
1

The Genetic and Evolutionary Computation Conference

Evolution of digital circuits

Lukáš Sekanina
Brno University of Technology

Faculty of Information Technology
Brno, Czech Republic

sekanina@fit.vutbr.cz
http://www.fit.vutbr.cz/~sekanina

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

2

Scope

�The tutorial covers basic techniques for
evolutionary design of digital circuits and shows
on several case studies how evolutionary
computing can produce results that are
competitive with conventional methods.

�What is not covered
• evolution of analog circuits, antennas, MEMS and

other hardware.

• adaptive hardware

3

Agenda

� Digital Circuits
• Basics of digital design and testing
• Reconfigurable devices

� Evolutionary Circuit Design and Evolvable Hardware
• Principles
• Cartesian Genetic Programming
• Scalability problems

� Case Studies
• Logic synthesis
• Image filter design
• Benchmark circuits with predefined testability

� FPGAs for Circuit Evolution
� Conclusions
� References

4

Digital Circuits - Combinational

� The outputs depend only on current inputs.
� Multi-output Boolean function F: {0,1}n→{0,1}m

� Representation:
• truth table, logic expressions, Binary Decision

Diagram, AND-Invert graph etc.
� Logic circuits are composed of logic gates, e.g.

� Logic synthesis and minimization
• start with a normal form – disjunctive normal form

(DNF), conjunctive normal form (CNF), …
• apply axioms and theorems of Boolean algebra to

simplify expressions, i.e. reduce the number of gates
(or area, delay, interconnect, …)

– e.g. combining theorem (xy + xy’ = x), De Morgan etc.
• Methods and tools: Karnaugh map, Quine-McCluskey,

Espresso, ABC, SIS, …

2 6 4 6 4 8 ---- cost (transistors) NAND

5

The 3-XOR Example

� a) The optimal solution consists of 48 transistors in disjunctive
normal form (AND, OR, NOT).

� b) The optimal solution consists of 16 transistors when XOR gates
are available.

� Not all solutions are achievable by a particular minimization method!

a b c f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

0 1 0 1

1 0 1 0

a

b

c

f:

DNF: f = a’b’c + a’bc’ + ab’c’ + abc

3 x 2 tr 4 x 8 tr 1 x 10 tr 8 tr 8 tr

6

Digital Circuits - Sequential

� The outputs depend not only on the current
inputs but also on the past sequences of
inputs (represented in the state of a circuit).

� Mealy machine
• Next state = F (current state, input)

• Output = G (current state, input)

� Moore machine
• Next state = F (current state, input)

• Output = G (current state)

� Building blocks: latches, flip-flops, registers,
counters
• Example: D-latch

next
state
logic
(F)

register
output
logic
(G)

Mealy machine

current
state

clock signal

7

Examples of digital circuits

4b x 4b parallel multiplier
Full Adder (FA)
Half Adder (HA)

9-input median pipelined circuit
Compare & Swap & D (CS)

D flip-flop (D)

8

Datapath and Controller

MUX (multiplexer)
REG (register)
=, > (comparators)
SUB (subtractor)

9

Diagnostics and Testing

� Fault → Error → Failure
• Fault – physical defect
• Error - incorrect behavior caused by a fault
• Failure - inability of the system to perform its specified service

� Fault models: stuck at 1, stuck at 0, bridging, delay…
• Single vs multiple, permanent vs transient

� ATPG – Automatic Test Pattern Generator
• Input patterns required to check a device for faults are automatically
generated by a program. Device's response is compared with the
expected response.

• The goal is to maximize a given measure (fault coverage) and minimize
the cost of testing.

� Testability analysis
• Controllability
• Observability

10

Reconfigurable Devices

� Functionality of hardware is defined by a configuration bit
stream.

� Examples:
• Programmable Logic Device (PLD)
• Field programmable gate array (FPGA)
• Field programmable transistor array (FPTA)
• Field programmable analog array (FPAA)

– Operational Transconductance Amplifiers (OTA)
– Switched capacitors

• Reconfigurable multiprocessors (e.g. PicoChip)
• Reconfigurable antenna array
• Reconfigurable optics (e.g. deformable mirrors)
• Reconfigurable molecular array (e.g. NanoCell)

11

Field Programmable Gate Arrays (FPGA)

� Xilinx FPGA consists of
• array of configurable logic
blocks (CLB)

• configurable interconnecting
system

• configurable I/O ports
� Integrated hard cores

• BRAMs, multipliers,
processors, DSP, …

� Reconfiguration
• Full – all FPGA resources are
reconfigured

• Dynamic partial
reconfiguration – a part of
FPGA is reconfigured while
remaining circuits work
unchanged

� ICAP - Internal Configuration
Access Point
• frame – configuration unit
(1312-bit column)

� 80-90% area of FPGA not
accessible to users

Xilinx Virtex 5, 65 nm
6-input LUTs (delay 0.9 ns)
The FX200T FPGA contains 122,880 6-LUTs.
www.xilinx.com

12

Examples of optimization problems in
digital design

� Logic minimization - finding coverage with the minimum cost
� BDD optimization w.r.t various criteria
� High-level synthesis – finding modules satisfying design timing
constraints while minimizing the total design cost (area)

� Partitioning, mapping, routing, floorplanning in physical design
� Test vector reordering to reduce power consumption
� Test scheduling optimization
� and many others …

Evolutionary optimization has been utilized
intensively.

But what about evolutionary design?

13

Evolutionary Algorithm
� Evolutionary algorithm (EA)

• a robust population-oriented
search algorithm

• fitness function evaluates
every candidate solution

� Evolutionary optimization
• a search for suitable values of
pre-selected parameters

• Algorithms: GA, ES, PSO …

� Evolutionary design
• can create a complete
structure of target system
(including parameters tuning)

• Algorithms: GP, CGP …

h1

h2

w1
w2

t1
t2

t1 t2 h1 h2 w1 w2

14

Evolvable hardware
Evolutionary Algorithm + Reconfigurable Device [Higuchi et al, 1993]

evolutionary
algorithm

(EA)

genotype conf. bits

fitness value

fitness function
(problem specification)

I/O

- generate stimuli for RD
- obtain responses from RD
- compare the responses with target values
- calculate the fitness value

generator of candidate solutions

(simulator)

reconfigurable device (RD)

de
co

de

15

Extrinsic vs Intrinsic Evolution

� Extrinsic evolution
• candidate circuits are evaluated using a circuit simulator
• only the result of evolution is uploaded to a reconfigurable device

� Intrinsic evolution
• all candidate circuits are evaluated in a physical reconfigurable
device

• could lead to solutions that exploit the reconfigurable device and
external environment in a new way [Thompson, 1999]

• could lead to solutions which are unreachable by conventional
model-based design methods
– e.g. circuit evolution in liquid crystals [Harding, 2008]

16

Why Evolvable Hardware?

�Allows to increase the level of design
automation.
• The design problem is transformed to the search problem!
• Exploring “dark corners” of design spaces.

�Novel designs (unreachable by conventional
techniques) can be discovered by means of EA.
• antennas, analog circuits, digital circuits, optical lens
systems, programs, protocols…

�Adaptive and self-repairing hardware can be
implemented using evolvable hardware.
• Self-Reconfigurable Analog Array (NASA JPL)
• Adaptive image compression (AIST)
• Adaptive cache mappings (U. of Paderborn)
• …

E
vo

lu
tio

na
ry

 d
es

ig
n

E
vo

lv
ab

le
 h

ar
dw

ar
e

17

Cartesian Genetic Programming (CGP)
for Circuit Evolution [Miller&Thompson, 2000]

� Cartesian Genetic Programming (CGP) is a graph-based Genetic
Programming (GP) method
• GP: candidate program ~ syntactic tree (J. Koza, late 80s)
• CGP: candidate program ~ acyclic oriented graph

� Features of CGP
• genetic encoding is compact and simple (loosely inspired by the
architecture of FPGAs)

• mutation-based search
• easy to implement
• the effectiveness of CGP has been compared with many other GP
methods and it is very competitive.

� Implementations
• standard CGP, modular CGP, self-modifying CGP, multichromosome CGP

� Applications
• digital circuit design, prime generating polynomials, robot controllers,
image processing, classification, developmental neural architectures,
evolutionary art, artificial life etc.

18

CGP: Representation

� Array of nodes: rows = 3, columns = 3, inputs = 3, outputs = 2
� Functions in the nodes: {NAND (0), NOR (1), XOR (2), AND (3),
OR (4), NOT (5)}

phenotype

genotype

19

CGP: Fitness function for logic synthesis

� Fitness value: F = the number of bits correctly calculated for all
possible assignments to the inputs (max. 16 in this example)

� If F reaches a maximum value then optimize the number of gates:
F’ = F + N – U
• where N is the number of available nodes
• where U is the number of used nodes

target table:

Specification
(1-bit adder),

20

CGP: Mutation

mutation

� Randomly select h integers and replace them by randomly generated
(but legal) values:

21

CGP: Search algorithm

1. Randomly generate 1+λ individuals.
2. Evaluate the population.
3. WHILE the termination criterion is not satisfied DO

� Select the highest scored individual – parent (see figure).
� Use mutation to create λ offspring of the parent individual.
� Create a new population using the parent and its λ offspring.
� Evaluate the population.

-10

-11

713

-6

813

gF

-10

1416

-13

1016

-13

gF

816

-15

816

1016

1016

gF

-13

1016

916

1116

816

gF

-10

816

-11

916

816

gF

-8

-11

616

516

816

gF

population k k+1 k+2 k+3 k+4 k+5

The best: 13/7 16/10 16/8 16/8 16/8 16/5

F =
functionality
(Fmax = 16)

g = the
number of
used gates

candidates for the new parent parent of the population
22

Gate-level evolution of multipliers
[Vassilev&Miller EH 2000, GENP 1(1), 2000]

Scalability limit!

ES(1+4), h=3,

Evolved 3b x 3b multiplier

The number of 2-input gates and CGP setting

ArrayArray

23

The best evolved 4x4 multipliers

Gajda, Sekanina: ICES2010
56 gates with the gate set
G = {and, or, not, nand, nor, xor, id, 0, 1}
delay = 18
seed: VJM, EH2000 (67 gates)
400 transistors

Vassilev, Job, Miller: EH2000
57 gates with {and, xor, not(x) and y}, delay=16
67 gates with the gate set G
seed: conventional solution (64 gates)
438 transistors

24

CGP Seeded by Conventional Designs

• CGP used to minimize the number of gates
– Best conv. = the best of ABC

– CGP: λ = 14, h = 7, max. generation = 100M, array 1 x ‘gates from ABC’

generation

of

 g
at

es

205 gates
5.8 h.

235 gates
0.6 h.

260 gates
211 s

359 gates
0.0 s 8b M/S circuit

(Athlon64 3200+)

of gates

LGSynth91 benchmarks

[Gajda, Sekanina: ICES2010]

25

SW Acceleration

� Early termination of fitness evaluation
• If a perfect functionality has been reached and the goal is to
minimize some parameters (e.g. the number of gates), it is only
tested whether a candidate circuit is working correctly or
incorrectly; i.e. the evaluation is stopped after producing the first
wrong output.

� Parallel simulation
• utilizes bitwise operators to perform more than one evaluation of
a gate in a single step

Parallel simulation: speedup is 8 wrt. a naïve simulation
26

The scalability problem

� EA is usually able to provide a good solution to a small
problem instance; however, only unsatisfactory solutions
are produced for larger problem instances.

� Solution: Use a domain knowledge in the EA!
• representation
• genetic operators
• fitness function

� Recall: Evolutionary design is not suitable for all circuit
design problems!

27

Scalability of representation

• Complex circuit ⇒ long chromosome ⇒ large search
space ⇒ a search algorithm is inefficient
• Experience: Max. chromosome size ~ a few
thousands of bits
• Solution: Add some domain knowledge to get
shorter chromosomes
–Incremental evolution: Divide and Conquer
- How to make the decomposition?

–Modular evolution
- How to introduce modules automatically?

–Functional-level evolution: From gates to functional units
- How to choose functional units?

–Development: Compress the chromosome
- How to design the “compression” algorithm?

28

Scalability of fitness evaluation

• The evaluation time grows exponentially with
increasing number of circuit inputs (for
combinational circuit evolution)
–Experience: unpractical for ~10 inputs in case of
multipliers and ~17 inputs in case of parity circuits

• Solution:
–Do not insist on perfect evaluation!
- training set for evolution and test set for validation

–application-specific “tricks” in the fitness function

29

Case Studies:
How to eliminate the scalability problems?

� Logic synthesis
• Task: Minimize the number of gates in large combinational
circuits (hundreds of inputs, thousands of gates)

• Difficulty: Standard fitness function requires exponential time for
evaluation. Note that conventional methods have been developed
for ~40 years.

� Image filters (Merit Award at Humies 2004)
• Task: Design an image filter suppressing a given type of noise.
Compare the quality of filtering and implementation cost with
conventional solutions.

• Difficulty: Gate-level design is not suitable for filters. How to
measure the quality of filtering?

� Benchmark circuits (Silver Medal at Humies 2008)
• Task: Design a set of synthetic benchmark circuits containing
circuits with predefined testability (0-100%) and complexity
(~106 gates) for evaluation of testability analysis methods.

• Difficulty: Fitness calculation for a million gate circuit.

30

CGP for post-synthesis optimization
[Vašíček, Sekanina GENP 2011]

• A new fitness function has to be proposed to deal with complex circuits:
• Use a SAT solver to decide whether candidate circuit Ci and reference

circuit C1 are functionally equivalent.

• If so, then fitness(Ci) = the number of gates in Ci;
• Otherwise: fitness(Ci) = 0.

• The equivalence checking can be performed for many real-world
problem instances in a reasonable time.

Conventional
synthesis

(ABC, SIS…)
CGP

circuit C1 optimized C1

(= a seed for the
initial population;
reference circuit)

31

The SAT problem

� The satisfiability problem (SAT) is a decision problem,
whose instance is a Boolean expression written in
conjunctive normal form (CNF), i.e. as conjunction of
clauses, e.g.

� The question is: given the expression, is there some
assignment of TRUE and FALSE values to the variables that
will make the entire expression true?

� The problem is NP-complete.
� SAT solvers are available that “effectively” solve the SAT
problem.
• MiniSAT, http://minisat.se/

32

SAT solver in the fitness function (1)

?
≡

If C1 and C2 are not functionally equivalent then there is at least one
assignment to the inputs for which the output of G is 1.

G:

C1: C2:

33

SAT solver in the fitness function (2)

� The G circuit is transformed to CNF using the Tseitin
transform.

� The CNF representation captures the valid assignments
between the gate inputs and outputs.
• Consider a gate y = OP(a, b)
• Hence, a CNF formula ϕ(y, a, b) = 1 iff the predicate y = OP(a,
b) holds true.

Example:

Various optimizations can be applied
to reduce the decision time.

34

SAT solver in the fitness function (3)

7

6

1

2
3

4
5

8
9

10

11

12

13

35

SAT solver in the fitness function (3)

7

6

1

2
3

4
5

8
9

10

11

12

13

SAT solver

variables: 13, clauses: 30, time elapsed: 0.03ms

result: SATISFIABLE / NONEQUIVALENT

model / counter example: 0011111101011

36

Results for LGSynth93 benchmarks
[Vašíček, Sekanina DATE 2011]

CGP
ES(1+1), 1 mut/chrom, seed: SIS, Gate set: {AND, OR, NOT, NAND, NOR, XOR}, 100 runs

ABC, SIS – conventional open academic synthesis tools

C1, C2, C3 – commercial synthesis tools

37

CGP for logic synthesis: Summary

�Summary
• More time ⇒ better results
• A promising optimization method for hard-to-synthesize
circuits.

38

Functional-level evolution of image filters

Can CGP design a filter which exhibits better filtering properties and
lower implementation cost w.r.t. conventional solutions?
Target domain: filters suppressing shot noise, Gaussian noise, burst noise, edge detectors,
…

[Sekanina, EvoIASP 2002]

39

Method: CGP at functional level

All inputs and outputs at 8 bits!

9 x 8bits 1 x 8bits

� Search method: (1+7)
Evolutionary Strategy

� Population size: 8 individuals
� Mutation: max. 5%
� Array of 4 x 8 elements
� 100 runs / 30000 generations

40

Fitness function

Image size: K x K pixels (K=128)
Fitness value: Mean Absolute Error (MAE)

∑∑
−

=

−

=

−=
2

1

2

1

),(),(
K

i

K

j

jiwjivvaluefitness

Impossible to test all possible input
combinations ⇒ a training set is
employed

41

a) Image corrupted by 5% salt-and-pepper noise
PSNR: 18.43 dB (peak signal to noise ratio)

b) Original image
c) Median filter (kernel 3x3)

PSNR: 27.92 dB
268 FPGA slices; 305 MHz

d) Evolved filter (kernel 3x3)
PSNR: 37.50 dB
200 FPGA slices; 308 MHz a)

b)c)d)

Example of evolved filter behavior

42

Comparison of various filters

MF – Median Filter
AMF – Adaptive Median Filter
The single filter is one of evolved filters.
Best SW - Y. Dong, S. Xu: A new directional weighted median filter for removal of random-valued impulse
noise. Signal Processing Letters. vol. 14, no. 3, p. 193–196, 2007

Mean PSNR for 25 test images

43

Example: Shots + Edges

Evolved edge detector resistant against the salt-and-pepper
noise

Image corrupted by 5% salt-pepper noise

Sobel operator The image obtained by
evolved filter

Sobel operator applied to uncorrupted image

44

Example: Burst noise

5%, N(255, 30)

Evolved filter

45

Problem: Salt&Pepper noise of high intensity

268 slices

1506 slices 2024 slices 6567 slices

46

Bank of evolved filters
[Vašíček, Sekanina: FPL 2007]

� CGP has provided many different implementations of 3x3 image filter
for the 40% noise removal problem.

� Selected different implementations constitute a bank of filters.
� Pre-processing: if pixel[i] = 255 then pixel[i] := 0
� Selection: median-based selection

P
re

-p
ro

ce
ss

in
g

S
el

ec
tio

n

Filter 1

Filter 2

Filter 3

Filter 4

47

Bank of evolved filters 3x3

vs adaptive median filter 7x7

48

Comparison of various filters

MF – Median Filter
AMF – Adaptive Median Filter
The single filter and 3-bank filter are evolved filters
Best SW - Y. Dong, S. Xu: A new directional weighted median filter for removal of random-valued impulse
noise. Signal Processing Letters. vol. 14, no. 3, p. 193–196, 2007

Mean PSNR for 25 test images

49

Evolution of benchmark circuits
[Pečenka, Sekanina, Kotásek: ACM TODAES 13(3) 2008]

Which of them is the best one (under some criteria)?

The methods can be compared using benchmark circuits.
The benchmarks should reveal weak points of the methods.

testability
analysis
method 1

testability
analysis
method 2

testability
analysis
method n

50

Evolution of benchmarks: Specification

� The input (provided by user)
• the number and type of components

– e.g. 2xSUB(8) , 2xADD(8), 2xMUX2(8)

• the number of circuit primary inputs and outputs
– e.g. 4 x 8bit input, 2 x 8bit output

• testability properties
– average controllability (e.g. 80%)
– average observability (e.g. 45%)

� The output
• RTL circuit with required complexity and testability (synchronous circuits, one
clock domain, no 3-state buses)

• VHDL, Verilog, EDIF

� In the fitness function, the testability is calculated, i.e. structural properties
of circuits are examined.

� Function is not evolved!

51

Evolution of benchmarks: EA

� Functional level evolution
(thousands of components in a
circuit)

� Only circuit connection is evolved
� Chromosome: string of integers

� Examples of mutation

52

Evolution of benchmarks: Fitness function

a) Structure analysis
b) Interconnection analysis
c) Testability analysis

Isolated sub-circuit

undesired connection

53

Evolution of benchmarks: Fitness function

c) Testability analysis

x.xxx – controllability
x.xxx – observability

Average controllability
81.0%

Average observability
45.0%

The ADFT method
[Strnadel, 2005] is used for
testability analysis.

54 54

Evolved benchmarks
http://www.fit.vutbr.cz/~pecenka/cirgen/

� Population size: 5-20
� Mutation: 10-20%
� Replacement: 90 %

FITTest_BENCH06 synthetic benchmark circuits

55

Examples
http://www.fit.vutbr.cz/~pecenka/cirgen/

a(15:0)

b(15:0)

q(15:0)

a(15:0)

b(15:0)

q(15:0)

d(15:0)

clk

q(15:0)

a(15:0)

b(15:0)

q(15:0)

a(15:0)

b(15:0)

q(15:0)

a(15:0)

b(15:0)

q(15:0)

d(15:0)

clk

q(15:0)

a(15:0)

b(15:0)

sel

q(15:0)

d(15:0)

clk

q(15:0)

d(15:0)

clk

q(15:0)

d(15:0)

clk

q(15:0)

a(15:0)

b(15:0)

q(15:0)

a(15:0)

b(15:0)

sel

q(15:0)

a(15:0)

b(15:0)

sel

q(15:0)

a(15:0)

b(15:0)

sel

q(15:0)

a(15:0)

b(15:0)

q(15:0)

d(15:0)

clk

q(15:0)

a(15:0)

b(15:0)

q(15:0)

a(15:0)

b(15:0)

q(15:0)

a(15:0)

b(15:0)

q(15:0)

d(15:0)

clk

q(15:0)

a(15:0)

b(15:0)

sel

q(15:0)

d(15:0)

clk

q(15:0)

d(15:0)

clk

q(15:0)

d(15:0)

clk

q(15:0)

PRI_IN_1(15:0)

PRI_IN_2(15:0)

PRI_IN_0(15:0)

CLK

C_MUX2_5_SEL

C_MUX2_1_SEL

C_MUX2_4_SEL

PRI_IN_3(15:0)

C_MUX2_3_SEL

PRI_IN_4(15:0)

C_MUX2_2_SEL

PRI_OUT_1(15:0)

PRI_OUT_0(15:0)

PRI_OUT_3(15:0)

PRI_OUT_4(15:0)

PRI_OUT_2(15:0)

Circuit: <e01>
Fault coverage: 90,45%

Circuit: <e04>
Fault coverage: 0,00%

� Circuits e01-e04
• 5 primary inputs and 5 primary
outputs (16bits)

• 5xADD(16bit), 5xSUB(16),
5xMUX2(16) and 10xREG(16)

56

Validation of proposed method (1)

The 33% controllability and 33% observability required

57

Validation of proposed method (2)

Commercial ATPG vs ADFT (the testability analysis method used by EA)

58

Evolution of benchmarks: Summary

� Due to the low time complexity of the utilized testability
analysis method, the proposed method allows the design
of relatively complex circuits (millions of gates) with the
required testability and complexity.

� The evolved benchmarks currently represent the most
complex benchmark circuits with a known level of
testability.

� Using the benchmarks it is possible to reveal problems
that are hidden for classical benchmark circuits.

59

Case Studies: Summary

� How was the scalability problem eliminated in our case studies?
� Logic synthesis

• representation – gate-level, standard CGP
• genetic operators – standard CGP
• fitness function – SAT solver, seeding by a conventional solution

� Image filters
• representation – functional-level, standard CGP
• genetic operators – standard CGP
• fitness function – training image

� Benchmark circuits
• representation – functional-level, but only interconnections evolved
• genetic operators – mutation of interconnections
• fitness function – testability analysis estimated in polynomial time

� EA parameters – a suitable setting improves the convergence (see
corresponding articles for details)

60

Evolution in FPGAs

Authors Application Platform EA Fitness

Thompson et al. (1999) Tone discriminator XC6216 PC PC
Huelsbergen et al. (1999) Oscillators XC6216 PC PC
Zhang et al. (2004) Image filters VRC PC PC
Gordon (2005) Arithmetic circuits Virtex CLB PC PC
Gwaltney and Gutton (2005) IIR filters VRC DSP DSP

Tufte and Haddow (2000) FIR filters Register values HW HW
Martinek and Sekanina (2005) Image filters VRC HW HW
Vasicek and Sekanina (2007) Image filters VRC PowerPC HW
Sekanina and Friedl (2004) Logic circuits VRC HW HW
Vasicek and Sekanina (2008) CGP accelerator VRC PowerPC HW
Salomon et al. (2006) Hash functions VRC HW HW
Glette (2008) Face recognition VRC MicroBlaze HW
Glette et al. (2007) Sonar spectrum class. VRC PowerPC HW
Upegui and Sanchez (2006) Cellular automaton Virtex CLB MicroBlaze HW
Vasicek et al. (2008) Const. Multipliers VRC HW HW
Cancare et al. (2010) Logic circuits Virtex 4 logic PowerPC HW
Salvador et al. (2011) Image filters Virtex 5 logic MicroBlaze HW

External Reconfiguration

Internal reconfiguration

Cited from [Sekanina 2011]

61

CGP accelerator in the Xilinx Virtex II Pro FPGA
[Vašíček, Sekanina: IJICA 1(1), 2007 and CAI 29(6) 2010]

62

� VRC is a new MUX-based reconfigurable layer on the top of the FPGA.
� Fast pipelined reconfiguration and processing.
� Configuration register contains 384 bits for the 8x4 processing
elements.

Virtual Reconfigurable Circuit

63

FPGA Accelerator: Results

Results of synthesis for Virtex II Pro 2VP50FF1517
Nc is the number of VRCs

� Target platform: Combo6X
� CGP

• 4 x 8 nodes
• training image: 128x128
• population size: 8

� Results (FPGA at 100 Hz)
• 1 VRC: 44 times faster than a
Celeron 2.4GHz CPU

• evaluates approx. 6k
candidate filters per second

• requires approx. 10 sec to
produce a filter (~30k
generations)

• 4 VRCs: The speedup is 170.

64

FPGA accelerator with dynamic partial reconfiguration
[Salvador et al., AHS 2011]

� Reconfigurable systolic array
• Dynamic partial reconfiguration
at level of processing elements
(PE) for image filter evolution.

• Library of pre-synthesized PEs
(40 CLBs/PE)

• interconnection is pre-
synthesized

� EA used to assign functions to
PEs
• array 6x6 PEs
• 16 functions/PE
• chromosome ~ 144 bits

� Virtex-5 LX110T FPGA
� PE’s reconfiguration time using
ICAP (250 MHz): 12 us Centre of Industrial Electronics

Universidad Politecnica de Madrid

65

Conclusions:
Promises of evolutionary circuit design

�CGP and its extensions seem to be very suitable
for circuit evolution.

�“Innovative” solutions can be produced.
• improving area/delay/power consumption/testability…
• Many similar solutions can be obtained.

�Promising applications
• Problems where it is difficult to formulate a perfect
specification and a partially working solution is
acceptable (e.g. filtering, classification, prediction,
robot controlling)
• Hard combinatorial/combinational problems (e.g. in
logic synthesis)

66

Conclusions:
Problems of evolutionary circuit design

� Runtime.
� (Almost) nothing is guaranteed.
� Some tricks are needed to solve the scalability problems.
� It is not easy to find a new problem where EC could
successfully be applied and “beat” conventional methods.

� Sometimes considered as crazy method by “conventional
designers”.

67

References
� Drechsler, R.: Evolutionary Algorithms for VLSI CAD. Kluwer Academic Publishers, Boston 1998
� Harding S. L., Miller J. F., Rietman E. A.: Evolution in Materio: Exploiting the Physics of Materials

for Computation. International Journal of Unconventional Computing, 4(2), 2008, 155-194
� Higuchi, T. et al.: Evolving Hardware with Genetic Learning: A First Step Towards Building a

Darwin Machine. In: SAB'92: Proc. of the 2nd International Conference on Simulated Adaptive
Behaviour, MIT Press, Cambridge MA 1993, p. 417-424

� Higuchi, T. et al.: Real-world applications of analog and digital evolvable hardware. IEEE Trans.
on Evolutionary Computation. 3(3), 1999, 220-235

� Gajda Z., Sekanina L.: An efficient selection strategy for digital circuit evolution. In Evolvable
Systems: From Biology to Hardware, LNCS 6274. Springer Verlag, 2010, p. 13–24

� Greenwood, G., Tyrrell, A.: Introduction to Evolvable Hardware. A Practical Guide for Designing
Self-Adaptive Systems. IEEE Press Series on Computational Intelligence, 2006

� Higuchi, T., Liu, Y., Yao, X.: Evolvable Hardware. Springer Verlag, 2006
� Koza, J. R. et al.: Genetic Programming III: Darwinian Invention and Problem Solving, Morgan

Kaufmann Publishers, San Francisco CA 1999
� Koza, J. R. et al.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence,

Kluwer Academic Publishers, 2003
� Miller J., Thomson P.: Cartesian Genetic Programming. In: Proc. of the 3rd European Conference

on Genetic Programming EuroGP2000. LNCS 1802, Springer, 2000, p. 121–132
� Miller, J., Job, D., Vassilev, V.: Principles in the evolutionary design of digital circuits - Part I.

Genetic Programming and Evolvable Machines. 1 (1), 2000, 8-35
� Novak, O. et al.: Handbook of Electronic Testing. ČVUT Publisher, 2005
� Pecenka, T., Sekanina, L., Kotasek, Z.: Evolution of synthetic rtl benchmark circuits with

predefined testability. ACM Trans. on Design Automation of Electronic Systems 13(3), 2008, 1–21

68

References
� Salvador R. et al.: Evolvable 2D computing matrix model for intrinsic evolution in commercial

FPGAs with native reconfiguration support. In Proc. of NASA/ESA conf. on Adaptive Hardware
and Systems. IEEE, 2011, in press

� Sekanina, L.: Image filter design with evolvable hardware. In: Applications of Evolutionary
Computing. LNCS 2279, Springer Verlag, 2002, p. 255–266

� Sekanina, L.: Evolvable Components: From Theory to Hardware Implementations. Natural
Computing Series, Springer Verlag Berlin 2004

� Sekanina L.: Evolvable Hardware. In Handbook of Natural Computing (Rozenberg G, Bäck T.,
Kok, J. N., Eds.) Springer Verlag, 2011 – in press

� Thompson, A., Layzell, P., Zebulum, R. S.: Explorations in design space: unconventional
electronics design through artificial evolution. IEEE Trans. on Evolutionary Computation. 3(3),
1999, 167-196

� Vasicek, Z., Sekanina, L.: An evolvable hardware system in Xilinx Virtex II Pro FPGA.
International Journal of Innovative Computing and Applications 1(1), 2007, 63–73

� Vasicek, Z., Sekanina, L.: An area-efficient alternative to adaptive median filtering in FPGAs. In:
Proc. of 2007 Conf. on Field Programmable Logic and Applications, IEEE Computer Society,
2007, p. 216–221

� Vasicek Z., Sekanina L.: Hardware Accelerator of Cartesian Genetic Programming with Multiple
Fitness Units. Computing and Informatics, 29(6), 2010, 1359-1371

� Vasicek Z., Sekanina L.: Formal verification of candidate solutions for post-synthesis
evolutionary optimization in evolvable hardware. Genetic Programming and Evolvable Machines.
Vol. 12, 2011 – in press

� Vasicek Z., Sekanina L.: A global postsynthesis optimization method for combinational circuits.
In Proc. of the Design, Automation and Test in Europe, EDAA, 2011, p. 1525–1528

� Vassilev V., Job D., Miller J. F.: Towards the Automatic Design of More Efficient Digital Circuits.
In Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, IEEE Computer Society,
2000, p. 151–160

� Wakerly J. F.: Digital Design: principles and practices (3d edition), Prentice Hall, New Jersey,
USA, 2000

