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Abstract

This paper proposes an evolutionary approach based on

Cartesian Genetic Programming to the design of image fil-

ters for impulse burst noise. The impulse burst noise be-

longs to more serious image distortions that cause a loss

of information in a series of pixels together. The results in-

troduced herein represent a continuation of our research in

the design of high-quality image filters. Whilst the previ-

ous experiments considered only basic impulse burst noise

in which a burst corrupting a series of pixels could take a

single value, this paper is devoted to the filtering of more

realistic noise of this type where the pixels in a burst can

take different values. In order to increase the probability of

removing the noise pixels while retaining other pixels un-

changed, the concept of switching filter will be applied. In

our case it means that the filter system is designed by evo-

lution of both a filter circuit and a noise detector. We show

that the proposed method is able to design an efficient and

robust impulse burst noise filter that exhibits better filter-

ing properties in comparison with several conventional ap-

proaches and, moreover, it is also suitable for a high-speed

image processing.

1 Introduction

In some cases the process of acquiring or transmitting

images leads to the corruption of certain image pixels so

that these pixels do not possess their original value which

causes the loss of information. This corruption is referred

to as a noise. There are several different variants of the

noise in the image data that are less or more difficult to sup-

press (e.g. salt & pepper noise, impulse noise, impulse burst

noise etc.). The impulse burst noise belongs to more seri-

ous image corruptions that is difficult to eliminate in order

to restore the original image in a satisfactory quality. This

paper aims to address the problem of efficient and robust

filtering of images corrupted by impulse burst noise using

evolutionary techniques.

The impulse burst noise typically occurs in remote sens-

ing images such as satellite images. The main reason for the

occurrence of bursts is the interference of a frequency mod-

ulated carrying signal with signals from other data sources.

This interference can occur several times during a transmis-

sion of a single image and corrupt several image pixels in

one or more neighboring rows.

Various filters have been proposed to suppress this type

of noise in the recent years. For the purposes of this pa-

per, we can divide these filters into two major groups. The

first group will contain general purpose filters for impulse

noise removal which can be relatively easily implemented

in hardware: median filter [1], adaptive median filter [6]

and weight median filter [3]. The second group will consist

of specific filters developed for impulse burst noise such

as training-based optimized soft morphological filters and

variational approaches [9, 8, 12, 5]. Unfortunately, it is

much more difficult to implement these filters in hardware

than the filters of the first group and hence they are not suit-

able for applications that require high-speed image process-

ing.

Evolutionary algorithms have been employed to design

complete filter structures for various noise types in the re-

cent years. In particular, evolved shot noise filters outper-

form conventional filters (such as median and adaptive me-

dian filters) in terms of the quality of filtering as well as the

implementation cost on a chip [14, 17, 18]. Another advan-

tage of filters evolved for the shot noise is that they utilize

a small filtering window of 3 × 3 pixels. The success of

the shot noise filters evolution is the main motivation for

this paper. However, the shot noise represents a model in-

stance of a noise rather than a real image corruption. In



practice, the impulse burst noise represents a more common

case which we investigated in the recent years. In [16] we

proposed a concept of a selector representing an extra cir-

cuit in front of the filter itself that selects a subset of pixels

from the filter window and thus reduces the search space

needed to be explored by the evolution during the design

process. This concept allowed us to design filters with 5x5-

pixel filter window that outperform the conventional median

filters. Moreover, we showed that this approach is suitable

for hardware implementation using FPGAs [20].

In [15] a concept of a switching filter was introduced in

order to prevent the degradation of non-noise pixels during

the filtering process. The switching filter operates in two

steps: In the first step, the noisy pixels are detected using a

detection algorithm. Then, the new values of the corrupted

pixels are estimated using a filtering algorithm.

In this paper we will continue in the research of the auto-

matic design of image filters using evolutionary algorithms.

In particular, the goal is to perform evolutionary design of

efficient and robust switching filters with the focus on im-

proving the filtering quality in comparison with existing so-

lutions. The main idea is to evolve a circuit using Cartesian

Genetic Programming (CGP) at the functional level that en-

capsulates the noise detection algorithm and the filter itself.

The experiments will deal with the design of filters for the

impulse burst noise. The obtained results will be compared

with the conventional filters and solutions obtained from our

previous experiments presented in [16] and [20].

2 Impulse Burst Noise

The noise model considered in this paper represents an

extension of a simple impulse burst noise. The simple im-

pulse burst noise can be characterized by means of two pa-

rameters p and q. Let p denote a probability that a certain

pixel belongs to an impulse burst. In fact, this parameter

determines the maximal amount of the corrupted pixels of

an input image. Let q be a parameter which determines the

maximal length of burst (i.e. the maximal number of con-

secutive pixels which are affected by an impulse). The num-

ber of burst fragments in the image depends on both these

parameters; the higher q, the lower number of burst frag-

ments for a given (constant) value of p.

Figure 1 shows an image (256 × 256 pixels) which is

corrupted by (a) 10% (p = 0.1) and (b) 40% (p = 0.4) im-

pulse burst noise; the parameter q possesses the value 128.

If the images are transferred as one-dimensional arrays in

which the rows of the image pixels are stored in sequence,

the interferences during the transmission leads to the noise

demonstrated in Figure 1.

For the purposes of this paper the simple variant of the

impulse burst noise is extended so that the corrupted pixels

can take different values. This noise model is closer to the

burst noise that may occur in real images. We will consider

the following scheme to model the extended impulse burst

noise. If a given pixel is corrupted according to the model

presented for the simple burst noise, then this pixel can take

a value from N (255, σ2). Note that only the valid noise

values (i.e. no greater than 255) are considered. A sample

image corrupted by the extended impulse burst noise (p =
0.2) is shown in Figure 1c.

3 Evolutionary design of image filters

Every image filter is considered as a digital circuit of

several 8-bit input values and a single 8-bit output (filtered)

value, which processes grayscale (8-bit per pixel) images.

The basic concept of an image filter working with a 5 × 5
filtering window is shown in Figure 2a. The circuit accepts

25 input values of the pixels from the filtering window and

produces the filtered value. The potential obstacle of this

concept may be the fact that every pixel is filtered by the

same circuit (i.e. the corrupted pixels as well as the pixels

possessing correct values) which may cause global degrada-

tion of the resulting image quality. Therefore, in this paper

we focus on the evolution of a filter that is equipped with a

noise detector.

The concept of an image filter combined with a noise

detector (i.e. the switching filter) is illustrated in Figure

2b. In our case the image filter produces a filtered value O1

and a noise detector output O2 (both are 8-bit values). The

MSB of O2 controls the multiplexer that implements the

switching algorithm. The switching filter works as follows.

If O2 is greater than 127 (i.e. the MSB of O2 equals 1), then

the value IC was detected as noise and the final output of the

filter OF equals the filtered value O1, otherwise OF equals

the original value IC . In fact, the noise detector represents

an additional logic of the filter circuitry that is capable of

determining whether the value of the pixel to be filtered is a

noise value or a correct (uncorrupted) value. The main idea

of this concept is to prevent the degradation of the non-noise

pixels.

In addition to the conventional approaches to the filter

design, evolutionary techniques have successfully been ap-

plied in the design of filters for various kinds of noise. In

this paper, we focus on the evolutionary design of switching

filters by means of Cartesian Genetic Programming.

3.1 Cartesian Genetic Programming for
Filter Evolution

The method for the evolution of image filters presented

in this paper is based on Cartesian Genetic Programming

introduced in [11]. In the original usage of CGP for the

filter design (according to [13]), a candidate filter is rep-

resented using a graph which contains nc (columns) × nr



(a) 10% noise (b) 40% noise (c) 20% noise

Figure 1. (a),(b) Images corrupted by a simple impulse burst noise of various intensity. (c) Image

corrupted by more realistic version of impulse burst noise.
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Figure 2. (a) The concept of a 5×5 kernel image filter. A new value of the central pixel IC is calculated

by the image filter whose output OF represents the filtered value. (b) The concept of a 5 × 5 kernel
switching filter.

(rows) nodes. The role of the evolutionary algorithm is to

find the interconnection of the programmable nodes and the

functions performed by the nodes. Each node represents a

two-input elementary function that receives two 8-bit val-

ues and produces an 8-bit output. The functions (building

blocks) that are utilized in our experiments are specified in

Table 1. This function set was discovered during many pre-

vious experiments considering the image filter evolution for

different noise types. A node input may be connected ei-

ther to the output of another node which is placed anywhere

in the preceding columns or to a primary input of the fil-

ter (this corresponds to the l-back parameter equal to nc

allowing the full connection). A switching filter circuit is

encoded as a strings of integers (a chromosome) consisting

of 3× nr × nr + 2 values (genes). For each node, three in-

tegers are utilized which encode the connection of the node

inputs and its function. The last two integers of the CGP

encoding specify the connection of the filter output O1 and

the noise detector output O2.

In order to evolve an image filter capable of removing a

given type of noise, we need (1) a set of suitable elementary

functions (building blocks which will be utilized in the pro-

posed filter circuit), (2) rules for interconnecting those func-

tions and (3) training images (usually corrupted version and

the corresponding uncorrupted version of an image is suffi-

cient) to measure the fitness values of the candidate filters

(i.e., to evaluate the quality of the candidate filters). The

goal of the evolutionary algorithm is to minimize the dif-

ference between the original uncorrupted version of a train-

ing image and filtered image. Since this evolutionary de-



Table 1. The list of functions that can be im-

plemented in each programmable node

code function description

0 255 constant

1 x identity

2 255 − x inversion

3 max(x, y) maximum

4 min(x, y) minimum

5 x ≫ 1 right shift by 1

6 x ≫ 2 right shift by 2

7 x + y + (addition)

8 x +S y + with saturation

9 (x + y) ≫ 1 average

10 y if (x > 127) else x condition

11 |x − y| absolute difference

sign method does not guarantee that the evolved filters will

be robust, the generality of evolved filters (i.e., the ability

to operate sufficiently also for other images containing the

same type of noise) has to be evaluated by a test set of sev-

eral different images.

3.2 Fitness function

The objective of the evolutionary algorithm is to mini-

mize the difference between the filtered image and the orig-

inal image. Usually, the mean difference per pixel also

known as the mean absolute error (MAE) is minimized. Let

u denote a corrupted image, v is the filtered image and w is

the original (uncorrupted) version of u. Let K represent the

size of the image (only square images are considered in the

experiments) and k denote the size of the filter kernel. The

image size is K ×K (K = 256) pixels but only the area of

(256− k + 1)× (256− k + 1) pixels is considered because

the pixel values at the borders are ignored and thus remain

unfiltered. The fitness value of a candidate filter is obtained

by calculating the error function:

f =
1

(K − 2)2

K−2∑

i=1

K−2∑

j=1

|v(i, j) − w(i, j)|.

It is evident that the robustness of evolved filter depends

on the selection of the training data. In [10], it has been

determined that one image containing 128×128 pixels pro-

vides a sufficient amount of training data for evolution of

robust 3 × 3 filters. This is caused by the fact, that the fit-

ness functions utilizes training vectors instead of a whole

image. Thus a training image containing 128 × 128 pixels

can produce up to 15876 training vectors. As we utilize a

larger filter window in this work, we will choose the training

image consisting of 256 × 256 pixels.

4 Evolutionary System Setup

The following setup of the evolutionary design system is

considered for the experiments. The initial parameters were

determined on the basis of our previous experience and their

values were adjusted for the specific problem to be solved

in a series of experiments considering some selected param-

eter settings. The goal was to find a setting that is able

to provide filters of a reasonable quality in a given num-

ber of generations. The following setup was determined to

perform the final experiments. The CGP array consists of

nc × nr = 7× 9 elements. The evolutionary strategy works

with the population of 8 individuals. The offspring are pro-

duced by means of the mutation operator that can mutate up

to 5 genes. The l-back parameter of the CGP has been set

to nc. 100 independent evolutionary experiments were per-

formed, each experiment takes 150,000 generations. The

initial population was generated randomly. The function set

(building blocks) of the CGP is considered according to Ta-

ble 1. The goal is to design a filter with 5 × 5-pixel filter

window. The candidate filters were evaluated using a train-

ing image corrupted by a 20% noise (see Figure 1c).

5 Experimental Results

In this section the best resulting filter is presented and

its filtering properties are compared with the conventional

filters and the best filters obtained during our previous re-

search [16].

5.1 Conventional Filters Considered for
the Comparison

Center weighted median filter (CWMF) is a filter which

is most suitable for hardware implementation because, in

fact, it represents a slightly modified variant of the common

median filter [7]. In this work we consider the center weight

3 and the kernel size 3 × 3 pixels. Another approach suit-

able for high-speed image processing is the adaptive median

filter (AMF) [19]. In comparison with the CWMF the im-

plementation cost of AMF is higher. However, the adaptive

median filters exhibit significantly better filtering properties

than standard median filters. The basic idea of the AMF is

to utilize multiple stages during the filtering process in order

to detect and replace the corrupted pixels only. Therefore,

the AMF can be considered as a multiple-stage order statis-

tic filter. In each stage a filtering window of different size

is utilized. In this comparison, AMF that utilizes the ker-

nel sizes up to 5 × 5 is used; our goal is to compare the

quality of the filters working with the filter window con-

sisting up to 5 × 5 pixels. Finally, we have chosen a filter

that utilizes an advanced impulse detection technique based

on the Pixel-Wise MAD (median of the absolute deviations



from the median) [4]. This filter is denoted as PWMAD.

We have used the recommended settings of the PWMAD

filter (5 iterations, the value of threshold 5 and the filter win-

dow 5 × 5 pixels). According to the results presented [4],

this approach is capable to efficiently separate noisy pixels

from the image details using the estimation based on abso-

lute deviations from the median-MAD. However, in order

to obtain reasonable results, the process of filtering has to

be repeated iteratively. This leads to the increased memory

requirements (to store the intermediate results) which is the

main disadvantage of the iterative filters.

In order to compare the quality as well as robustness of

the proposed resulting filters, the filters were evaluated us-

ing 25 randomly selected test images (384x256 pixels) from

[2] that were corrupted by the aforementioned extended im-

pulse burst noise with the intensity of 1-30% which means

that each test image was corrupted by 10 different noise

intensity and then filtered by a filter. Therefore, in to-

tal 250 images were utilized to evaluate the filters. Dur-

ing the evolutionary process, a 384x256-pixel training im-

age was used in which 92,813 unique training vectors were

identified. The noise model corresponds to the parameters

p = 0.01 ÷ 0.3, q = 128, σ = 30.

5.2 Computational effort

The experiments were conducted on a cluster consist-

ing of 100 PCs (Pentium IV, 2.4GHz, 1GB RAM) using

the Sun Grid Engine (SGE). A highly optimized software

implementation of CGP has been utilized. The evolution

time of a single run is approximately 6 hours until the CGP

algorithm reaches 150,000 generations.

259

2610

272

283

303

313

3210

339

3410

3610

374

394

409

4110

423

444

453

464

473

4810

523

542

568

5710

584

642

655

678

6810

733

764

788

794
O1

 O2

Figure 3. The structure of the best evolved fil-

ter for the extended impulse burst noise (the

functions are numbered according to Table

2).

5.3 Properties of the Proposed Filter

The filter illustrated in Figure 3 exhibits the highest per-

formance out of all the evolved filters. For evaluating the fil-

tering quality, the average values of the peak signal to noise

ratio (PSNR) and mean absolute error (MAE) were calcu-

lated over the set of test images and different noise levels.

The PSNR is a widely used metric for evaluating of filtering

quality, however, in some cases PSNR does not reflect the

real situation correctly as it will be discussed later.

The quality of the proposed filter as well as the quality

of the conventional filters from the point of view of PSNR,

respective MAE, is shown in Figure 4 – parts (a) and (b).

In order to evaluate the filtering quality of the proposed fil-

ter objectively, we have filtered several images corrupted

with various intensity of the extended impulse burst noise

and calculate the average values of PSNR and MAE. If the

PSNR criterion is considered, the higher the PSNR value,

the better filtering quality. On the contrary, the lower MAE

value, the better filtered image. As evident, the proposed

filter exhibits the best filtering quality in comparison with

all the conventional filters mentioned in Section 5.1 even

if we do not apply iterative filtering. As it has been men-

tioned, the PSNR does not reflect the real situation well es-

pecially if the noise intensity is lower; the visual quality

does not correspond with the obtained results. Looking at

the filtered images (e.g. see Figure 5), at least CWMF has

to obtain lower score since the filtered images are smudged

(CWMF modifies all the pixels regardless of certain pixels

being corrupted or not). As it is clearly evident from Figure

4, the conventional AMF and CWMF filter produce images

that exhibit even worse quality in comparison with the cor-

rupted image for the noise intensity approximately lower

than or equal to 4% (i.e. the MAE of the filtered image is

greater than the MAE of the corrupted image).

Figure 5a-d show an image corrupted by 1% noise

that was filtered using the proposed filter and various ap-

proaches. The conventional filters whose results are showed

in Figure 5a-c were chosen to compare with the proposed

filter because they provide the best results from the list of

conventional filters mentioned in Section 5.1. Figure 5d

shows that the proposed filter exhibits very good quality

even for the lower noise intensity – in this case 1% impulse

burst noise has been generated. In case of the image filtered

by the PWMAD filter, we can see that a perceptible part

of the noise remains in the image (see Fig. 5c). In contrary,

the image produced by the CWMF does not contain any im-

pulse, however, the image is smudged and lacks the details

in comparison with the original image.

Similar comparison was performed considering the im-

ages corrupted with higher noise intensity (30% impulse

burst noise). The obtained results are shown in Figure 5e-

h. Whilst the proposed filter is able to remove most of the
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Figure 4. The average PSNR and MAE calculated using 25 test images for different levels of noise

intensity. Parts (a) and (b) shows the results for the best filter proposed in this paper in comparison

with the conventional filters. Parts (c) and (d) show the comparison for white burst noise considering

the proposed filter, the best previously evolved filter for this kind of noise (denoted as ’proposed

AHS’ [16]) and the conventional filters.

noise, the conventional filters have serious problems and fail

to remove the noise. The failure of the conventional filters

probably lies in the fact that the bursts are accumulated in

the neighbouring rows of the image an thus it is difficult to

estimate the correct pixel values using median filter.

In comparison with the previous results, the following

example represents a serious problem for the filters. Fig-

ure 6 shows an image containing several sharp and contrast

transitions that are very similar to the noise. Even if the pro-

posed filter is able to provide better image (shown in Fig.

6d) in comparison with the CWMF and PWMAD filter, it

can be seen that the image is degraded slightly.

In order to demonstrate the robustness of the proposed

filter, a comparison of the filter proposed in this paper with

the best filter obtained in our previous research [16] was

performed. The results of the filtering quality are shown in

Figure 4 – parts (c) and (d). It is important to note that in

only white impulse burst noise was considered [16] (i.e. the

entire burst only consists of white pixels; note that in this

paper the bursts also contain some degrees of gray). The fil-

ter from [16] is denoted as ’proposed AHS’ in Figure 4c,d.

It is evident that although the proposed filter was trained

to more complex impulse burst noise, it substantially out-

performs the conventional filters if the white burst noise is

considered. For the PSNR its results are slightly worse in

comparison with the ’proposed AHS’ filter (see Fig. 4c) but

on the other hand the MAE is better especially for lower

noise intensity (see Fig. 4d). When we performed a vi-

sual comparison of the filtered images, it was hard to see

a difference. The robustness of the proposed filter is also

supported by the fact that (1) it exhibits very good filtering

quality even for higher noise intensity (note that the filter

has been trained using a 20% impulse burst noise), over-

coming the conventional filters which were considered for

comparison, and (2) the filter is able to successfully process

different images (affected by the same or similar kind of im-
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Figure 5. The results (a)-(d) show the 1% extended impulse burst noise filtered by (a) AMF, (b) CWMF,

(c) PWMAD and (d) the proposed filter. The results (e)-(h) show the 30% extended impulse burst
noise (e) by means of (f) CWM, (g) PWMAD and (h) the proposed filter.

pulse noise) which were not considered during the evolution

of the filter.

It is interesting to note that the proposed filter is efficient

not only from the point of view of the filtering quality but

also from the point of hardware/software implementation –

it consists of simple operations and does not require itera-

tive processing.

6 Conclusions

The paper presented an evolutionary approach based on

CGP for the automatic design of switching image filters.

The concept of so-called switching filters was utilized that

combines the filter logic with a noise detection algorithm.

The idea of this algorithm is to determine whether the fil-

tered pixel is a noisy pixel or not. In particular, we focused

on designing a filter for an extended variant of impulse burst

noise which is close to the type of noise occurring in real

images.

The best filter that we presented in this paper exhibits an

efficiency from the point of view of the filtering quality in

which it overcame the conventional filters it was compared

with. A training image was utilized by means of which the

evaluation of the filters during the evolution was performed.

The proposed filter showed its ability to remove most of

the noise of different intensity from a set of test images.

The resulting quality of the filtered images was very good

in comparison with the outcomes of the conventional filters.

These features of the proposed filter were demonstrated on

different types of images from a test set.
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