenon has already been studied in domain
of evolutionary synthesis of combinational circuits [8].

The fitness evaluation procedure which probes every assignment to the in-
puts (i.e., 0. . .2n−1) is the main time bottleneck of the optimization method.
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In order to make the evaluation of a candidate circuit as short as possible, it is
only tested whether the candidate circuit is working correctly or incorrectly.
In the case that a candidate circuit does not produce a correct output value for
the p-th input vector during the evaluation, the remaining 2n− p−1 vectors
are not evaluated and the circuit gets the worst possible score. Experimental
results have shown that this technique reduces the computational overhead
significantly (see Fig. 8). Note that this technique cannot be applied for the
evolutionary circuit design conducted in Section 5.1 because we have to know
the fitness score as precisely as possible (i.e. the exact number of bits has to
be calculated that can be correctly generated by a particular candidate circuit)
in order to obtain a relatively smooth fitness landscape.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 4  5  6  7  8  9

A
vg

. r
ed

uc
tio

n

Inputs

fitness fit2
fitness fit1

FIGURE 8
Average reduction of the computational overhead in comparison with the complete
truth table evaluation for the Multiplier/Sorter benchmark (according to Table 9). Re-
sults are shown for a 64 bit architecture with the parallel evaluation.

Parallel simulationis another technique that can be used to accelerate the
circuit evaluation [16]. The idea of parallel simulation isto utilize bitwise op-
erators operating on multiple bits in a high-level language(such as C) to per-
form more than one evaluation of a gate in a single step. For example, when
a combinational circuit under simulation has three inputs and it is possible to
concurrently perform bitwise operations over 23 = 8 bits in the simulator then
the circuit can completely be simulated by applying a single8-bit test vector
at each input (see the encoding in Fig. 9). In contrast, when it is impossible
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then eight three-bit test vectors must be applied sequentially. In the case of
polymorphic circuits the simulation is performed for each mode separately.
Practically, current processors allow us to operate with 64bit operands, i.e.
it is possible to evaluate the truth table of a six-input circuit by applying a
single 64-bit test vector at each input. Therefore, the obtained speedup is 64
against the sequential simulation. In case that a circuit has more than 6 inputs
then the speedup is constant, i.e. 64. This technique has been applied in all
evolutionary design and optimization experiments reported in this article.
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FIGURE 9
Parallel evaluation of a candidate polymorphic circuit

6 RESULTS

This section introduces a new set of benchmark circuits thatwe have devel-
oped and reports the results obtained using the proposed synthesis methods.

6.1 Benchmark Circuits

As no benchmark set is available to evaluate proposed synthesis algorithms,
we have to introduce a new one. The proposed benchmark set consists of 14
circuits of 4-13 inputs and 4-20 outputs (see Table 3). This benchmark set
includes Multiplier/Sorter circuits of variable sizes, Majority/Parity circuits
of variable sizes and four polymorphic constant coefficientmultipliers. For
example, the×67/×127 circuit multiplies the input value by 67 in themode 1
and by 127 in the mode 2 of polymorphic gates. The Multiplier/Sorter circuits
have been used as benchmarks in literature; however, only for up to 8 inputs/8
outputs [22, 25, 7]. Note that the area-optimal multipliersas well as sorters
have significantly different structures for different numbers of the inputs.
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TABLE 3
Proposed benchmark circuits

Circuit Inp. Out. Mode 1 Mode 2
M/S4 4 4 2x2-bit multiplier 4-bit sorter
M/S5 5 5 3x2-bit multiplier 5-bit sorter
M/S6 6 6 3x3-bit multiplier 6-bit sorter
M/S7 7 7 4x3-bit multiplier 7-bit sorter
M/S8 8 8 4x4-bit multiplier 8-bit sorter
M/S9 9 9 5x4-bit multiplier 9-bit sorter
M/P7 7 1 7-bit majority 7-bit parity
M/P9 9 1 9-bit majority 9-bit parity

M/P11 11 1 11-bit majority 11-bit parity
M/P13 13 1 13-bit majority 13-bit parity

×67/×127 7 14 multiply by 67 multiply by 127
×131/×251 8 16 multiply by 131 multiply by 251
×257/×509 9 18 multiply by 257 multiply by 509

×521/×1021 10 20 multiply by 521 multiply by 1021

6.2 Direct Evolutionary Design Using CGP
For all problems, 10 runs were executed in each experiment, the population
size was 15, 3 genes were mutated in the search phase (B1+B2 > 0), 7 genes
were mutated in average in the minimization phase (B1 + B2 = 0) and up to
100 million generations were produced in each run. Results are reported for
the best setting of CGP parameters that we have found.

Note that the results for the Multiplier/Sorter problem areincluded just for
comparison (they were published in detail elsewhere [25, 7]). As shown in
Table 4 the 7-input Multiplier/Sorter circuit is the most complex polymorphic
circuit evolved directly.

Table 5 summarizes the results for the Majority/Parity benchmark. In this
case, CGP can evolve Majority/Parity benchmark circuits with up to 13 in-
puts. Table 6 shows the results for the polymorphic constantcoefficient mul-
tipliers.

6.3 Results of Polymorphic Multiplexing
We have used Espresso and ABC to synthesize the modules of benchmark
circuits with the aim of minimizing the number of gates and sharing as much
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TABLE 4
Parameters and results of CGP for the Multiplier/Sorter problem. Gates in ‘Gate set’
are numbered as: (1) NAND/NOR, (2) AND, (3) OR, (4) XOR, (5) NAND, (6) NOR,

(7) NOT A, (8) NOT B, (9) MOV A and (10) MOV B, where MOV denotes the
identity operation.

Multiplier/Sorter 2×2b/4b 3×2b/5b 3×3b/6b 4×3b/7b
u×v 10×12 100×1 120×1 16×16
L-back 1 100 120 16
Mutation (genes) 1 2 4 4
Gate set 1, 2, 9, 10 1–4, 9, 10 1–10 1, 2, 9, 10
Successful runs 100% 100% 90% 30%
Generations (avg.) 52,580 854,900 26,972,648 62,617,151
Min. # of gates 23 30 52 113

TABLE 5
Parameters and results of CGP for Majority/Parity problem.The gate set includes
NAND/NOR, AND, OR, XOR, NAND, NOR, NOT and MOV.

Majority/Parity 7b 9b 11b 13b
u×v 80×1 120×1 120×1 160×1
L-back 80 120 120 160
Successful runs 100% 90% 50% 10%
Generations (avg.) 766,362 4,762,745 8,145,890 9,712,501
Min. # of gates 25 42 61 80

gates as possible between the modules. Table 12 shows the results of Espresso
and ABC synthesis method for the benchmark problems (see thecolumns
labeled ’Espresso’ and ’ABC’).

We have also used the best-known optimized implementationsof indepen-
dentmodules that were interconnected by polymorphic gates (i.e., no sharing
of gates between the modules allowed). The implementationsof multipliers
were taken from [30], sorting networks and majority circuits were derived
according to [12] and constant coefficient multipliers werecomposed on the
basis of reduced ripple-carry multipliers. Results (denoted as ’IM’) are given
in Table 12. It can be seen that the strategy of independent modules leads to
fewer gates; however, the circuits synthesized by the IM method are still large
and have to be further optimized.
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TABLE 6
Parameters and results of CGP for×Constant/×Constant problem. The gate set

includes NAND/NOR, AND, OR, XOR, NAND, NOR, NOT and MOV.

×Constant/×Constant ×67/×127 ×131/×251 ×257/×509
Inputs 7 8 9
Outputs 14 16 18
u×v 320×1 640×1 320×1
L-back 320 640 320
Successful runs 60% 10% 30%
Generations (avg.) 7,192,359 46,833,855 40,002,719
Min. # of gates 94 239 116

6.4 Results of PolyBDDs
Table 7 shows the results of the polyBDD method for benchmarkproblems.
By ‘Gates’ we mean common 2-input gates, NAND/NORs, 2-inputmulti-
plexers and inverters. In PolyBDDs, reduction of branches,reduction of if-
then-else nodes with the same branches and reordering the inputs were ap-
plied. It can again be seen that synthesized circuits are large and have to be
further optimized.

TABLE 7
PolyBDD design results of Multiplier/Sorter, Majority/Parity and

×Constant/×Constant benchmarks

Multiplier/Sorter 3×2/5b 3×3/6b 4×3/7b 4×4/8b
Nodes 37 79 135 253
Terminals 10 11 11 12
Gates 50 94 150 269
Majority/Parity 7b 9b 11b 13b
Nodes 21 34 49 66
Terminals 5 5 5 5
Gates 31 41 59 73
×Constant/×Constant ×67/×127 ×131/×251 ×257/×509 ×521/×1021
Inputs 7 8 9 10
Outputs 14 16 18 20
Nodes 205 407 326 882
Terminals 16 16 15 16
Gates 228 430 348 905
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6.5 Optimization of Polymorphic Circuits using CGP

The optimization of the number of gates in the polymorphic circuits con-
structed by aforementioned methods is performed by CGP withtopology
q×1 andL = q whereq is total number of elements in the starting circuit (i.e.,
in the seed for CGP). CGP operates with the population size of15 individu-
als. The mutation operator modifies from 1 to 14 integers in the chromosome.
The function set contains AND, OR, NOT, NAND, NOR, NAND/NOR and
XOR gates. Each experiment is performed 10 times. The numberof gener-
ations is given in particular tables. Two fitness functionsf it1 and f it2 have
been compared for this task.

Table 8 shows the results obtained by applying CGP on the 4×4-bit Multip-
lier/8-bit Sorter circuits created by PolyBDD, Espresso, ABC and IM syn-
thesis method. For both fitness functions we can compare the number of
gates (minimum, maximum and average), the average number ofpolymor-
phic gates and overall average improvement (reduction of gates) in resulting
designs. Last part of Table 8 gives the design time for each method and the op-
timization time consumed by CGP. We can observe that the bestsolutions are
significantly different (see Min. gates). As the IM and ABC methods provide
the lowest number of gates for the 4×4-bit Multiplier/8-bit Sorter, we further
analyzed their results and compared their performance on other instances of
this benchmark problem. Table 10 (Table 11, respectively) summarizes the
results for the ABC method (the IM method, respectively).

Moreover, Table 9 analyzes in greater detail the computational effort for
the ABC method followed by CGP optimization for some instances of the
Multiplier/Sorter problem. Last part of Table 9 shows the reduction of the
computational overhead which is achievable when candidatecircuits are eval-
uated incompletely (see Section 5.4). Presented results indicate that fitness
function f it2 clearly outperforms fitness functionf it1. For example, see Fig-
ure 10 which demonstrates a typical run of CGP and Figure 11 which demon-
strates the average behavior of CGP on a particular circuit.

6.6 Computational Effort

In comparison with conventional synthesis, proposed methods require signif-
icantly more computational time. The reason is that the synthesis problem
is more difficult than the conventional one and thus the main role plays the
evolutionary search which is time consuming.

The computation time of direct CGP evolution can be expressed as fol-
lows. It takes 80 seconds to generate 1 million generations for a 4-input
polymorphic circuit at Athlon64 3200+ processor. For a 7-input polymorphic
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circuit, 207 seconds are needed at the same processor.
Table 8 (see Avg. design time) gives the average time required to con-

struct the 4x4-bit multiplier/8-bit sorter by proposed methods at Athlon64 X2
4800+ processor. Except the PolyBDD, the ‘design time’ is quite reasonable.
It is almost zero if independent modules are available in advance. The main
bottleneck is the ‘optimization time’ imposed by CGP (see the average opti-
mization time at last line of Table 8) which is in order of hours for this circuit.
However, this time can be reduced by decreasing the number ofgenerations
if a slightly larger solution is acceptable. Figures 10 and 11 demonstrate the
relation between the number of gates and the generation (i.e., the time spent
by optimization).

TABLE 8
Results of the CGP optimization of 4×4-bit Multiplier/8-bit Sorter ‘seeded’ by

proposed methods

Method fitness BDD Espresso ABC IM
Elements (q) 1043 2330 375 161
Initial gates 1028 2309 359 145
Generations 100M 100M 100M 100M
Max. gates f it1 407 697 232 112
Max. gates f it2 289 404 213 108
Min. gates f it1 355 616 192 109
Min. gates f it2 256 318 166 105
Avg. gates f it1 385.7 646.3 216.1 110.8
Avg. gates f it2 274.0 375.3 181.7 106.9
Avg. reduction f it1 38% 28% 60% 76%
Avg. reduction f it2 25% 14% 51% 74%
Avg. polymorphic gates f it1 8% 3% 22% 23%
Avg. polymorphic gates f it2 13% 14% 22% 21%
Avg. design time [s] 345 1 3 0.001
Avg. optimization time [s] 154,015 361,394 21,176 9,261

7 DISCUSSION

The best implementations (in terms of the number of gates) obtained by pro-
posed methods and subsequent CGP optimization are summarized for all
benchmark circuits in Table 12. The best-achieved results are typed in bold.

Results of Espresso were calculated only for some of the benchmark cir-
cuits because resulting circuits are too large and thus not competitive with
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TABLE 9
Computational effort of the ABC method followed by CGP optimization for various
instances of the Multiplier/Sorter circuit

Mult./Sorter 2x2/4 3x2/5 3x3/6 4x3/7 4x4/8 5x4/9
Elements (q) 45 71 131 212 375 697
Generations 1M 10M 10M 100M 100M 100M
Total eval. 30,000,000 300,000,000 300,000,000 6,000,000,000 12,000,000,000 24,000,000,000
Max. eval. f it1 17,718,334 174,887,434 183,569,142 2,150,454,947 2,929,056,984 4,964,315,994
Max. eval. f it2 17,610,320 172,659,116 171,835,708 2,245,511,189 3,112,567,474 5,031,752,725
Min. eval. f it1 17,522,867 171,223,566 167,859,366 2,108,612,177 2,830,925,681 4,653,366,773
Min. eval. f it2 17,351,240 171,691,345 169,738,375 2,190,750,297 2,977,493,490 4,698,975,306
Avg. eval. f it1 17,644,628 172,676,084 170,529,349 2,128,827,305 2,896,038,520 4,740,465,595
Avg. eval. f it2 17,497,586 172,126,928 170,825,843 2,216,669,961 3,040,183,950 4,872,021,002
Avg. reduc. f it1 1.70 1.74 1.76 2.82 4.14 5.06
Avg. reduc. f it2 1.71 1.74 1.76 2.71 3.95 4.93

TABLE 10
Results of the ABC followed by CGP optimization for various instances of the

Multiplier/Sorter circuit

Multiplier/Sorter fitness 2x2/4 3x2/5 3x3/6 4x3/7 4x4/8 5x4/9
Elements (q) 45 71 131 212 375 697
Initial gates 37 61 119 198 359 679
Generations 1M 10M 10M 100M 100M 100M
Max. gates f it1 22 43 85 135 232 411
Max. gates f it2 21 37 72 107 213 378
Min. gates f it1 19 36 71 110 192 366
Min. gates f it2 18 32 59 88 166 323
Avg. gates f it1 20.2 39.0 77.2 121.4 216.1 384.6
Avg. gates f it2 19.3 34.8 66.2 97.1 181.7 348.3
Avg. reduction f it1 55% 64% 65% 61% 60% 57%
Avg. reduction f it2 52% 57% 56% 49% 51% 51%
Avg. polymorph. gates f it1 37% 27% 21% 25% 22% 23%
Avg. polymorph. gates f it2 36% 28% 24% 24% 22% 21%

other methods. The highest number of gates produced by Espresso is mainly
due the fact that many-input gates have to be transformed to circuits com-
posed of 2-input gates. Hence Espresso is considered as the weakest method
for the polymorphic synthesis problem.

Although the direct polymorphic circuit evolution using CGP is not scal-
able it can be considered as a very successful method for small problem in-
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TABLE 11
Results of the IM method followed by CGP optimization for various instances of the

Multiplier/Sorter circuit

Multiplier/Sorter fitness 2x2/4 3x2/5 3x3/6 4x3/7 4x4/8 5x4/9
Elements (q) 47 67 91 125 161 198
Initial gates 39 57 79 111 145 180
Generations 1M 10M 10M 100M 100M 100M
Max. gates f it1 25 41 62 87 112 153
Max. gates f it2 23 38 60 83 108 152
Min. gates f it1 22 39 59 83 109 150
Min. gates f it2 19 34 58 80 105 148
Avg. gates f it1 23.0 39.3 61.1 84.6 110.8 151.6
Avg. gates f it2 20.6 35.9 59.3 81.4 106.9 149.8
Avg. reduction f it1 59% 69% 77% 76% 76% 84%
Avg. reduction f it2 53% 63% 75% 73% 74% 83%
Avg. polymorph. gates f it1 29% 26% 23% 21% 23% 17%
Avg. polymorph. gates f it2 27% 29% 25% 26% 21% 17%

TABLE 12
Summary of the number of gates obtained by all methods for thebenchmark

problems. Last two columns give the best known results from literature

Circuit Inp. Out. CGP BDD Esp ABC IM BDD+ Esp+ ABC+ IM+ Best Ref.
CGP CGP CGP CGP Lit.

M/S4 4 4 23 31 77 37 39 20 20 18 19 23 [25]
M/S5 5 5 30 50 168 61 57 35 30 32 34 30 [25]
M/S6 6 6 52 94 419 119 79 81 75 59 58 52 [25]
M/S7 7 7 113 150 960 198 111 112 116 88 80 110 [7]
M/S8 8 8 — 269 2,309 359 145 256 318 166 105 205 [7]
M/S9 9 9 — 428 — 679 180 471 — 323 148 — —
M/P7 7 1 25 31 752 39 33 27 44 21 27 29 [7]
M/P9 9 1 42 41 — 58 49 44 — 42 41 45 [7]
M/P11 11 1 61 59 — 79 63 49 — 62 51 69 [7]
M/P13 13 1 80 73 — 112 83 70 — 80 65 90 [7]
x67/x127 7 14 94 228 — 244 308 141 — 85 114 — —
x131/x251 8 16 239 430 — 513 352 535 — 187 259 — —
x257/x509 9 18 116 348 — 364 396 194 — 112 337 — —
x521/x1021 10 20 — 905 — 983 540 1,289 — 326 484 — —

stances. Polymorphic multiplexing (either of independentmodules (IM) or
circuits synthesized by ABC) followed by CGP optimization provides best
results for larger circuits. PolyBDDs do not perform as wellas polymorphic
multiplexing. Table 12 also shows that no single method outperforms other
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FIGURE 10
A typical progress of optimization for a single 4×4 Multiplier/8-bit Sorter (the best
solution is shown)

methods in all problem instances. By using the proposed methods, we were
able to significantly improve the implementation cost of almost all benchmark
circuits in comparison with the results existing in literature.

Another important property of the CGP optimization appliedon circuits
created by polymorphic multiplexing is that the number of polymorphic gates
utilized in resulting circuits is relatively high. Table 8 shows that the result-
ing circuits seeded by ABC method contain 22% polymorphic gates in av-
erage (23% was achieved for the IM method) while PolyBDDs ledonly to
8% and Espresso to 3% in average. In most cases combining the PolyBDD
with evolutionary optimization of the gate count reduces the implementation
cost. However, in some cases the CGP optimization can even increase the
number of gates. For example, see the M/P9 benchmark in whichthe use
of PolyBDD leads to 41 gates while the subsequent optimization requires 44
gates. The reason is that the PolyBDD representation uses multiplexers and a
single multiplexer is transformed on four two-input gates for CGP.

Although we have considered only the NAND/NOR gate and polymor-
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FIGURE 11
Average progress of optimization for the×257/×509 benchmark circuit.

phic circuits with two modes, the proposed methods can easily be extended
to utilize other polymorphic gates and support more operational modes. We
have applied only a basic set of operations to optimize PolyBDDs. We expect
that some improvements will be obtained by applying more advanced opti-
mization techniques over BDDs. The proposed fitness function f it2 signifi-
cantly improves the search efficiency although the requirement for reducing
the number of gates is not stated explicitly. This very interesting phenomenon
has been investigated for conventional circuit evolution in [8].

The proposed synthesis methods have already been utilized to create real-
world circuits. We physically demonstrated the behavior ofsome small evolved
circuits in REPOMO32 chip [24]. The evolved constant coefficient multipli-
ers were utilized in polymorphic FIR filter [23]. Self-checking polymorphic
adders were evolved using the proposed methods too [20].
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8 CONCLUSIONS

We have presented new methods for synthesis of polymorphic circuits. The
implementations of polymorphic circuits obtained by proposed methods rep-
resent the best known solutions if the number of gates is considered as the
decision criterion. We have mentioned in Introduction thatthere is no reason-
able method for synthesis of nontrivial polymorphic circuits. Proposed meth-
ods (PolyBDD and polymorphic multiplexing) can generate candidate ‘raw’
solutions to arbitrary specifications (if it is allowed by a particular SW imple-
mentation of Espresso, ABC etc.) in a reasonable time. In order to reduce the
number of gates to a reasonable amount, a very time consumingoptimization
has to be conducted. However, the evolutionary-based optimization proce-
dure seems to be the only way how to obtain reasonable implementations of
polymorphic circuits. Our future research will be devoted to reducing the
computational overhead of the proposed methods.
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