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1. INTRODUCTION
With constantly increasing network speeds, the volume of

flow data exported from measuring points is also increas-
ing rapidly. Even a collecting and storing this data into
a database causes a heavy load on a collector which may
become overloaded and unable to perform advanced data
analysis such as anomaly detection.

The straight-forward approach is to use sampling but while
sampled data may be sufficient for basic network manage-
ment, it is not advisable to use it for anomaly detection [1].

We propose a system in which statistic values needed for
anomaly detection are precomputed in exporters (using un-
sampled data) and sent to collector together with sampled
flow data. We propose to precompute an entropy of vari-
ous packet features as it is popular and common metric in
modern anomaly detection algorithms [2, 3, 4].

Our previous experiments with method by Lakhina et
al. [2] show that it is very useful to compute entropy of not
only source and destination addresses and ports, but also of
other features and mainly their combinations (e.g., entropy
of unique combinations of destination address and number of
packets in flow). According to our experience more than ten
features and their combinations might be needed. This im-
plies more computational and memory requirements which
renders effective hardware precomputation useful.

2. DESIGN
To compute an entropy of some packet header field (di-

mension) in some time interval, we must first count number
of occurrences of all values which appeared in the interval,
i.e., to create a histogram.

One of the problems that needs to be solved is how to
store such histograms. Simple array of integers can be used
for dimensions with only few possible values (e.g., protocol
field). For other dimensions, we need extremely large arrays
(e.g., 232 items for IPv4 addresses) although most of its fields

Figure 1: Hash function used to reduce the size of
histogram.

are empty. Another approach is to use associative array but
it is slower and more complex, especially in hardware.

We propose to use a hash function to convert values to
lower data width and use small array as histogram of such
thinner values (see Figure 1).During such conversion a col-
lision may occur. Our previous research shows that if suf-
ficient width of hash function output is used the impact
on resulting entropy is negligible. The number of hash-bits
needed depends on network characteristic and precision re-
quired. For example, for data from our university network,
hashing IP addresses to 14 bits suffices for good precision.
This implies an array of 16384 integers for histogram.

Once we have a histogram of data sample X, hist(X) =
{n1, n2, ..., nN}, where N is number of distinct values of X
and ni is number of occurrences of value xi, the entropy
H(X) is computed as

H(X) = − 1

N

NX
i=1

ni(log ni − log N)

which is an equivalent formula to the well known one but
more suitable for hardware computation. In this form there
is only one division outside of the sum. To avoid imple-
mentation of the division in hardware it is better to send
entropies as pairs N ·H(X) and N and finalize the compu-
tation in software.

Approximation of logarithm can be implemented using
table of precomputed values and linear interpolation. For
example, if we want 3 decimal digits precision and maximal
input value will be 220, we need a table with 11264 11-bit
values (121 Kbit ROM).

A suitable platform for implementation of this system is
FlowMon [5] – a hardware probe based on COMBOv2 card
with powerful FPGA chip. Its purpose is to monitor network
traffic and export flow records but since it is based on FPGA,
it can be easily extended to perform entropy precomputation
as well.



Figure 2: Extension of FlowMon probe with module
for entropy computation.

3. ARCHITECTURE
An architecture of the proposed system is depicted in Fig-

ure 2.Firmware of FlowMon probe generates flow records
which can be sampled and then exported in NetFlow or IP-
FIX format to a collector. But all flow records go also to an
entropy unit.

In the entropy unit, relevant fields are extracted and com-
bination of fields are formed. Resulting vectors are sent
to units implementing a hash function which convert them
to lower data width. Results are then used as addresses
to memories (histograms) where addressed fields are incre-
mented by one.

After a predefined interval, histogram values are regularly
sent to the entropy unit. Once the entropy is computed for
all dimensions it is sent to the exporter which adds it to the
flow records transferred to a collector.

Please note that collecting and erasing values from his-
tograms may take some time but it may run concurrently
with the accounting of new values in the histograms. This
may cause a small bias in obtained histogram but that is
negligible. The time interval during which the histogram
is built is usually one or more minutes while interval for
collecting these values is under 10 ms.

4. EVALUATION
For each measured dimension, we must first determine op-

timal width of hash function output. It is a trade-off between
memory requirements and precision – each bit doubles the
size of corresponding histogram but too few bits cause large
error. On Figure 3, there is an example of entropy values for
different hash widths for selected dimensions. The leftmost
values are real entropy computed without hash functions.

Decrease of absolute values of entropies by few percents is
not a problem because relative changes in entropy caused by
anomalies still remains significant. Most dimensions start to
decrease quickly at 15 bits therefore we select this value as
a good choice for these dimensions. For source address only
13 bits are sufficient.

As an example, let us suppose that 10 dimensions (fea-
tures and their combinations) are measured. The network
traffic exhibits such characteristics, that five of these dimen-
sions can be hashed into 15 bits, three need 14 bits and two
suffice with 13 bits. Let maximal number of flows in the
time interval is 220. Size of memory required to store his-
tograms in this case is 4.375 Mbit (5 · 215 + 3 · 214 + 2 · 213

Figure 3: Example of entropy values for different
width of hash function output.

20-bit integers). Together with table of precomputed values
of logarithm, total memory requirements are 4.5 Mbit which
fits into moderately sized Virtex 5 FPGA with total Block-
RAM capacity 6912 Kbit (155LX). According to preliminary
results of our implementation, the hash functions (Jenkins
hash is used), entropy computation unit and control logic
requires approximately 3500 LUT Flip flop pairs of Virtex5
FPGA.

5. CONCLUSION AND FUTURE WORK
Proposed architecture allows to use flow sampling to re-

duce collector load, while entropy for anomaly detection is
computed from unsampled data. Even for high-speed net-
works, the amount of required memory and precision of re-
sults are acceptable.

Memory requirements of histograms can be further re-
duced by technique called counter braids [6] which can com-
press arrays of counters significantly. This will be subject of
our future research.
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