
Increasing Fault-Tolerance in Cellular
Automata-Based Systems

Luděk Žaloudek and Lukáš Sekanina

Faculty of Information Technology, Brno University of Technology,
Božetěchova 2, 612 66 Brno, Czech Republic

{izaloude, sekanina}@fit.vutbr.cz

Abstract. In the light of emergence of cellular computing, new cellular
computing systems based on yet-unknown methods of fabrication need to
address the problem of fault tolerance in a way which is not tightly con-
nected to used technology. This may not be possible with existing elabo-
rate fault-tolerant cellular systems so we strive to reach simple solutions.
This paper presents a possible solution for increasing fault-tolerance in
cellular automata in a form of static module redundancy. Further, a set of
experiments evaluating this solution is described, using triple and quin-
tuple module redundancy in the automata with the presence of defects.
The results show that the concept works for low intensity of defects for
most of our selected benchmarks, however the ability to cope with er-
rors can not be intuitively deduced as indicated on the example of the
majority problem.

Keywords: cellular automata, fault tolerance, static module redundance,
TMR, cellular computing, rule 30, Game of Life, Byl’s Loop

1 Introduction

With today’s unending need for faster and ubiquitous computation, the von
Neumann architecture is being pushed to its limits. As new problems emerge [2],
more and more computation is performed in parallel and even new computing
paradigms emerge. One of these new paradigms is what Sipper calls cellular
computing [14].

Cellular computing is based on the model of cellular automaton (CA) and
its three key features: simplicity, locality of interactions and massive (or vast)
parallelism. The CA model is flexible and capable of performing extensive range
of computational tasks (overview of most notable may be found in [14]). Also, the
CA model keeps rising in importance in several other areas including simulation
of biological, chemical or social phenomena.

Since cellular computing is based on a model rather than a physical piece of
hardware, it is not limited in the technology, by which it could be fabricated or
synthesized. As a relatively new paradigm and possible future solution to (some
of) our computational needs, it could be implemented not only in silicon (where
there are existing examples of cellular-based hardware [5, 11]).



However novel approaches to digital hardware fabrication like chemical syn-
thesis or inkjet printing are not yet refined and possibly prone to defects and
transient errors more than the most common CMOS technology. In order to
address this problem, methods of fault-tolerance need to be introduced. Exist-
ing cellular systems [5, 11] possess fault-tolerance mechanisms which arguably
significantly complicate the underlying hardware. Of the simpler methods of
fault-tolerance the most prominent are module redundancy and error correct-
ing codes. The goal of this paper is to demonstrate the feasibility of module
redundancy on several distinct examples of CA tasks.

Section 2 introduces the cellular automaton model together with its notable
modifications, properties and problems. One of the problems, specifically fault-
tolerance in CA, is discussed in the remainder of Section 2 and current methods
of fault-tolerance in CA are outlined. In Section 3 our solution is proposed.
Section 4 describes sample CA problems which are then used in an experimental
setup. Results of aforementioned experiments are provided in Section 5. Section
6 concludes the paper.

2 Cellular Automata

2.1 General Description of Cellular Automata

A cellular automaton is a d–dimensional grid of cells, where each cell is a finite
automaton. The cells operate according to their local transition functions. In
the most common scenario, the cells work synchronously - a new state of every
cell is calculated from its previous state and the previous states of the cell’s
’neighbors’ at each time step. If all automata of the grid are identical (i.e., the
automata operate according to the same local transition function - rule) the
automaton is called uniform, otherwise it is non-uniform. By configuration of
the cellular automaton we mean the states of all the cells at a given moment.
The global behavior is captured in the global transition function, which defines
a transformation from one configuration to the next configuration of the cellu-
lar automaton, in case of synchronous automaton the transition between steps.
The sequence of configurations, determined by the global transition function,
represents the computation of the cellular automaton.

Theoretically, the CA model assumes an infinite number of cells. However,
in the case of practical applications the number of cells is finite. In that case, it
is necessary to define the boundary conditions, i.e. the setting of the boundary
cells’ neighborhood. One of the states is also usually used as quiescent or inac-
tive state. A convention is that when a quiescent cell has an entirely quiescent
neighborhood, it will remain quiescent at the next time step.

The simplest one-dimensional uniform cellular automaton, with only two
states and nearest neighbors neighborhood N = {−1, 0, 1} (only left and right
neighbor cells together with the cell itself are relevant for the local transition
function1), can exhibit very complex behavior [18]. Each such CA is uniquely

1 We also denote this parameter as neighborhood radius r and in the nearest neigh-
borhood case we would write that r = 1.



defined by a mapping 0, 1N → {0, 1}. Hence there are 28 such cellular automata,
each of which is uniquely specified by the (transition) rule i (0 ≤ i < 256). The
transition functions of such automata then can be called as rule 0, rule 1, rule 2
etc.

With two-dimensional cellular automata, the neighborhood is usually com-
prised of five or nine cells (see (Fig. 1). The central cell is normally included
into its own neighborhood. In the 5-neighbor (von Neumann) model, the in-
dividual transition rules would adopt the form CTRBL → C ′ where CTRBL
specifies the states of the Center, Top, Right, Bottom, and Left positions of the
neighborhood’s present state and C ′ represents the next state of the center cell.

Fig. 1. a) 5-cell von Neumann’s neighborhood, b) 9-cell Moore’s neighborhood

The applications of cellular automata include many scientific areas, especially
the modeling of complex (biological, chemical, computational, etc.) phenomena.
Because the number of cells is typically very large, the cellular automaton can
model a massively parallel computational system where some useful computation
can emerge only on the base of local interactions. The properties of cellular
automata have been investigated by means of analytic as well as experimental
methods [8, 15–18].

In order to obtain specific behaviors, the concept of cellular automata has
been modified in several ways. Examples include non–uniform CA [15], non–local
CA [10], asynchronous CA [3] or CA with global control [13].

2.2 Notable Inherent Properties and Problems

The cellular automaton model also exhibits several notable inherent properties
that set it apart from conventional computational models: massive parallelism,
locality of cellular interactions and simplicity of basic components (cells) [15, 14].
This was mentioned in Section 1, however the terms need to be clarified. Note
these properties are especially important for our case where every cell would be
physically implemented (no simulation considered).

Massive parallelism is something rarely seen even in today’s supercomputers.
When talking about it in CA, we mean vast numbers of cells on much larger scale
than the numbers of processing elements usually found in conventional parallel
systems. The cell figures in CA are often expressed by exponential notation 10X .

Locality of interactions means total absence of global control. Transitions
between states are based on nearest neighborhood. Best known examples of
such neighborhood are von Neumann’s and Moore’s neighborhood for 2D CA.



Simplicity refers to cells as basic computational elements. Instead of depend-
ing on complex components similar to modern processors (e.g. Pentium), a CA
cell should be easily constructed as a simple electronic circuit or using chemical
synthesis.

These properties put together are key to emergent behavior mentioned in
Subsection 2.1. However, these features also require certain prerequisites, which
we usually assume when modeling cellular automata in software: perfect clock
synchronization (for synchronous CA) and error-free implementation platform.
The two prerequisites turn into problems when we attempt to implement CA
physically.

In particular, perfect clock synchronization may be unachievable when con-
sidering truly massive cellular arrays due to different lengths of clock wiring in
different parts of the cellular array and the spatial requirement for such wiring.
Moreover, since cellular automata are one of possible future solutions to prob-
lems of conventional computational architectures [14], we cannot assume that
the clocking problem will not encounter further complications when migrating
cellular architectures to different materials and/or fabrication methods (with re-
spect to current CMOS technology). One of possible solutions and probably the
most feasible is the employment of asynchronous CA mentioned in Subsection
2.1. With recent achievements in the field of delay-insensitive circuits, techniques
employing asynchronous CA were demonstrated [12]. It is arguable if such func-
tionality may be duplicated in different technology such as chemical synthesis.
In addition, severe modification of local transition function (rules) with respect
to synchronous version of implemented applications is required when applying
the asynchronous CA paradigm.

The second problem is virtual impossibility of attaining error-free implemen-
tation platform for cellular-based computing machines. Not only do we encounter
a variety of transient errors (caused by cross talk, noise etc.) and transient faults
(e.g. temporary hardware element failures due to ambient radiation), with de-
creasing component sizes and the dawn of nanotechnology in mind, we must
also deal with permanent defects originating in fabrication or arising during the
lifetime of the hardware. Such defects may not be detected (or even detectable)
after the fabrication and the CA model should be prepared to deal with them
independently of hardware.

Unlike solving problems with synchronization, attaining fault-tolerance is the
subject of this paper, which is discussed in more detail in Subsection 2.3.

2.3 Fault-Tolerance in Cellular Automata

In recent years several methods of fault-tolerance in CA have been implemented
or proposed. Those which are employed in existing cellular-based hardware [5,
11] added new layers of functionality and also complexity. Cells are formed into
supercells, routing mechanisms circumvent defective elements and positional in-
formation and whole sets of functionality are passed to each cell/element. Al-
though such systems possess fault-tolerant functionality, the overhead cost is
extremely high in terms of hardware complexity.



Other, much simpler mechanisms were introduced to the CA model, which
were inspired by more conventional digital circuit solutions [6, 12]. Most promi-
nent of such solutions are module redundancy and error detecting and correcting
codes.

When utilizing ECC in CA, the fault-tolerance deals with errors that occur
in the cell memory, i.e. its state information or its transition function look-up
table, if that is implemented in such way. Example of cellular automaton with
error detection and correction is [12].

3 Proposed Approach

Generally, static module redundancy which is our main concern in this paper is
based on backing up the subsystem’s function by multiplying the modules which
compute it. The results of each module are then compared in a voting element
which produces the final result by majority voting [9]. Best practice is to use
odd number of modules to insure no ties occur. The most commonly used form
of static modular redundancy in digital circuits is TMR (triple). Other possible
approaches to module redundancy include dynamic redundancy and/or recon-
figuration and combinations of previously mentioned. Of course, such methods
increase the complexity of the implementation due to additional multiplexing,
voting and/or reconfiguring elements. This paper is further limited to static
NMR so we do not complicate the fabrication process of cellular systems which
should be cheap and easily produced in vast numbers.

An example of a general analysis of reliability of TMR in quantum-dot CA
may be found in [6]. However, we believe that distinct types of CA tasks may
behave differently depending on their complexity and number of active cells
in presence of errors. The approach to such discovery is presented in following
paragraphs.

Since we work with CA as a possible model for future computing systems,
we cannot predict which technologies or materials will be used in actual cellular
system fabrication. Because of that, transient errors are not considered in our
analysis. The reason is apparent possibility of difference in transient error sensi-
tivity in various technologies which could be used in cellular system’s fabrication
(e.g. chemical synthesis, DNA-based scaffolding, ink-printed circuits etc.).

We also limit our analysis to small standalone defects. Such defects could
occur during production or during the lifetime of the application and may not be
easily detectable like common large-scale burst defects which destroy hundreds
of elements in tightly localized patterns. Since we assume such environment
and implementation platform, we can assume that usage of TMR or 5-module
redundancy (5MR) should be sufficient.

The design of each cell is straightforward and was roughly outlined at the
beginning of this section. Each cell contains three (TMR) or five (5MR) modules,
which have common inputs from the cell’s neighborhood. Each module computes
the local transition function F of the CA and all module’s results are provided
to the majority voting element. The voting element then passes the dominating



result as the next state of the cell. In theory, TMR can mask one error and 5MR
can mask two errors without system failure. Graphical representation of one CA
cell with TMR is depicted in Fig. 2.

Fig. 2. Inside a CA cell with TMR. Triple modules take inputs from neighborhood and
compute the local transition function F. Results are then voted on by MAJ. element
which passes the prevailing result to register as the cell’s new state.

4 The Experiments

This section describes how the experiments were conducted. First the benchmark
tasks are outlined, later the experiment’s conditions are recounted.

4.1 The Benchmark Problems

In order to evaluate the modified CA’s behavior in the presence of defects, four
common CA computational tasks were selected.

The first task is in a 1D CA and it is commonly known as rule 30. The
designation originates from Wolfram’s classification scheme [18] and denotes the
number which comes from the new states’ values when the transition rule set
is sorted by neighborhood values in descending order as shown on Fig. 3. Note
that in this case, the CA uses only the simplest 3-cell (r = 1) neighborhood.
The rule produces chaotic aperiodic behavior and may be used for e.g. random
number generation [18].

Fig. 3. The sequence of individual transition rules in descending order can form a
number from the resulting states. In this case we can transform binary 00011110 into
decimal 30 which explains why this transition function is called rule 30.

Fig. 4 a) shows several steps in a 1D CA with rule 30, where the initial
configuration is seeded with one active state in the middle.



Another common 1D CA task, which is often used as a benchmark [1, 15], is
the problem of majority (or alternatively known as density). The goal of density
computation is a classification of the initial CA configuration by determining
whether there is a majority of 0s or 1s. Majority could be easily solved from a
global view, however a CA works only with local interactions. In this case, CA
uses 7-cell (r = 3) neighborhood and the result should be known in number of
steps equal to double the width of the CA. The final result is identified by the
final configuration of the CA, where the cellular space is completely filled with
the dominant state (Fig. 4 b).

Fig. 4. a) Evolution of rule 30, b) successful computation of majority (rule taken from
[1]). Note that white spaces represent the cells in state 0.

It is not possible to solve the majority problem for all possible configurations
but researchers strive to find the best possible solution e.g. by evolutionary ap-
proaches. Their success is measured in the percentage of successful runs on a
set of randomly generated initial configurations [15]. For our experiments we se-
lected one of the better known solutions which is capable of correct classification
of 82.326% configurations [1]. The rule can be encoded in hexadecimal number
by the sequence FFAAFFAAFFAAFFAAA0AA00A0A0AA00A0.

Third task that was selected for our experiments is commonly known as
Conway’s Game of Life [7]. It is well known artificial life simulation with a 2-
state 2D CA with von Neumann neighborhood (5 cells - center and 4 immediate
neighbors). Rules for Life can be briefly described as following:

1. Any live cell with fewer than two live neighbors dies, as if caused by under-
population.



2. Any live cell with two or three live neighbors lives on to the next generation.
3. Any live cell with more than three live neighbors dies, as if by overcrowding.
4. Any dead cell with exactly three live neighbors becomes a live cell, as if by

reproduction.

With these simple rules the behavior can be surprisingly complex and several
notable types of structures within the cellular space emerge, including oscillators
and spaceships. One of such spaceships is called a glider: a structure capable of
translating trough cellular space by nontrivial (as in multi-step) transformations.
The glider is used in the experiments described in this paper and its translation
is depicted in Fig. 5.

Fig. 5. The translation of the glider spaceship in the Game of Life in 4 steps.

Final benchmark task used in our experiments is the self-replication of the
so-called Byl’s Loop [4]. Byl’s Loop uses von Neumann neighborhood and apart
from the other mentioned benchmarks, it uses 6 states. The loop is capable of
replicating itself in 26 steps from its initial configuration and continues to do so
until it runs of cellular space. Fig. 6 a) shows the replication of Byl’s Loop in
5-step jumps and Fig. 6 b) shows the cellular space after 11 generations of loop
replication. The replication mechanism is very carefully connected to the shape
of the loop and even minuscule alterations in its configuration cause failure of
the replication process.

Fig. 6. a) Single Byl’s Loop’s replication, b) cellular space after 11 generation of
replications

From the description of the benchmarks, it is clear that tasks with increasing
complexity were selected in order to provide the experiments with a breadth of
different problems representing wide area of cellular automata applications.



4.2 The Experimental Setup

Each experiment used CA with cyclic neighborhood. That means that each edge
cell is connected to the cell on the opposite edge. Size of the CA was always the
same: 225 cells, i.e. 15x15 for 2D and 1x225 for 1D. The reason was to provide
similar conditions for all experiments.

All initial configurations were carefully set so the maximum possible area of
the CA could be used during the 100 steps each CA performed. In the case of rule
30, the initial configuration was seeded by two cells in state 1 on positions 64 and
147 which created the image of two triangles connecting together at the bottom.
For the Game of Life computation, three gliders were set in column above each
other from the upper left corner of the CA (each glider in the position shown in
the 0 frame of Fig. 5) separated by space of two quiescent cells, so the gliders
would travel trough the whole CA during the 100-step run. The Byl’s Loop
initial configuration (see Fig. 6) was set with one loop in the upper left corner
of the cellular space so there would be 8 replicated loops after the 100-step run,
filling roughly 8/9 of the available cellular space.

The defects in each run were generated on the level of redundant modules.
Note that three levels of fault-tolerance were simulated: (i) no redundance (single
module per cell), (ii) TMR and (iii) 5MR. Each module could be damaged with
the probability ranging from 0,5% to 15% with uniform distribution. Damaged
module manifests itself as dead - it always generates state 0. Each case was run
500 times.

A correct run occurs when the CA’s configuration after defined number of
steps is identical to the configuration of the same CA run without errors for the
defined number of steps. Other definitions of correctness are not considered.

5 Results

The tables below are grouped by task type and in order of ascending redun-
dancy of the simulated CA. The tables show the percentage of correct runs with
different probabilities of defects.

Special case not shown in the tables is the majority task, which was not so
extensively tested as the other benchmarks. The reason was that the used rule
shifts the information about density trough the CA (as seen in Fig. 4 b)). The
parameters for the few runs were also different - the CA was only 64 cells long
as in Fig. 4. If there is a failing ”dead” cell in a CA running the majority task, 0
states are shifted from its position and the result turns in favor of 0. There was
no point in testing the majority since most of the results ended in failure. On
the other hand, the evolution of rule 30 may be distorted by defective cells but
it still retains at least part of its shape because the failing cells do not distribute
their 0 states so aggressively.

Many of the tables show results of 99% or 98%. Because each experiment
was run 500 times, some freak probability cases always caused few of the runs
to have several defective adjacent modules. Such occurrences may not be likely,
but still possible.



Table 1. Selected results for all benchmarks without fault tolerance. Each single num-
ber was obtained from 500 runs.

No FT Rate of correct runs up to 30, 50, 80 and 100 steps [%]

Prob. of
defects [%]

30 50 80 100 30 50 80 100 30 50 80 100
Rule 30 Game of Life Byl’s Loop

0.5 55 42 33 33 56 42 38 38 83 73 56 48
0.7 42 28 22 22 49 43 31 31 75 62 45 34
1 31 16 11 11 32 15 12 12 67 49 30 23

1.5 16 7 4 4 19 7 6 6 53 34 20 12
2 6 1 0 0 11 3 3 3 50 26 12 8

2.5 0 0 0 0 3 0 0 0 38 16 6 2
3 0 0 0 0 0 0 0 0 30 10 3 0

Table 2. Selected results for all benchmarks with TMR. Each single number was
obtained from 500 runs.

TMR Rate of correct runs up to 30, 50, 80 and 100 steps [%]

Prob. of
defects [%]

30 50 80 100 30 50 80 100 30 50 80 100
Rule 30 Game of Life Byl’s Loop

0.5 99 98 98 98 98 97 97 97 99 99 99 97
0.7 98 97 96 96 98 97 97 97 99 99 98 97
1 95 94 93 93 97 95 94 94 98 98 96 95

1.5 91 88 86 86 92 88 88 88 97 96 93 92
2 86 79 76 76 89 83 82 82 94 92 87 85

2.5 78 69 64 64 82 73 72 72 93 88 82 77
3 68 60 54 54 74 63 62 62 87 83 74 69
4 56 41 33 33 61 49 46 46 75 59 42 34
5 55 40 33 33 42 27 23 23 75 59 42 34
8 10 4 2 2 15 5 4 4 48 27 11 6
10 3 0 0 0 3 0 0 0 33 14 3 1
15 0 0 0 0 0 0 0 0 8 1 0 0

Table 3. Selected results for all benchmarks with 5MR. Each single number was ob-
tained from 500 runs.

TMR Rate of correct runs up to 30, 50, 80 and 100 steps [%]

Prob. of
defects [%]

30 50 80 100 30 50 80 100 30 50 80 100
Rule 30 Game of Life Byl’s Loop

0.5 99 99 99 99 99 99 99 99 99 99 99 99
1 99 99 99 99 99 99 99 99 99 99 99 99

1.5 99 99 99 99 99 99 99 99 99 99 99 99
2 98 97 97 97 98 98 98 98 99 99 99 98

2.5 97 96 95 95 98 98 98 98 99 98 98 97
3 96 95 93 93 97 95 95 95 99 99 98 98
4 94 89 87 87 92 88 87 87 96 95 94 92
5 87 81 78 78 89 81 79 79 95 92 87 84
6 79 68 64 64 84 77 76 76 92 87 80 76
7 72 58 51 51 42 73 61 58 88 81 71 66
8 58 47 38 38 59 46 43 43 77 64 49 40
10 33 18 11 11 39 25 22 22 74 57 41 33

12.5 13 3 1 1 16 7 5 5 53 33 16 11
15 3 0 0 0 4 0 0 0 36 15 4 2



6 Conclusion

The results give the indication that static NMR in cellular automata can work
with the presence of low defect rate. There was no surprise when 5MR showed
substantially better results than TMR. It is arguable which method would suffice
if any. Some sources [12] claim that future materials based on nanotechnology
could have defect rate up to 10%. However, such claims are at best questionable
since we can’t analyze future materials and even if some of them already exist,
it is quite possible that the fabrication process would improve significantly when
or if cellular systems are actually implemented. It is also possible that the defect
rate would be even higher.

Another observation which should be considered is the difference between the
benchmark task’s results. The tables show that some tasks are more sensitive to
errors caused by defects than others. Especially Byl’s Loop shows lower sensitiv-
ity. However, the majority problem indicates that it cannot work with defects at
all which was a little surprising. From the intuitive viewpoint, one could assume
that few defects could not make such a difference with a configuration that has
overwhelming majority of one state. Evidently, some CA tasks work in ways
which make them extremely sensitive to permanent errors.

The initial configurations were designed so the runs would use most of the
cellular space but those configurations also need to be taken into account, es-
pecially with the rule 30 and Byl’s Loop which don’t use most of the cellular
space until late in the computation. If those tasks were configured differently,
they could possibly show similar behavior to the majority problem.

In conclusion, it is safe to say that although cellular automata look like uni-
form arrays of elements, the nature of computations running in them makes
analysis of their error susceptibility an assignment dependent on said computa-
tions and that such analyses can not be generalized. Moreover the fault-tolerance
in cellular systems can be increased by very simple and straightforward manner
which NMR undoubtedly is. NMR could also be independent on hardware plat-
form since grouping and connecting several modules in each cell should be much
easier task than adding multiple layers of closely connected complex ”circuitry”.

For future work, we plan to model cellular systems with additional types
of errors, possibly in GPU accelerated cellular automata simulator which we
successfully implemented [19]. The defects could be modelled differently e.g. by
permanent state of 1 or by random state. Other issue is the mathematical relia-
bility model for TMR, which is quite straightforward, however we feel the need to
include the CA’s task so the model would make sense for the purpose of designing
fault-tolerant CA applications. Experiments described in this paper also inspired
us to investigate more thoroughly, how the presence of errors would change the
behavior of known CA, especially their membership in Wolfram Classes [17].

Acknowledgements This work was partially supported by the grant Natu-
ral Computing on Unconventional Platforms GP103/10/1517, the FIT grant
FIT-11-S-1 and the research plan Security-Oriented Research in Information
Technology, MSM0021630528.



References

1. Andre, D., Bennett, III, F.H., Koza, J.R.: Discovery by genetic programming of a
cellular automata rule that is better than any known rule for the majority clas-
sification problem. In: Proceedings of the First Annual Conference on Genetic
Programming. pp. 3–11. GECCO ’96, MIT Press, Cambridge, MA, USA (1996)

2. Beckett, P., Jennings, A.: Towards nanocomputer architecture. In: Proceedings of
the seventh Asia-Pacific conference on Computer systems architecture. pp. 141–
150. CRPIT ’02, Australian Computer Society, Inc., Darlinghurst, Australia, Aus-
tralia (2002)

3. Bersini, H., Detour, V.: Asynchrony induces stability in cellular automata based
models. In: Brooks, R.A., Maes, P. (eds.) Artificial Life IV. pp. 382–387. MIT
Press, Cambridge, Massachusetts (1994)

4. Byl, J.: Self-reproduction in small cellular automata. Physica D 34(1-2), 295–299
(1989)

5. Durbeck, L., Macias, N.: The cell matrix: An architecture for nanocomputing.
Nanotechnology 12(3), 217–230 (2001)

6. Dysart, T., Kogge, P.: System reliabilities when using triple modular redundancy in
quantum-dot cellular automata. In: Defect and Fault Tolerance of VLSI Systems,
2008. DFTVS ’08. IEEE International Symposium on. pp. 72 –80 (2008)

7. Gardner, M.: The fantastic combinations of john conway’s new solitaire game ’life’.
Scientific American 223, 120–123 (October 1970)

8. Garzon, M.: Models of massive parallelism: analysis of cellular automata and neural
networks. Springer-Verlag, London, UK (1995)

9. Lala, P.K. (ed.): Self-checking and fault-tolerant digital design. Morgan Kaufmann
Publishers Inc., San Francisco, CA (2001)

10. Li, W.: Phenomenology of nonlocal cellular automata. Journal of Statistical Physics
68, 829–882 (1992), 10.1007/BF01048877

11. Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Towards Robust Integrated
Circuits: The Embryonics Approach. Proceedings of IEEE 88(4), 516–541 (2000)

12. Peper, F., Lee, J., Abo, F., Isokawa, T., Adachi, S., Matsui, N., Mashiko, S.: Fault-
tolerance in nanocomputers: A cellular array approach. Nanotechnology, IEEE
Transactions on 3(1), 187 – 201 (2004)

13. Sekanina, L., Komenda, T.: Global control in polymorphic celular automata. Jour-
nal of Cellular Automata 0, 1–21 (2010)

14. Sipper, M.: The emergence of cellular computing. Computer 32(7), 18 –26 (Jul
1999)

15. Sipper, M.: Evolution of Parallel Cellular Machines: The Cellular Programming
Approach, Lecture Notes in Computer Science, vol. 1194. Springer-Verlag Berlin
Heidelberg (1997)

16. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for
Modeling. MIT Press, Cambridge, MA (1987)

17. Wolfram, S.: Cellular Automata and Complexity: Collected Papers. Addison-
Wesley, Reading, MA (1994)

18. Wolfram, S.: A New Kind of Science. Wolfram Media, Inc., Champaign, IL (2002)
19. Zaloudek, L., Sekanina, L., Simek, V.: Gpu accelerators for evolvable cellular au-

tomata. In: Computation World: Future Computing, Service Computation, Adap-
tive, Content, Cognitive, Patterns. pp. 533–537. IEEE (2009)


