

- Digital Circuits
 - · Basics of digital design and testing
 - Reconfigurable devices
- Evolutionary Circuit Design and Evolvable Hardware

- Principles
- Cartesian Genetic Programming
- Scalability problems
- Case Studies
 - Logic synthesis
 - Image filter design
 - · Benchmark circuits with predefined testability
- FPGAs for Circuit Evolution
- Conclusions
- References

Extrinsic evolution

GECC

- candidate circuits are evaluated using a circuit simulator
- only the result of evolution is uploaded to a reconfigurable device

Intrinsic evolution

- all candidate circuits are evaluated in a physical reconfigurable device
- could lead to solutions that exploit the reconfigurable device and external environment in a new way [Thompson, 1999]

- could lead to solutions which are unreachable by conventional model-based design methods
 - e.g. circuit evolution in liquid crystals [Harding, 2008]

Scalability of representation

- Complex circuit \Rightarrow long chromosome \Rightarrow large search space \Rightarrow a search algorithm is inefficient
- Experience: Max. chromosome size ~ a few thousands of bits
- Solution: Add some domain knowledge to get shorter chromosomes
 - Incremental evolution: Divide and Conquer
 How to make the decomposition?
 - Modular evolution
 - How to introduce modules automatically?
 Functional-level evolution: From gates to functional units
 - How to choose functional units?
 - Development: Compress the chromosome
 How to design the "compression" algorithm?

Scalability of fitness evaluation

- The evaluation time grows exponentially with increasing number of circuit inputs (for combinational circuit evolution)
 - Experience: unpractical for ~10 inputs in case of multipliers and ~17 inputs in case of parity circuits
- Solution:
 - Do not insist on perfect evaluation!
 training set for evolution and test set for validation
 application-specific "tricks" in the fitness function

Case Studies:

How to eliminate the scalability problems?

- Logic synthesis
 - Task: Minimize the number of gates in large combinational circuits (hundreds of inputs, thousands of gates)
 - Difficulty: Standard fitness function requires exponential time for evaluation. Note that conventional methods have been developed for ~40 years.
- Image filters (Merit Award at Humies 2004)
 - Task: Design an image filter suppressing a given type of noise. Compare the quality of filtering and implementation cost with conventional solutions.
 - Difficulty: Gate-level design is not suitable for filters. How to measure the quality of filtering?
- Benchmark circuits (Silver Medal at Humies 2008)
 - Task: Design a set of synthetic benchmark circuits containing circuits with predefined testability (0-100%) and complexity (~10⁶ gates) for evaluation of testability analysis methods.
 - Difficulty: Fitness calculation for a million gate circuit.
- 29

CGP for post-synthesis optimization

- The question is: given the expression, is there some assignment of TRUE and FALSE values to the variables that will make the entire expression true?
- ✤ The problem is NP-complete.
- SAT solvers are available that "effectively" solve the SAT problem.
 - MiniSAT, http://minisat.se/

SAT solver in the fitness function (1) C1: C1: C2: C2:C2:

circuit	PI	РО	SIS	ABC	C1	C2	C3	CGP	impr.
ipex1	45	45	1394	1862	1439	1272	1368	847	33,4%
ipex2	39	3	151	225	221	195	299	90	40,4%
ipex3	54	50	1405	1737	1494	1332	1515	1038	22,1%
ipex5	117	88	751	768	728	609	921	613	-0,7%
ordic	23	2	67	61	67	49	90	32	34,7%
eps	24	109	1128	1109	1150	975	967	585	39,5%
luke2	22	29	406	356	417	366	357	260	27,0%
e64	65	65	192	384	183	191	255	129	29,5%
x4p	128	28	488	523	468	467	555	349	25,3%
nisex2	25	18	111	121	94	89	108	71	20,2%
/g2	25	8	95	113	88	83	109	78	6,0%
GP S(1+1) BC. S), 1 mi IS – c	ut/chro onver	om, see itional o	d: SIS, (pen aca	Gate set demic s	:: {AND, ynthesis	OR, NC	DT, NAN	D, NOR, XOR}, 100

. *		(12012		
Evo	mnlog	- e01 -	a sha h la				C	(acha)	Ducius	(1 ())	P-1410	(acha)
	an pies	components a	nd 5 prim	ary inp	uts and	outputs	5XADD	(100%),	SXSUE	(100%),	5XMU)	(2(100%)
		Information & d	ownload									
Lundham Country - I and		Name		PI	PO G	ates F	FF	RTL	Gate k	wel	EDIF	ZIP
nttp://www.jit.vutbr.cz/~pece	nka/cirgen/	e01		86	80 1	985 1	60 🚺	HDL \	HDL !	/erilog	EDIE	
		Circuit structrum	e (TSMC	eleme	nts)							
Circuits e01-e04		Type of comp.	and02	3021	a022	ao221	aoi21	a0i22	aoi221	aoi32	aoi322	2 aoi332
		# of comp.	4	48	1	1	2	61	1	4	1	1
 5 primary inputs and 5 pr 	imarv	Type of comp.	201332	buf04	buf16	dff	inv01	inv02	mux21	nand0	2 nand0	3 nor02
		# of comp.	1	14	11	160	7	144	79	6	1	49
outputs (16bits)												
		Type of comp.	nor02	oai21	03122	031221	oai222	oai32	oai33	2010	xnor2	xor2
 5xADD(16bit), 5xSUB(16) 	,	e or comp.	49	6	4/	1 4	1	1	1	2	201	95
EVMUX2(16) and 10yDEC	(16)	Testability result	s hy Fle	Test								
JAMUAZ(10) and IUXREG	(10)	County Count		Uncollar	psed	Colla	psed					
		Fault covera	ge	90.45	596	86.8	3396					
		Test covera	ge	94.95	96	92.8	39%					
		ATPG effective	ness	99.97	96	99.9	96%					
tanaa a												
		Lannan		_	_							
		L	c	irc	uit	: <6	e04	>				
			C	irc	uit	<6	e 0 4	>		20/		
			C	irc aul	uit t co	: <e< th=""><th>204 rag</th><th>> e: (</th><th>0,00</th><th>)%</th><th></th><th></th></e<>	2 04 rag	> e: (0,00)%		
		L	C F	i rc aul	uit t co	: <e< td=""><td>204 rag</td><td>> e: (</td><td>0,00</td><td>)%</td><td></td><td></td></e<>	2 04 rag	> e: (0,00)%		
		3-63-63-63	C F	irc aul	uit t co	: <e< td=""><td>204 rag</td><td>> e: (</td><td>0,00</td><td>)%]=1</td><td>-63-</td><td></td></e<>	204 rag	> e: (0,00)%]=1	-63-	
			C F	irc aul	uit t co	: <e< td=""><td>204 rag</td><td>> e: (</td><td>),0(</td><td>)% -[]</td><td>Ð</td><td></td></e<>	204 rag	> e: (), 0 ()% -[]	Ð	
Circuit: <e01></e01>			F	irc aul	uit t co	: <e< td=""><td>204 rag</td><td>> e: (</td><td>0,00] [.]</td><td>)% -]</td><td></td><td></td></e<>	2 04 rag	> e: (0,00] [.])% -]		
Circuit: <e01></e01>			C F	irc aul	uit t co	: <e< td=""><td>204 rag</td><td>> e: (</td><td>),0(] []</td><td>)%</td><td></td><td>171</td></e<>	204 rag	> e: (),0(] [])%		171
Circuit: <e01> Fault coverage: 90,45%</e01>			C F	aul	uit t co	: <e< td=""><td>204 rag</td><td>> e: (</td><td>),0(] []</td><td>)% -[] -[]</td><td></td><td>12</td></e<>	204 rag	> e: (),0(] [])% -[] -[]		12
Circuit: <e01> Fault coverage: 90,45%</e01>			F	aul	uit t co	: <e< td=""><td>204 rag</td><td>> e: (</td><td>),00] []] []</td><td>)% -[] -[]</td><td></td><td>100</td></e<>	2 04 rag	> e: (),00] []] [])% -[] -[]		100
Circuit: <e01> Fault coverage: 90,45%</e01>			C F	irc aul	uit t co		2 04 rag	> e: (),00] []] [])% -[] -]		10
Circuit: <e01> Fault coverage: 90,45%</e01>			C F	aul	uit t co		2 04 rag	> e: (),00] []] [])% -[] -]		10
Circuit: <e01> Fault coverage: 90,45%</e01>			C F	aul	uit t co		204 rag	> e: (),00] []] [])%		100
Circuit: <e01> Fault coverage: 90,45%</e01>			C F	aul	uit t co		204 rag	> e: (),0(] -] -)%		100
Circuit: <e01> Fault coverage: 90,45%</e01>			F	aul	uit t cc		:04 rag	> e: (),0(] [])%		12

					Circuit	PI	PO	# of	# of	Faul
	Evol	und I	honch	marke				FFs	gates	coverage
ALC:	LVUI		JEIICI	inains	e01	86	80	160	1,985	90.45%
bt 🖉	tn·//www	fit vuthr	cz/~nece	nka/ciroen/	e02	86	80	144	1,657	60.69%
111	<i>.p.,,</i>		.es pece	indu en gena	e03	86	80	160	2.046	39.43%
					e04	86	80	160	2.221	0.009
	e05	186	160	792	10.011	90.119				
	e06	186	160	831	0.000	43.909				
Mutation	-07	196	160	795	0,000	00.0070				
	omont: 0	0 0/-			e08	186	160	778	9.559	0.009
• керіас	ement. 9	0 %0			00	100	100	0.000	3,003	0.007
					e09	211	192	2,020	28,065	91.90%
							0.000	1 0 0 0	08.080	0.1.000
					e10	179	208	1,979	27,853	64.22)
					e10 e11	179 211	208	2,058	27,853 28,231	27.469
FITTest 1	BENCHO6	wnthetic	benchma	rk circuits	e10 e11 e12	179 211 203	208 200 208	1,979 2,058 2,106	27,853 28,231 28,438	64.229 27.469 0.009
FITTest_I	BENCH06 s	synthetic	: benchma	rk circuits	e10 e11 e12 e13	179 211 203 1,669	208 200 208 1,904	2,058 2,106 6,304	27,853 28,231 28,438 155,046	64.229 27.469 0.009 89.389
FITTest_I	BENCH06 s	synthetic	benchma	rk circuits	e10 e11 e12 e13 e14	179 211 203 1,669 1,621	208 200 208 1,904 1,904	1,979 2,058 2,106 6,304 6,368	27,853 28,231 28,438 155,046 155,380	64.229 27.469 0.009 89.389 64.469
FITTest_I	BENCH06 s	synthetic # of FFs	benchma # of faults	Fault	e10 e11 e12 e13 e14 e15	179 211 203 1,669 1,621 1,701	208 200 208 1,904 1,904 1,840	1,979 2,058 2,106 6,304 6,368 6,368	27,853 28,231 28,438 155,046 155,380 155,207	64.229 27.469 0.009 89.389 64.469 31.849
FITTest_I	# of gates 108 627	# of FFs 4 384	# of faults 399 806	Fault coverage	e10 e11 e12 e13 e14 e15 e16	179 211 203 1,669 1,621 1,701 1,589	208 200 208 1,904 1,904 1,840 1,744	1,979 2,058 2,106 6,304 6,368 6,368 6,368	27,853 28,231 28,438 155,046 155,380 155,207 155,045	64.229 27.469 0.009 89.389 64.469 31.849 12.509
FITTest_I	# of gates 108 627 108 748	# of FFs 4 384 4 448	# of faults 399 806 399 786	Fault coverage 1,28% 10,11%	e10 e11 e12 e13 e14 e15 e16 e17	179 211 203 1,669 1,621 1,701 1,589 3,833	208 200 208 1,904 1,904 1,840 1,744 4,272	1,979 2,058 2,106 6,304 6,368 6,368 6,368 6,368	27,853 28,231 28,438 155,046 155,380 155,207 155,045 310,122	64.22) 27.46 0.00 89.38 64.46 31.84 12.50 81.73
FITTest_I a00 a01 a02	# of gates 108 627 108 748 108 532	# of FFs 4 384 4 448 4 416	# of faults 399 806 399 786 398 012	Fault coverage 1,28% 10,11% 23,81%	e10 e11 e12 e13 e14 e15 e16 e17	179 211 203 1,669 1,621 1,701 1,589 3,833 2,912	208 200 208 1,904 1,904 1,840 1,744 4,272 4,518	1,979 2,058 2,106 6,304 6,368 6,368 6,368 12,672	27,853 28,231 28,438 155,046 155,380 155,207 155,045 310,122 200,856	64.225 27.465 0.005 89.385 64.465 31.845 12.505 81.735
FITTest_1 a00 a01 a02 a03	# of gates 108 627 108 748 108 532 108 876	# of FFs 4 384 4 448 4 416 4 448	# of faults 399 806 399 786 398 012 400 166	Fault coverage 1,28% 10,11% 23,81% 31,60%	e10 e11 e12 e13 e14 e15 e16 e17 e18	179 211 203 1,669 1,621 1,701 1,589 3,833 3,913	208 200 208 1,904 1,904 1,840 1,744 4,272 4,512	1,979 2,058 2,106 6,304 6,368 6,368 6,368 12,672 12,608	27,853 28,231 28,438 155,046 155,380 155,207 155,045 310,122 309,856	64.229 27.469 0.009 89.389 64.469 31.849 12.509 81.739 56.729
FITTest_I	# of gates 108 627 108 748 108 532 108 576 108 551	# of FFs 4 384 4 448 4 416 4 448 4 416	# of faults 399 806 399 786 398 012 400 166 399 334	Fault coverage 1,28% 10,11% 23,81% 31,60% 40,38%	e10 e11 e12 e13 e14 e15 e16 e17 e18 e19	179 211 203 1,669 1,621 1,701 1,589 3,833 3,913 3,833	208 200 208 1,904 1,904 1,840 1,744 4,272 4,512 4,320	1,979 2,058 2,106 6,304 6,368 6,368 6,368 12,672 12,608 12,576	27,833 28,231 28,438 155,046 155,380 155,207 155,045 310,122 309,856 309,874	64.229 27.469 0.009 89.389 64.469 31.849 12.509 81.739 56.729 40.289
FITTest_1 a00 a01 a02 a03 a04 a05	# of gates 108 627 108 748 108 532 108 876 108 551 108 740	# of FFs 4 384 4 448 4 416 4 448 4 416 4 448	# of faults 399 806 399 786 398 012 400 166 399 334 399 534	Fault coverage 1,28% 10,11% 23,81% 31,60% 50,19%	e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20	179 211 203 1,669 1,621 1,701 1,589 3,833 3,913 3,833 3,961	208 200 208 1,904 1,904 1,840 1,744 4,272 4,512 4,320 4,352	1,979 2,058 2,106 6,304 6,368 6,368 6,368 12,672 12,608 12,576 12,736	27,883 28,231 28,438 155,046 155,380 155,207 155,045 310,122 309,856 309,874 310,610	64.229 27.469 0.009 89.389 64.469 31.849 12.509 81.739 56.729 40.289 23.139
FITTest_I a00 a01 a02 a03 a04 a05 a06	# of gates 108 627 108 748 108 532 108 551 108 551 108 574 108 607	# of FFs 4 384 4 448 4 416 4 448 4 416 4 448 4 416	# of faults 399 806 399 786 398 012 400 166 399 334 399 534 399 494	Fault coverage 1,28% 10,11% 23,81% 31,60% 40,38% 50,19% 65,56%	e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21	179 211 203 1,669 1,621 1,701 1,589 3,833 3,913 3,833 3,913 1,5332	208 200 208 1,904 1,904 1,840 1,744 4,272 4,512 4,320 4,352	1,979 2,058 2,106 6,304 6,368 6,368 6,368 12,672 12,608 12,576 12,736 50,688	27,853 28,231 28,438 155,046 155,380 155,207 155,045 310,122 309,856 309,874 310,610	64.22) 27.469 0.009 89.389 64.469 31.849 12.509 81.739 56.729 40.289 23.139 80.139
FITTest_1 a00 a01 a02 a03 a04 a05 a06 a07	# of gates 108 627 108 748 108 532 108 551 108 740 108 740 108 876 108 840	# of FFs 4 384 4 448 4 416 4 448 4 416 4 448 4 416 4 448 4 416 4 448	# of faults 399 806 399 786 398 012 400 166 399 334 399 534 399 494 399 708	Fault coverage 1,28% 10,11% 23,81% 31,60% 40,38% 50,19% 65,56% 66,37%	e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e20	179 211 203 1,669 1,621 1,701 1,589 3,833 3,913 3,833 3,961 15,332	208 200 208 1,904 1,904 1,840 1,744 4,272 4,512 4,512 4,320 4,352 17,088	1,979 2,058 2,106 6,304 6,368 6,368 6,368 12,672 12,608 12,576 12,736 50,688	27,853 28,231 28,438 155,046 155,380 155,207 155,045 310,122 309,856 309,874 310,610 1,240,488	64.229 27.469 10.009 89.389 64.469 31.849 12.509 81.739 56.729 40.289 23.139 80.139
FITTest_I a00 a01 a02 a03 a04 a05 a06 a07 a08	# of gates 108 627 108 748 108 532 108 551 108 607 108 811 108 851	# of FFs 4 384 4 448 4 416 4 448 4 416 4 448 4 416 4 448 4 448 4 448 4 448	# of faults 399 806 399 786 398 012 400 166 399 334 399 534 399 534 399 708 399 708	Fault coverage 1.28% 10,11% 23,81% 31,60% 60,38% 50,19% 66,56% 66,37% 74,86%	e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22	179 211 203 1,669 1,621 1,701 1,589 3,833 3,913 3,833 3,961 15,332 15,652	208 200 208 1,904 1,904 1,840 1,744 4,272 4,512 4,320 4,352 17,088 18,048	1,979 2,058 2,106 6,304 6,368 6,368 6,368 6,368 12,672 12,608 12,576 12,736 50,688 59,432	27,853 28,231 28,438 155,046 155,380 155,207 155,045 310,122 309,856 309,856 309,874 310,610 1,240,488 1,239,424	64.229 27.469 10.009 89.389 64.469 31.849 12.509 81.739 56.729 40.289 23.139 80.139 52.339
FITTest_1 a00 a01 a02 a03 a04 a05 a06 a07 a08 a09	BENCH06 s # of gates 108 627 108 748 108 532 108 551 108 740 108 607 108 811 108 650 108 851	# of FFs 4 384 4 448 4 416 4 448 4 416 4 448 4 416 4 448 4 416 4 448 4 448 4 384	# of faults 399 806 399 786 398 012 400 166 399 334 399 334 399 534 399 494 399 566 398 588	Fault coverage 1,28% 10,11% 23,81% 31,60% 40,38% 65,56% 66,57% 74,86% 86,54%	e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23	179 211 203 1,669 1,621 1,701 1,589 3,833 3,913 3,833 3,961 15,332 15,652 15,332	208 200 208 1,904 1,904 1,840 1,744 4,272 4,512 4,320 4,352 17,088 18,048 17,280	1,979 2,058 2,106 6,304 6,368 6,368 6,368 6,368 12,672 12,608 12,576 12,736 50,688 59,432 50,304	27,883 28,231 28,438 155,046 155,380 155,207 155,045 310,122 309,856 309,874 310,610 1,240,488 1,239,424 1,239,496	64.227 27.469 0.009 89.389 64.469 31.849 12.509 81.739 56.729 40.289 23.139 80.139 52.339 38.249

Authors	Application	Platform	EA	Fitness
External Reconfiguration				
Thompson et al. (1999)	Tone discriminator	XC6216	PC	PC
Huelsbergen et al. (1999)	Oscillators	XC6216	PC	PC
Zhang et al. (2004)	Image filters	VRC	PC	PC
Gordon (2005)	Arithmetic circuits	Virtex CLB	PC	PC
Gwaltney and Gutton (2005)	IIR filters	VRC	DSP	DSP
Internal reconfiguration				
Tufte and Haddow (2000)	FIR filters	Register values	HW	HW
Martinek and Sekanina (2005)	Image filters	VRC	HW	HW
Vasicek and Sekanina (2007)	Image filters	VRC	PowerPC	HW
Sekanina and Friedl (2004)	Logic circuits	VRC	HW	HW
Vasicek and Sekanina (2008)	CGP accelerator	VRC	PowerPC	HW
Salomon et al. (2006)	Hash functions	VRC	HW	HW
Glette (2008)	Face recognition	VRC	MicroBlaze	HW
Glette et al. (2007)	Sonar spectrum class.	VRC	PowerPC	HW
Upegui and Sanchez (2006)	Cellular automaton	Virtex CLB	MicroBlaze	HW
Vasicek et al. (2008)	Const. Multipliers	VRC	HW	HW
Cancare et al. (2010)	Logic circuits	Virtex 4 logic	PowerPC	HW
Salvador et al. (2011)	Image filters	Virtex 5 logic	MicroBlaze	HW

Conclusions:

Promises of evolutionary circuit design

- \diamond CGP and its extensions seem to be very suitable for circuit evolution.
- "Innovative" solutions can be produced.
 - improving area/delay/power consumption/testability...
 - Many similar solutions can be obtained.
- Promising applications
 - Problems where it is difficult to formulate a perfect specification and a partially working solution is acceptable (e.g. filtering, classification, prediction, robot controlling)
 - Hard combinatorial/combinational problems (e.g. in logic synthesis)

Let Conclusions:

Problems of evolutionary circuit design

- Runtime.
- (Almost) nothing is guaranteed.
- Some tricks are needed to solve the scalability problems.
- It is not easy to find a new problem where EC could successfully be applied and "beat" conventional methods.
- Sometimes considered as crazy method by "conventional" designers".

66

References GECCO 1 Drechsler, R.: Evolutionary Algorithms for VLSI CAD. Kluwer Academic Publishers, Boston 1998 Harding S. L., Miller J. F., Rietman E. A.: Evolution in Materio: Exploiting the Physics of Materials for Computation. International Journal of Unconventional Computing, 4(2), 2008, 155-194 4 Higuchi, T. et al.: Evolving Hardware with Genetic Learning: A First Step Towards Building a Darwin Machine. In: SAB'92: Proc. of the 2nd International Conference on Simulated Adaptive Behaviour, MIT Press, Cambridge MA 1993, p. 417-424 * Higuchi, T. et al.: Real-world applications of analog and digital evolvable hardware. IEEE Trans. on Evolutionary Computation. 3(3), 1999, 220-235 \$ Gajda Z., Sekanina L.: An efficient selection strategy for digital circuit evolution. In Evolvable Systems: From Biology to Hardware, LNCS 6274. Springer Verlag, 2010, p. 13–24 . . . Greenwood, G., Tyrrell, A.: Introduction to Evolvable Hardware. A Practical Guide for Designing Self-Adaptive Systems. IEEE Press Series on Computational Intelligence, 2006 ÷ • Higuchi, T., Liu, Y., Yao, X.: Evolvable Hardware. Springer Verlag, 2006

- 64 Koza, J. R. et al.: Genetic Programming III: Darwinian Invention and Problem Solving, Morgan Kaufmann Publishers, San Francisco CA 1999
- Koza, J. R. et al.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence, Kluwer Academic Publishers. 2003 4
- Miller J., Thomson P.: Cartesian Genetic Programming. In: Proc. of the 3rd European Conference on Genetic Programming EuroGP2000. LNCS 1802, Springer, 2000, p. 121–132 - 44
- Miller, J., Job, D., Vassilev, V.: Principles in the evolutionary design of digital circuits Part I. Genetic Programming and Evolvable Machines. 1 (1), 2000, 8-35
- Novak, O. et al.: Handbook of Electronic Testing. CVUT Publisher, 2005
- Pecenka, T., Sekanina, L., Kotasek, Z.: Evolution of synthetic rtl benchmark circuits with predefined testability. ACM Trans. on Design Automation of Electronic Systems 13(3), 2008, 1-21

References GECCO . Salvador R. et al.: Evolvable 2D computing matrix model for intrinsic evolution in commercial FPGAs with native reconfiguration support. In Proc. of NASA/ESA conf. on Adaptive Hardware and Systems. IEEE, 2011, in press Sekanina, L.: Image filter design with evolvable hardware. In: Applications of Evolutionary Computing. LNCS 2279, Springer Verlag, 2002, p. 255–266 Sekanina, L.: Evolvable Components: From Theory to Hardware Implementations. Natural 4 Computing Series, Springer Verlag Berlin 2004 Sekanina L.: Evolvable Hardware. In Handbook of Natural Computing (Rozenberg G, Bäck T., * Kok, J. N., Eds.) Springer Verlag, 2011 – in press Thompson, A., Layzell, P., Zebulum, R. S.: Explorations in design space: unconventional electronics design through artificial evolution. IEEE Trans. on Evolutionary Computation. 3(3). . 1999, 167-196 Vasicek, Z., Sekanina, L.: An evolvable hardware system in Xilinx Virtex II Pro FPGA. \diamond International Journal of Innovative Computing and Applications 1(1), 2007, 63-73 Vasicek, Z., Sekanina, L.: An area-efficient alternative to adaptive median filtering in FPGAs. In: Proc. of 2007 Conf. on Field Programmable Logic and Applications, IEEE Computer Society, . . . 2007, p. 216-221 Vasicek Z., Sekanina L.: Hardware Accelerator of Cartesian Genetic Programming with Multiple Fitness Units. Computing and Informatics, 29(6), 2010, 1359-1371 Vasicek Z., Sekanina L.: Formal verification of candidate solutions for post-synthesis evolutionary optimization in evolvable hardware. Genetic Programming and Evolvable Machines. Vol. 12, 2011 – in press • Vasicek Z., Sekanina L.: A global postsynthesis optimization method for combinational circuits. 4 In Proc. of the Design, Automation and Test in Europe, EDAA, 2011, p. 1525-1528 Vassilev V., Job D., Miller J. F.: Towards the Automatic Design of More Efficient Digital Circuits. In Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, IEEE Computer Society, - 🐟 2000, p. 151-160

Wakerly J. F.: Digital Design: principles and practices (3d edition), Prentice Hall, New Jersey, * USA, 2000

67