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Polymorphic gates are unconventional circuit compondms t
are not supported by existing synthesis tools. This anidsents
new methods for synthesis of polymorphic circuits. Propose
methods, based on polymorphic binary decision diagrams and
polymorphic multiplexing, extend the ordinary circuit repen-
tations with the aim of including polymorphic gates. In arde
to reduce the number of gates in circuits synthesized usiog p
posed methods, an evolutionary optimization based on §iarte
Genetic Programming (CGP) is implemented. The implemen-
tations of polymorphic circuits optimized by CGP repredtiet
best known solutions if the number of gates is consideretas t
decision criterion.

Key words: polymorphic circuit, digital circuit synthesis, evolutiary

computing, genetic programming

1 INTRODUCTION

Polymorphic electronics was introduced by A. Stoica’s grati NASA Jet
Propulsion Laboratory as a new class of electronic devltatsaxhibit a new

*This is authors’ manuscript of the paper: Gajda Zbysek, Saka_ukas: On Evolutionary
Synthesis of Compact Polymorphic Combinational Circuitsurnal of Multiple-Valued Logic
and Soft Computing, Vol. 17, No. 6, 2011, p. 607-631. For thalfversion, see Old City Pub-
lishing, Inc. at http://www.oldcitypublishing.com/MVILEMVLSCcontents/MVLSCv17n5-
6contents.html

Temail:gaj da@it.vutbr.cz

*email: sekani na@it.vutbr.cz



style of (re)configuration [28]. Polymorphic gates play temntral role in
the polymorphic electronics. A polymorphic gate is capatflewitching
among two or more logic functions. However, selection of fingction is
performed unconventionally. Logic function of a polymoipbate depends
on some external factors, e.g. on the level of the power sumitage ¥yq),
temperature, light or some other external signals [28, 29,32, 20]. For
example, Stoica’s polymorphic bifunctional NAND/NOR gatntrolled by
Vgq operates as NOR fdfgg = 1.8 V and NAND forVyg = 3.3 V [27]. In
fact, polymorphic gates merge the capability of performogjc operations
with sensing. Hence polymorphic gates would be also verfulisebuilding
theembodied intelligence-intelligent devices whose function emerges in an
interaction with a physical environment [3]. Although paigrphic gates can
be implemented relatively effectively using current CM@S8hnology, we
can expect an expansion of polymorphic devices with furtleeelopment of
nanoelectronics and molecular electronics.

Having polymorphic gates, researchers have begun to denely meth-
ods for synthesis of digital circuits that contain polymiiggates [22, 15, 25,
7]. Main motivation is to obtain reconfigurable (and thusgpdially adaptive)
circuits for a very low cost and without the need to implenereconfigura-
tion infrastructure (switches, multiplexers, configusatregisters etc.). The
goal of the polymorphic circuit synthesis can be formulasd problem of
finding such a circuit which performs required functiofys. . fx in modes
1...k of polymorphic gates [22]. Figure 1 shows an example of palgphic
digital circuit and its equivalent behavior in both modeghs# polymorphic
NAND/NOR gate (i.e.k =2, fi =igAi1 @i» and f, =igViy @i,). Note
that the method used to physically control the mode of polyghiz gates is
not important in the proposed synthesis problem formutatienfortunately,
conventional synthesis algorithms are not directly apblie for solving the
polymorphic circuit synthesis problem which is, in fact, amadifficult case
of the classic digital circuit synthesis problem.

In general, the design of an efficient digital circuit syrgisealgorithm is
a well-known problem that has been approached by many sarin the
recent decades. A synthesis algorithm operates over dtaiepuesentation.
Various models have been devised to represent digitalitsricusuch a form
which is suitable for synthesis algorithms. Among othersplBan expres-
sions, truth tables and binary decision diagrams (BDD) Hmeen utilized.
The synthesis algorithms are capable of transforming titi@ligircuit repre-
sentation (which is derived from the behavioral specifargtionto a circuit
representation which is suitable for subsequent circbitéation. The circuit
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FIGURE 1
a) Example of a polymorphic circuit; b) Equivalent circuitinode 1; ¢) Equivalent
circuit in mode 2

representation together with the synthesis algorithmrdetes the space of
possible implementations that one can obtain as a resuieafjinthesis pro-
cess.

It remains unclear how to represent a gate-level polymarpincuit and
how to define such transformations over a chosen repregamtatich will
lead to an efficient implementation of the polymorphic citeising a given
set of ordinary and polymorphic gates. A partial successaghageved using
evolutionary design methods [22, 14, 25, 7] which do not poserequire-
ments on the representation or the set of transformationaeMer, because
the methods are search-based, they are not scalable ancetatiyely small
polymorphic circuits were evolved (e.g., max. 7-input Nupller/Sorter cir-
cuits [25]). Papers [7, 15] have exploited some conventiom@hods to syn-
thesize polymorphic circuits, however, achieving rekathinefficient imple-
mentations.

In this article, we extend the concept of combining conwardl synthe-
sis with evolutionary synthesis that was developed in oavipus work [7].
The goal is to propose a method that will be able to synthesizieoptimize
especially mid-size polymorphic circuits. The first prahléwhich this ar-
ticle deals with) is how to modify conventional circuit shiesis methods in
order to allow them to operate with polymorphic gates. Twprapches are
proposed and compared: polymorphic multiplexing and polgghic BDDs.
Unfortunately, these approaches produce area-ineffis@ations when ap-
plied solely. Hence the second problem targeted in thislaiis the optimiza-
tion of the number of gates in polymorphic circuits. The pegd optimiza-
tion algorithm is based on Cartesian Genetic Programmi@R)J16]. Two
different fitness functions will be compared for this tasls.tAere is not avail-
able any set of benchmark polymorphic circuits, we havediced a new set
of benchmark circuits to evaluate the synthesis algorithiiitee benchmark
set consists of 14 circuits with 4—13 inputs and 4—20 outpatsrder to fairly



compare the results of various methods, solutions will hegkbin the form

of circuits composed of two-input gates (inverters inclljdeln addition to
ordinary gates, we restrict ourselves to use only the NANDR\polymor-
phic gate controlled byyq because only this gate is currently available for
a physical implementation [27, 24]. However, in generabpgmsed methods
can utilize an arbitrary (but functionally complete) segates.

The rest of the article is organized as follows. Section Pouhtices the
area of polymorphic electronics. Cartesian Genetic Progrig, its advan-
tages and limitations are surveyed in Section 3. Sectiorrddbly defines
the polymorphic circuit synthesis problem. In Section ®gwsed methods
to the synthesis of polymorphic circuits are described. drtipular, we use
Cartesian Genetic Programming, polymorphic multiplexand polymorphic
binary decision diagrams. Subsection 5.4 deals with thienigstion of poly-
morphic circuits. The optimization is performed using CG®, CGP is
'seeded’ with conventional designs. Section 6 presentsebeglts obtained
using proposed methods on a set of benchmark circuits. Bsgmu of ob-
tained results is presented in Section 7. Conclusions aemgdn Section 8.

2 POLYMORPHIC ELECTRONICS

Current research in the field of polymorphic electronicstoasplit into three
areas: (i) design of reliable polymorphic gates, (ii) depshent of synthesis
algorithms and (iii) development of applications. As thelgem of synthesis
will be dicussed in the remaining parts of the paper we wittly summarize
(i) and (iii) in this section.

Table 1 surveys some polymorphic gates reported in litegatior each
polymorphic gate, logic functions performed by the gategven together
with the values that represent recommended setting of thiealsignal vari-
able. The number of transistors characterizes the sizelgimmophic gates
only partially as the transistors occupy different areabtars gates were fab-
ricated using different fabrication technologies.

Only two of the polymorphic gates have been fabricated sadanaining
polymorphic gates were either simulated or tested in a fieddjfmmmable
transistor array (FPTA-2). For instance, the 6-transistAND/NOR gate
controlled byVyq was fabricated in a 0.5-micron HP technology [27]. An-
other NAND/NOR gate controlled byy4 and introduced in [20] was utilized
in the REPOMO32 chip which is an experimental reconfiguraibdéform
for development of polymorphic circuits [24]. REPOMO32 swts of 32
two-input Configurable Logic Elements; each of them can lg@mmed



to perform one of the following functions: AND, OR, XOR andlymorphic
NAND/NOR (controlled byyg). WhenVgq = 3.3V the NAND/NOR gate ex-
hibits the NOR function and wharyq = 5V the gate exhibits the NAND func-
tion. Remaining gates do not change their logic functiorth wie changes
of V4q (3-5 V). The chip was fabricated in a 0.7-micron AMIS teclogyl.

TABLE 1
Existing polymorphic gates

Gate control values| control transistorg ref.
AND/OR 27/125C temperature 6 [28]
AND/OR/XOR 3.3/0.0/1.5V | ext. voltage 10 [28]
AND/OR 3.3/0.0Vv ext. voltage 6 [28]
AND/OR 1.2/3.3V Vyd 8 [29]
NAND/NOR 3.3/1.8V Vyd 6 [27]
NAND/NOR/NXOR/AND | 0/0.9/1.1/1.8V, etx. voltage 11 [32]
NAND/NOR 5/3.3V Vyd 8 [20]

Papers [28, 29] indicate various areas in which polymorghies could
be utilized. The applications of polymorphic electronieparted or proposed
so far are given as references in the following summary.

e Automatic change of circuit behavior when a power supplydssuf-
ficient [23].

e Implementation of low-cost reconfigurable/adaptive syste¢hat are
able to adjust their behavior inherently in response tocagertontrol
variables (e.g., multifunctional counters [32, 19]).

e Implementation of novel concepts for testing and diagrpsihelec-
tronic circuits (e.qg., self-checking adders [20] and reitunoof test vec-
tor volume [26]).

e Implementation of a hidden function, invisible to the usejch can
be activated in a specific environment [28, 29].

¢ Intelligent sensors for biometrics, robotics and indastrieasurement
[28, 29].

e Reverse engineering protection [28, 29].



3 CARTESIAN GENETIC PROGRAMMING

Cartesian genetic programming was introduced by Miller #hdmpson a
decade ago [18]. It resembles the concept of genetic pragrag but in-
troduces some important modifications: (i) a candidateudiis modelled
using a directed acyclic graph; (ii) the graph is encodedfasd-size string
of integers; and (iii) the search is performed using a motakiased evolu-
tionary strategy (no crossover is employed). The main atdggnof CGP is
that it generates very compact solutions, i.e. it can dffelgtreduce the total
number of gates in the case of circuit evolution (see evohettipliers in
(30)).

In the basic version of CGP, a candidate circuit is modelea imatrix of
u (columns)x v (rows) of programmablee-input elements (two-input gates,
in our case). The number of inputs,and outputsm, of the circuit is fixed.
Each gate input can be connected either to the output of gotgted in the
previousL columns or to one of the circuit inputsdintegers are devoted
to encode the connections of a single gate). THeack parameter, in fact,
defines the level of connectivity and thus it reduces/extéhe search space.
Feedback is not allowed. Each gate can be programmed torpedoe of
logic functions defined in the sEtwhich contains ordinary and polymorphic
functions in our task. Figure 2 shows an example of the emgpdsed in
CGP.
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FIGURE 2

An example of a circuit in CGP with parameters=3, m=1,L=6,u=6,v=1,

I = {and(0),or(1)}. Elements 4 and 8 are not utilized. Chromosome:11,2,20,
1,20, 0,51, 3,60, 0,71, 7. Functions of elements are typed in bold. The last integer
indicates the output of the circuit.

In case of the combinational circuit evolution, the fitheakre of a candi-
date circuit is traditionally defined in CGP as [10]:

fitness= B+ (uv—2) 1)

whereB is the number of correct output bits obtained as responsalfor



possible assignments to the inputslenotes the number of gates utilized in
a particular candidate circuit andr is the total number of available gates.
The last termuv— z is considered only if the circuit behavior is perfect, i.e.
B=m2".

CGP operates with the population oft1A individuals (typically,A is
from 2 to 15). The initial population is either randomly geated or seeded
using existing designs. Every new population consists efatbst individual
of the previous population and its offspring created by a point mutation
(the number of mutated genes is a parameter of the mutatieratyp). In
case when two or more individuals have received the samadiseore in the
previous population, an individual which has not servedchasparent in the
previous population will be selected as the new parent. Jin&egy is used
to ensure diversity of population.

CGP has been successfully utilized in many applicatiors,(E.6, 6, 21,
13, 11]), investigated experimentally [17] and extendezlgport modularity,
self-modification and other features [31, 9]. It has beemshihat neutrality
(i.e. a neutral effect of inactive genes on genotype fitnessgh is inherent
for CGP is very beneficial to the efficiency of evolutionarppess [17].

However, the main problem is that in case of the combinaticinzuit evo-
lution, the evaluation time of a candidate circuit growsaxgntially with the
increasing number of inputs (assuming that all possibl@ticpmbinations
are tested in the fithess function) [30]. Hence, the evalnatme becomes
the main bottleneck of the evolutionary approach when cemgircuits with
many inputs are evolved.

4 POLYMORPHIC CIRCUIT SYNTHESIS PROBLEM

In this article, the polymorphic circuit synthesis problenestricted to the
gate level. Target circuits will consist of polymorphic asrdinary gates. The
following problem formulation resembles the definition posed in [22, 25].

Let @ denote a set of ordinary gates. L€ denote a set of polymor-
phic gates. A polymorphic gate implements twfunctions according to a
control signal which can hold two different values. A gatéisnode j(and
so performing thg-th function) in the case whejath value of the control sig-
nal is activated. For purpose of this article, we denote gmotphic gate as
X1/X2, whereX; is itsi-th logic function. For example, NAND/NOR denotes
a gate operating as NAND in threode land as NOR in thenode 2 Note

* This can be naturally extended fodifferent functions.



that ordinary gates can perform only one function, howeteir functional-
ity must be fully defined for each mode. For example, a conweat NAND
gate considered for polymorphic circuits must perform teN® function
in both modes (denoted as NAND/NAND). LEtdenote a set of all gates,
r=r®ur®@,

A polymorphic circuit can formally be represented by a gr&ph (V,E, ¢),
whereV is a set of verticesk: is a set of edges between the vertidése
{(a,b)|]a,b €V}, and¢ is a mapping assigning a function (gate) to each ver-
tex, ¢ :V — I'. Note thatv models the gates ari€l models the connections
of the gates. A circuit (and also its graph) is in thede jin the case when
all gates are in thenode |

GivenT and logic functionsf; and f, required in different modes, the
problem of the multifunctional circuit synthesis at theeg&vel is formu-
lated as follows: Find a grapB representing the digital circuit which per-
forms logic functionf; in the mode land logic functionf, in the mode 2
Additional requirements can be specified, e.g. to minimiay] area, power
consumption etc.

Unfortunately, this problem can not be approached by caivesl syn-
thesis methods directly since they do not allow represgnpiolymorphic
logic functions and manipulating with them.

Note that paper [15] also deals with the polymorphic ciksiynthesis
problem; however, the goal of the synthesis is differentarget circuit is
constructed to perform a single function independentlyhef polymorphic
gates mode.

5 PROPOSED METHODS

This section describes three approaches to the polymocphigt synthesis
problem. The first one is based on the evolutionary designgusiGP. The
remaining approaches extend the conventional synthedisosh®to be ap-
plicable for polymorphic circuits. While polymorphic migtexing allows
polymorphic gates to be included to the output part of thgelcircuit the
polymorphic binary decision diagrams enable insertingthlgmorphic gates
to the input part of the target circuit. In both cases, CGPsexuin the post-
sythesis phase to reduce the number of gates.

5.1 Direct Circuit Evolution Using CGP
In our previous work, we have used CGP to synthesize polyhiogrcuits
[22, 25]. In contrast to equation 1 we have modified the fitriaastion so



that a candidate circuit is evaluated in both modes. The rteess value is
defined as follows:

fit; = 14 (B +Ba)(uv+1)+2 )

whereB; (resp. By) is the number of incorrect output bits fét (resp. f2)
obtained as response for all possible assignments to thésizgenotes the
number of gates utilized in a particular candidate circod a.v is the total
number of programmable gates available. The last teisiconsidered only
if the circuit behavior is perfect in both modd®;(+ B, = 0). Here, the goal
of evolution is to minimize the output of Equation 2. Howewhis approach
is not scalable and thus new synthesis methods have to beggop

5.2 Polymorphic Multiplexing

A straightforward approach to the implementation of polypiwc circuits is
the utilization of a polymorphic multiplexepmux which propagates signal
Ain themode lof polymorphic gates and signal B in theode 2of polymor-
phic gates. One of possible gate-level implementationgrofix based on
the NAND/NOR gates, is shown in Fig. 3. Its implementatiostds Cpmux
=5 gates. We will use this implementation for comparison&tvhwill be
performed in this article. However, it is expected that a encompact and
efficient transistor-level solution gfmuxwill be available in the future.

pmux:

NAND/NOR

FIGURE 3
Polymorphic multiplexer at the gate-level

The polymorphic multiplexing works as follows: Considertta target
polymorphic circuit has to implemerit and f,. A conventional approach is
used to synthesize a circuit (modig) implementingf; and another circuit
(moduleMy) implementingf, independently. The outputs of the circuits are
then multiplexed using polymorphic multiplexers as showifrig. 4a. This
approach will be denoted as Independent Modules (IM). Naiedspecially
for smaller circuits it is also possible to use evolutiongrguit design instead



of conventional methods to create the modules. Larger nesdarde usually
designed by conventional design methods.

a)

FIGURE 4
Multiplexing conventional circuits by polymorphic multgxers: a) independent mod-
ules, b) sharing some gates between modules

In order to reduce the number of gates, the goal of synthesisbe to
maximize the number of gates that are shared by both cir(sées the in-
tersection in Figure 4b). Espresso [2] and ABC [1] are cotigeal circuit
synthesis methods that we chose to synthesize particuldulem We ap-
plied them with the aim of minimizing the number of gates itHomodules,
sharing as much gates as possible between the modules aimdizivig the
number of outputs that have to be equipped with polymorphittipiexers.

5.3 Polymorphic BDD-based Synthesis

We proposepolymorphic binary decision diagram@olyBDD) to extend
standard decision diagrams. We will show how to constru¢¢B@Ds and
transform them to corresponding polymorphic circuits.

Decision Diagrams

Decision diagram (DD) [4] over a set of Boolean variab¥gs= {x1,...,Xn}
and a non-empty terminal s&tis defined as a directed acyclic gra@h=
(V,E) with exactly one root node and the following properties:

e A nodeinV is a non-terminal or terminal node.

e A non-terminal node is labeled by variabieand has two successors
low(x;) andhigh(x) in V.

e A terminal node is labeled with a value from

The size of DD is given by the number of its nodes. The leyed the set
of nodes labeled by;. A DD is ordered, if each variable is encountered at
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most once on each path from the root to a terminal node andattieles are
encountered in the same order on each path.

Binary decision diagram (BDD) [4] is defined as DD ov&@r however, its
terminal setisT = {0,1}. If the BDD has root node, then BDD represents a
Boolean functionf, defined as follows: I¥ is a terminal node of value 0 (1)
thenf, =0 (fy = 1); If vis a non-terminal node labeled with indgxhenf, is
the functionfy(xa, ...,Xn) = Xi- fiow(v) (X1, -+ Xn) +Xi- Frighv) (X1, ---, Xn), Where
fiowrv) (fhighv)) denotes the function represented byi(v) (high(v)). We can
also call the non-terminal nodes as if-then-else nodex;: tifien fy = fhign
elsefy, = fiow.

Multi-Terminal BDD (MTBDD) [5] is an extension of BDDs whichllows
integers to be placed in terminal nodes. Decision variadnlestill Boolean.

We define a PolyBDD as a MTBDD in which terminal integers deiee
elementary polymorphic functions.

Design of PolyBDD

Let f; denote a target function in mode= 1 andf, denote a target function
in modej = 2 (according to Section 4; : {0,1}" — {0,1}). LetR; andR»
be truth tables forf; and f,. Assume thaR; and R, are fully defined and
ordered. The design of PolyBDD which represefitand f» is a three-step
procedure:

1. Create truth tabl® of the polymorphic circuit as composition &
andR,. Truth tableR has 2 lines,n columns with all the input variable
assignments and two columns with logic valuesfipand f,.

2. Choose a decision variabte (wherec = 0...n— 1) and divideR into
2"/2 segments (rows) in such a way that the input assignmewtrsliff
only inx; in each segment. From each segment, extract a sigriature
22,5014 22.590+ 21511 + 20.510 = (Sp1520811510)2; the least significant
bits come fromf; and the most significant bits come frdim the values
of variabless,1, S0, 511,10 are determined according to a conversion
matrix (see Figure 5b). Lé¥ denote the resulting truth table.

3. Process the resulting 2-row truth tableR’ using a standard algorithm
for MTBDD processing to create an optimized if-then-elsacure.

Figure 5 shows an example: the original truth taRlef the 3-bit Major-
ity/Parity function, transformed truth table (accordiogriputxg) and exam-
ple of the signature. Terminal nodes represent simple patghic functions,
see Table 2.
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FIGURE 5

Transformation process of the 3-bit Majority/Parity truétble &; denotes the ma-
jority; s, denotes the parity): a) Truth tabRebefore transformation; b) Conversion
matrix of the signature; c) Transformed truth taBle

TABLE 2
Signature semantics of the PolyBDD ('neg’ denotes the lowiersion; 'id’ denotes
the identity function)

S s/ %|S s/ | S s/l | S s/ s
0 0/ 0|4 0/ neg| 8 0/ id| 12 o/ 1
1 neg/ 0|5 neg/ neg 9 neg/ id 13 neg/ 1
2 id/ 0|6 id/ neg|10 id/ id|14 id/ 1
3 1/ 0|7 1/ neg| 11 1/ id| 15 1/ 1

A PolyBDD which has been constructed using the proposedigigocan
be further optimized using standard techniques that arkcapype for MTB-
DDs. The optimization techniques includes:

e Reducing identical (redundant) branches (type | [4]).

e Reducing (redundant) if-then-else node with the same bhestype S

[4).

e Reordering the input variables.

12



Synthesis of PolyBDD into Polymorphic Circuit

A transformation of the PolyBDD to a polymorphic circuit igagghtfor-

ward. Firstly, the if-then-else nodes are directly mappetd @-input ordi-

nary multiplexers. Then, terminal nodes are implementéugusiementary
polymorphic circuits according to the conversion tablevenin Fig. 6. The

elementary polymorphic circuits utilize ordinary gates &ime NAND/NOR

polymorphic gate. If, for some reasons, another set of gaego be used,
a different conversion table has to be created. Finallyetementary poly-
morphic circuits are connected with multiplexers. Figurshows reduced
PolyBDD for the 3-bit Majority/Parity benchmark and its ilementation us-
ing polymorphic gates.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0:0/0  4:0/neg 1 8:0/id 12:0/1
' X | 3

- O ) PO Vo Do P o e
lneg0 ~ __ Gnegheg  i9negid ‘13negl
] X L X )
s/ o XD Do
=
‘2o  ejdneg 100did ~ 14ddn
maalis N oo B i
— f }o | 3 — |
310 tneg 116d 51

0" —] !
/I~ /e T/ v

1" — "0" 1o

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FIGURE 6
Conversion table for the PolyBDD method. Elementary polgph@ circuits com-
posed of NAND/NOR and ordinary gates were constructed fpratures 0.. 15.

5.4 Optimization of Polymorphic Circuits

Polymorphic circuits created using polymorphic multiptexor PolyBDDs

are large in many cases and thus inefficient. In the case pfmrphic mul-

tiplexing, polymorphic gates are solely located aroundatti@ary outputs of
the circuit. In the case of PolyBDDs, the polymorphic gateslacated close

13



FIGURE 7
Reduced PolyBDD and a corresponding polymorphic circuittfe 3-bit Major-
ity/Parity problem.

to the primary inputs. In order to minimize the total numbkgates, it is de-
sirable to integrate polymorphic gates deeply to the dirstmiicture and also
increase the ratio of polymorphic gates to ordinary gateswill show later
that increasing the ratio of polymorphic gates usually $etaddecreasing the
total number of gates.

For purposes of optimization, polymorphic circuits arevanted to the
CGP representation. Since CGP uses two-input nodes, ajpaoemts have
to utilize up to two inputs. Hence a 3-input multiplexer isheerted into
four 2-input gates (in the PolyBDD-based design), a 3-ilbND-gate is
converted into two 2-input gates (in the Espresso-basadmgsetc.

CGP is, in fact, seeded with a fully functional but non-oglmesign with
respect to the number of gates. The goal of the optimizasidhe reduction
of the number of gates. We will compare the traditional fignesiction from
Equation 2 which explicitly counts the number of gates witheav fitness
function defined as:

fito =14 (B1+By) 3)

We will show in Section 6.5 that the new fitness function (Besignificantly
improves the results of optimization although it does n&etmto account
the number of gates. This phenomenon has already beendindiemain
of evolutionary synthesis of combinational circuits [8].

The fitness evaluation procedure which probes every assigtim the in-
puts (i.e., 0..2"— 1) is the main time bottleneck of the optimization method.

14



In order to make the evaluation of a candidate circuit astg®possible, itis
only tested whether the candidate circuit is working cdfyear incorrectly.
In the case that a candidate circuit does not produce a ¢ougaut value for
the p-th input vector during the evaluation, the remainifig-2p — 1 vectors
are not evaluated and the circuit gets the worst possiblesé&xperimental
results have shown that this technique reduces the comqmahbverhead
significantly (see Fig. 8). Note that this technique canreoapplied for the
evolutionary circuit design conducted in Section 5.1 beeaue have to know
the fitness score as precisely as possible (i.e. the exadieruphbits has to
be calculated that can be correctly generated by a particatadidate circuit)
in order to obtain a relatively smooth fitness landscape.

55 T
fitness fit2 ——
fitness fitl ==-x---

k.

45

Avg. reduction
w
@

Inputs

FIGURE 8

Average reduction of the computational overhead in corspariwith the complete
truth table evaluation for the Multiplier/Sorter benchingaccording to Table 9). Re-
sults are shown for a 64 bit architecture with the parallaleation.

Parallel simulationis another technique that can be used to accelerate the
circuit evaluation [16]. The idea of parallel simulatiortasutilize bitwise op-
erators operating on multiple bits in a high-level languggeh as C) to per-
form more than one evaluation of a gate in a single step. Famele, when
a combinational circuit under simulation has three inpatsiais possible to
concurrently perform bitwise operations ovér=28 bits in the simulator then
the circuit can completely be simulated by applying a sif@kdt test vector
at each input (see the encoding in Fig. 9). In contrast, whsnimpossible
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then eight three-bit test vectors must be applied sequigntia the case of

polymorphic circuits the simulation is performed for eachda separately.
Practically, current processors allow us to operate witlbi64perands, i.e.
it is possible to evaluate the truth table of a six-input @itrdy applying a

single 64-bit test vector at each input. Therefore, theinbthspeedup is 64
against the sequential simulation. In case that a circsitiare than 6 inputs
then the speedup is constant, i.e. 64. This technique hasdmsied in all

evolutionary design and optimization experiments repbirtethis article.

NAND/NOR
01010101 11101110
01010101 10001000
00110011
00110011
00001111 35\\ 11100001
00001111 / 10000111

FIGURE 9
Parallel evaluation of a candidate polymorphic circuit

6 RESULTS

This section introduces a new set of benchmark circuitswigahave devel-
oped and reports the results obtained using the propos#itesimmethods.

6.1 Benchmark Circuits

As no benchmark set is available to evaluate proposed sgisthlgorithms,

we have to introduce a new one. The proposed benchmark ssstsoof 14

circuits of 4-13 inputs and 4-20 outputs (see Table 3). Tkischmark set
includes Multiplier/Sorter circuits of variable sizes, jdaty/Parity circuits

of variable sizes and four polymorphic constant coefficranttipliers. For

example, thex67/x127 circuit multiplies the input value by 67 in theode 1

and by 127 in the mode 2 of polymorphic gates. The MultipBerter circuits

have been used as benchmarks in literature; however, anlpft 8 inputs/8
outputs [22, 25, 7]. Note that the area-optimal multipliasswell as sorters
have significantly different structures for different nuend of the inputs.
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TABLE 3
Proposed benchmark circuits

Circuit Inp. Out. Mode 1 Mode 2
M/S4 4 4| 2x2-bit multiplier 4-bit sorter

M/S5 5 5| 3x2-bit multiplier 5-bit sorter

M/S6 6 6 | 3x3-bit multiplier 6-bit sorter

M/S7 7 7| 4x3-bit multiplier 7-bit sorter

M/S8 8 8| 4x4-bit multiplier 8-bit sorter

M/S9 9 9| 5x4-bit multiplier 9-bit sorter

M/P7 7 1 7-bit majority 7-bit parity

M/P9 9 1 9-bit majority 9-bit parity
M/P11 11 1 11-bit majority 11-bit parity
M/P13 13 1 13-bit majority 13-bit parity
x67/x127 7 14 multiply by 67  multiply by 127
x131/x251 8 16| multiply by 131  multiply by 251
x 257/x509 9 18| multiply by 257  multiply by 509
x521/x1021 10 20| multiply by 521  multiply by 1021

6.2 Direct Evolutionary Design Using CGP

For all problems, 10 runs were executed in each experimeapopulation
size was 15, 3 genes were mutated in the search pBaseR, > 0), 7 genes
were mutated in average in the minimization pha&gt B, = 0) and up to
100 million generations were produced in each run. Restdtseported for
the best setting of CGP parameters that we have found.

Note that the results for the Multiplier/Sorter problem sreuded just for
comparison (they were published in detail elsewhere [2B, &% shown in
Table 4 the 7-input Multiplier/Sorter circuit is the mosieplex polymorphic
circuit evolved directly.

Table 5 summarizes the results for the Majority/Parity thenark. In this
case, CGP can evolve Majority/Parity benchmark circuithwp to 13 in-
puts. Table 6 shows the results for the polymorphic consta@fficient mul-
tipliers.

6.3 Results of Polymorphic Multiplexing
We have used Espresso and ABC to synthesize the modules cfihark
circuits with the aim of minimizing the number of gates andréing as much
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TABLE 4
Parameters and results of CGP for the Multiplier/Sorteblam. Gates in ‘Gate set’
are numbered as: (1) NAND/NOR, (2) AND, (3) OR, (4) XOR, (5) NB, (6) NOR,
(7) NOT A, (8) NOT B, (9) MOV A and (10) MOV B, where MOV denotedset
identity operation.

Multiplier/Sorter | 2x2b/4b| 3x2b/5b| 3x3b/6b| 4x3b/7b
uxv 10x 12| 100x1 120x 1 16x 16
L-back 1 100 120 16
Mutation (genes) 1 2 4 4
Gate set 1,2,9,10 1-4,9, 10 1-10| 1,2,9,10
Successful runs 100% 100% 90% 30%
Generations (avg)) 52,580/ 854,900 26,972,648 62,617,151
Min. # of gates 23 30 52 113

TABLE 5

Parameters and results of CGP for Majority/Parity problefine gate set includes
NAND/NOR, AND, OR, XOR, NAND, NOR, NOT and MOV.

Majority/Parity 7b 9b 11b 13b
uxv 80x1 120x 1 120x 1 160x 1
L-back 80 120 120 160
Successful runs 100% 90% 50% 10%
Generations (avg.) 766,362| 4,762,745| 8,145,890 9,712,501
Min. # of gates 25 42 61 80

gates as possible between the modules. Table 12 shows titts € spresso
and ABC synthesis method for the benchmark problems (seedlwnns
labeled 'Espresso’ and 'ABC’).

We have also used the best-known optimized implementatibinslepen-
dentmodules that were interconnected by polymorphic gates ficesharing
of gates between the modules allowed). The implementatbnuultipliers
were taken from [30], sorting networks and majority cirsuitere derived
according to [12] and constant coefficient multipliers wesenposed on the
basis of reduced ripple-carry multipliers. Results (dedats 'IM’) are given
in Table 12. It can be seen that the strategy of independedulas leads to
fewer gates; however, the circuits synthesized by the IMoebare still large
and have to be further optimized.
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TABLE 6
Parameters and results of CGP fo€onstantk Constant problem. The gate set
includes NAND/NOR, AND, OR, XOR, NAND, NOR, NOT and MOV.

x Constant/xConstant | x67/x127 | x131/x251 | x257/x509
Inputs 7 8 9
Outputs 14 16 18
uxv 320x 1 640x 1 320x 1
L-back 320 640 320
Successful runs 60% 10% 30%
Generations (avg.) 7,192,359| 46,833,855 40,002,719
Min. # of gates 94 239 116

6.4 Results of PolyBDDs

Table 7 shows the results of the polyBDD method for benchrpasklems.
By ‘Gates’ we mean common 2-input gates, NAND/NORs, 2-inmuiti-
plexers and inverters. In PolyBDDs, reduction of branchegduction of if-
then-else nodes with the same branches and reorderingpbtsiwere ap-
plied. It can again be seen that synthesized circuits age land have to be

further optimized.

TABLE 7

PolyBDD design results of Multiplier/Sorter, Majority/fy and
x Constantk Constant benchmarks

Multiplier/Sorter 3x2/5b 3x3/6b 4x3/7b 4x4/8b
Nodes 37 79 135 253
Terminals 10 11 11 12
Gates 50 94 150 269
Majority/Parity 7b 9b 11b 13b
Nodes 21 34 49 66
Terminals 5 5 5 5
Gates 31 41 59 73

x Constant/x Constant | x67/x127 | x131/x251 | x257/x509 | x521/x1021
Inputs 7 8 9 10
Outputs 14 16 18 20
Nodes 205 407 326 882
Terminals 16 16 15 16
Gates 228 430 348 905
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6.5 Optimization of Polymorphic Circuits using CGP

The optimization of the number of gates in the polymorphicuis con-
structed by aforementioned methods is performed by CGP twjtblogy
gx 1 andL = gwhereqis total number of elements in the starting circuit (i.e.,
in the seed for CGP). CGP operates with the population sid& afidividu-
als. The mutation operator modifies from 1 to 14 integersérctiromosome.
The function set contains AND, OR, NOT, NAND, NOR, NAND/NORd
XOR gates. Each experiment is performed 10 times. The nuoftgener-
ations is given in particular tables. Two fithess functiditg and fit, have
been compared for this task.

Table 8 shows the results obtained by applying CGP on e @it Multip-
lier/8-bit Sorter circuits created by PolyBDD, Espress®@\and IM syn-
thesis method. For both fitness functions we can compare uheer of
gates (minimum, maximum and average), the average numbeslyior-
phic gates and overall average improvement (reduction efsjjén resulting
designs. Last part of Table 8 gives the design time for ea¢hadeand the op-
timization time consumed by CGP. We can observe that thesbéstions are
significantly different (see Min. gates). As the IM and ABCthmds provide
the lowest number of gates for the4-bit Multiplier/8-bit Sorter, we further
analyzed their results and compared their performancetwer agistances of
this benchmark problem. Table 10 (Table 11, respectively)rearizes the
results for the ABC method (the IM method, respectively).

Moreover, Table 9 analyzes in greater detail the computatieffort for
the ABC method followed by CGP optimization for some insesof the
Multiplier/Sorter problem. Last part of Table 9 shows thduetion of the
computational overhead which is achievable when canddiateits are eval-
uated incompletely (see Section 5.4). Presented resulisaite that fithess
function fit, clearly outperforms fitness functidfit;. For example, see Fig-
ure 10 which demonstrates a typical run of CGP and Figure i¢haemon-
strates the average behavior of CGP on a particular circuit.

6.6 Computational Effort
In comparison with conventional synthesis, proposed nusthequire signif-
icantly more computational time. The reason is that thelssgis problem
is more difficult than the conventional one and thus the maia plays the
evolutionary search which is time consuming.

The computation time of direct CGP evolution can be expkssefol-
lows. It takes 80 seconds to generate 1 million generations f4-input
polymorphic circuit at Athlon64 3200+ processor. For a fgtitpolymorphic
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circuit, 207 seconds are needed at the same processor.

Table 8 (see Avg. design time) gives the average time redjtareon-
struct the 4x4-bit multiplier/8-bit sorter by proposed hads at Athlon64 X2
4800+ processor. Except the PolyBDD, the ‘design time’ isaopeasonable.
It is almost zero if independent modules are available iraade. The main
bottleneck is the ‘optimization time’ imposed by CGP (see dlrerage opti-
mization time at last line of Table 8) which is in order of hefwr this circuit.
However, this time can be reduced by decreasing the numtgradrations
if a slightly larger solution is acceptable. Figures 10 arfdddémonstrate the
relation between the number of gates and the generationtfiestime spent
by optimization).

TABLE 8
Results of the CGP optimization of4-bit Multiplier/8-bit Sorter ‘seeded’ by
proposed methods

Method fitness BDD | Espresso| ABC IM

Elements ¢) 1043 2330 375 161
Initial gates 1028 2309 359 145
Generations 100M 100M | 100M | 100M
Max. gates fitg 407 697 232 112
Max. gates fita 289 404 213 108
Min. gates fitg 355 616 192 109
Min. gates fito 256 318 166 105
Avg. gates fitg 385.7 646.3| 216.1| 110.8
Avg. gates fita 274.0 375.3| 181.7| 106.9
Avg. reduction fity 38% 28% 60% | 76%
Avg. reduction fito 25% 14% 51% | 74%
Avg. polymorphic gates | fity 8% 3% 22% | 23%
Avg. polymorphic gates | fit, 13% 14% 22% | 21%
Avg. design time [s] 345 1 3| 0.001
Avg. optimization time [s] 154,015, 361,394 21,176| 9,261

7 DISCUSSION

The best implementations (in terms of the number of gatesiidd by pro-
posed methods and subsequent CGP optimization are sunachdag all
benchmark circuits in Table 12. The best-achieved restdtsyped in bold.
Results of Espresso were calculated only for some of theHreark cir-
cuits because resulting circuits are too large and thus owipetitive with
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TABLE 9
Computational effort of the ABC method followed by CGP optiation for various
instances of the Multiplier/Sorter circuit

Mult./Sorter 2x214 3x2/5 3x3/6 4x3/7 4x4/8 5x4/9
Elements §) 45 71 131 212 375 697
Generations 1M 10M 10M 100M 100M 100M
Total eval. 30,000,000( 300,000,000 300,000,000 6,000,000,00Q 12,000,000,000 24,000,000,00(

Max. eval. fity | 17,718,334| 174,887,434 183,569,142 2,150,454,947 2,929,056,984 4,964,315,994
Max. eval. fit, | 17,610,320| 172,659,116 171,835,708 2,245,511,189 3,112,567,474 5,031,752,724

Min. eval. fity | 17,522,867| 171,223,566 167,859,366 2,108,612,177 2,830,925,681 4,653,366,773

Min. eval. fit, | 17,351,240| 171,691,345 169,738,375 2,190,750,297 2,977,493,490 4,698,975,306

Avg. eval. fity | 17,644,628| 172,676,084 170,529,349 2,128,827,305 2,896,038,52Q 4,740,465,595

Avg. eval. fit, | 17,497,586| 172,126,928 170,825,843 2,216,669,961 3,040,183,950 4,872,021,002

Avg. reduc. fity 1.70 1.74 1.76 2.82 4.14 5.06

Avg. reduc. fity 1.71 1.74 1.76 2.71 3.95 4.93
TABLE 10

Results of the ABC followed by CGP optimization for varionstances of the
Multiplier/Sorter circuit

Multiplier/Sorter fitness | 2x2/4 | 3x2/5 | 3x3/6 | 4x3/7 | 4x4/8 | 5x4/9
Elements @) 45 71 131 212 375 697
Initial gates 37 61 119 198 359 679
Generations 1M | 10M | 10M | 100M | 100M | 100M
Max. gates fity 22 43 85 135 232 411
Max. gates fity 21 37 72 107 213 378
Min. gates fitg 19 36 71 110 192 366
Min. gates fity 18 32 59 88 166 323
Avg. gates fity 20.2| 39.0| 77.2| 121.4| 216.1| 384.6
Avg. gates fitp 19.3| 34.8| 66.2| 97.1| 181.7| 348.3
Avg. reduction fity 55% | 64% | 65% | 61%| 60% | 57%
Avg. reduction fity 52% | 57% | 56% | 49% | 51% | 51%
Avg. polymorph. gateg  fit; 37% | 27% | 21% | 25% | 22% | 23%
Avg. polymorph. gateg  fit, 36% | 28% | 24% | 24% | 22% | 21%

other methods. The highest number of gates produced by &spiemainly
due the fact that many-input gates have to be transformeddoits com-
posed of 2-input gates. Hence Espresso is considered astiest method
for the polymorphic synthesis problem.

Although the direct polymorphic circuit evolution using €@ not scal-
able it can be considered as a very successful method fot proélem in-
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TABLE 11
Results of the IM method followed by CGP optimization forieass instances of the
Multiplier/Sorter circuit

Multiplier/Sorter fitness | 2x2/4 | 3x2/5 | 3x3/6 | 4x3/7 | 4x4/8 | 5x4/9
Elements ) a7 67 91 125 161 198
Initial gates 39 57 79 111 145 180
Generations iM | 10M | 10M | 100M | 100M | 100M
Max. gates fity 25 41 62 87 112 153
Max. gates fito 23 38 60 83 108 152
Min. gates fity 22 39 59 83 109 150
Min. gates fito 19 34 58 80 105 148
Avg. gates fity 23.0| 39.3| 61.1| 84.6| 110.8| 151.6
Avg. gates fitp 20.6| 359| 59.3| 81.4| 106.9| 149.8
Avg. reduction fity 59% | 69% | 77% | 76% | 76% | 84%
Avg. reduction fito 53% | 63% | 75% | 73% | 74% | 83%
Avg. polymorph. gateg  fity 29% | 26% | 23% | 21% | 23% | 17%
Avg. polymorph. gateg  fit, 27% | 29% | 25% | 26% | 21% | 17%

TABLE 12
Summary of the number of gates obtained by all methods fao¢inehmark
problems. Last two columns give the best known results fiiterelture

Circuit Inp. | Out. || CGP | BDD Esp | ABC | IM || BDD+ | Esp+ | ABC+ | IM+ || Best | Ref.
CGP | CGP | CGP | CGP || Lit
M/s4 4 4 23 31 77 37| 39 20 20 18 19 23| [25]
M/s5 5 5 30 50 | 168 61| 57 35 30 32 34 30 | [25]
M/s6 6 6 52 94| 419| 119| 79 81 75 59 58 52 | [25]
M/s7 7 7 113| 150 | 960 | 198 | 111 112| 116 88 80| 110| [7]
M/s8 8 8 — | 2692309 359|145 256 | 318 166 | 105| 205| [7]
M/S9 9 9 — 428 — 679 | 180 471 — 323 148 — —
M/P7 7 1 25 31 752 39| 33 27 44 21 27 29 [7]
M/P9 9 1 42 41 — 58| 49 44 — 42 41 45 [7]
M/P11 11 1 61 59 — 79| 63 49 — 62 51 69 [7]
M/P13 13 1 80 73 — | 112| 83 70 — 80 65 90 | [7]
X67/x127 7 14 94 228 —_ 244 | 308 141 —_ 85 114 —_ —_
x131/x251 8 16 239 | 430 — | 513|352 535 — 187 | 259 —| —
x257/x509 9 18 116| 348 — | 364|396 194 — 112 | 337 —| —
x521/x1021| 10 20 — | 905 — | 983|540 1,289 — 326 | 484 — | —

stances. Polymorphic multiplexing (either of independantules (IM) or
circuits synthesized by ABC) followed by CGP optimizatiomoyides best
results for larger circuits. PolyBDDs do not perform as veaslipolymorphic
multiplexing. Table 12 also shows that no single method exditpms other
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FIGURE 10
A typical progress of optimization for a singlex4 Multiplier/8-bit Sorter (the best
solution is shown)

methods in all problem instances. By using the proposed odsthwe were
able to significantly improve the implementation cost of astrall benchmark
circuits in comparison with the results existing in litena.

Another important property of the CGP optimization appl@dcircuits
created by polymorphic multiplexing is that the number diypmrphic gates
utilized in resulting circuits is relatively high. Table Bmvs that the result-
ing circuits seeded by ABC method contain 22% polymorphiegan av-
erage (23% was achieved for the IM method) while PolyBDDsdely to
8% and Espresso to 3% in average. In most cases combiningtypBID
with evolutionary optimization of the gate count reducesithplementation
cost. However, in some cases the CGP optimization can eweease the
number of gates. For example, see the M/P9 benchmark in whelise
of PolyBDD leads to 41 gates while the subsequent optinuimatquires 44
gates. The reason is that the PolyBDD representation uskipiexers and a
single multiplexer is transformed on four two-input gates€GP.

Although we have considered only the NAND/NOR gate and palym
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FIGURE 11
Average progress of optimization for the257/x509 benchmark circuit.

phic circuits with two modes, the proposed methods canyebsilextended
to utilize other polymorphic gates and support more openatimodes. We
have applied only a basic set of operations to optimize FOB. We expect
that some improvements will be obtained by applying moreaaded opti-
mization techniques over BDDs. The proposed fitness fundtip signifi-
cantly improves the search efficiency although the requergrfor reducing
the number of gates is not stated explicitly. This very ies¢ing phenomenon
has been investigated for conventional circuit evolutiof8i.

The proposed synthesis methods have already been utiizzdate real-
world circuits. We physically demonstrated the behavi@ahe small evolved
circuits in REPOMO32 chip [24]. The evolved constant coalfit multipli-
ers were utilized in polymorphic FIR filter [23]. Self-cheng polymorphic
adders were evolved using the proposed methods too [20].
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8 CONCLUSIONS

We have presented new methods for synthesis of polymorjreigits. The
implementations of polymorphic circuits obtained by pregd methods rep-
resent the best known solutions if the number of gates isideredd as the
decision criterion. We have mentioned in Introduction thate is no reason-
able method for synthesis of nontrivial polymorphic citsuiProposed meth-
ods (PolyBDD and polymorphic multiplexing) can generatedidate ‘raw’
solutions to arbitrary specifications (if it is allowed byarficular SW imple-
mentation of Espresso, ABC etc.) in a reasonable time. lardodreduce the
number of gates to a reasonable amount, a very time conswptimgization
has to be conducted. However, the evolutionary-based @atiion proce-
dure seems to be the only way how to obtain reasonable impiitiens of
polymorphic circuits. Our future research will be devotedréducing the
computational overhead of the proposed methods.
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