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Abstract The on-line human action detection is an im-
portant task in human-machine interaction and related ap-
plications. One of the possible approaches to the detection
is exploitation of space-time interest points. Such points
are typically identified using feature extractor and then they
are processed and classified. The classification can be per-
formed using codebooks built based on feature vectors statis-
tics. The individual feature vectors are transformed into
bag of words representation using such codebooks and then
the code words are classified using SVM. The proposed ap-
proach improves the training process and extends the known
approaches. The training part of the dataset is split into
shorter shots with equal duration and these are annotated
and classified using a SVM classifier. This ensures that
the time-local motion is captured by the SVM while the
longer time behavior is left on further processing mecha-
nisms, such as, e.g. HMMs. In the proposed approach, the
output of the SVM classifier is simply compared to a thresh-
old and the presence of a value above the threshold indicates
that the desired human activity occurred. The contribution
describes the approach summarizes the achieved results and
draws conclusions.

1 Introduction

Human behavior detection is one of the most wanted
functionality in the surveillance systems; the detection
of unusual behavior has a potential to increase secu-
rity of monitored public places similarly to the object
detection.

Object detection can helping in handling poten-
tially dangerous situations, such as, left baggage (may

contain some harmful objects), animals (in places, where

they are not allowed to occur), etc. Human behavior
detection can avoid problems in places, where some
activities are prohibited, for example, smoking, using
a cellphone, etc.

On the other side, human behavior detection may
help in other situations, such as interactive distributed
discussions or teleconferences, where the bigger amount
of participants obviously want to say something, try
to take the word, etc. While attempting these actions,
all of them are performing some gestures which can
be detected and successfully used for teleconference
system.

The human behavior detection may be achieved
using the space-time interest points processing. Sig-
nificant amount of related work for space-time inter-
est point detectors and their processing was published
[1], [6], [5]. These approaches are presented below and
all share one main disadvantage; the algorithms are
working offline and the detectors are not able to pro-
cess the long video streams. Typically, the space-time
feature vectors are extracted as follows:

— the whole video sequence is stored in the memory,

— the video "cube” is analyzed and interest points
are established,

— the feature vector is created for each interest point.

Growing the resolution of the video to be procesed re-
quires increase of the memory which needs to be used,
the amount of the memory is increased to the order of
units of gigabytes; this of cource is not feasible.

The whole system contains the feature extractor,
feature vectors processing unit and the output clas-
sifiers. The whole procedure needs to be converted
into the on-line version. Globally, the most problem-
atic part is the feature extractor; without its online
version, the online action detection system cannot be
built.

This paper presents the approach for converting
the offline processing to online system, which can be
applied to various types of feature extractors. Another
issue is the ability to process the input video frames
in real-time (in this case, we need to speed-up the
online algorithm to run in wanted environment, CPU
type, memory size etc.). The next part of the work is
the presentation of the on-line detection system. This
system yields many input parameters which need to
be set and which affect the quality of the detection
process.

This paper is organised as follows: In Chapter 2,
the space-time interest points extractors and follow-
ing description processes are presented; the structure
of the on-line system is presented. Chapter 3 presents
the algorithm for feature extractor adaptation to work
in on-line mode, Chapter 4 presents the settable pa-
rameters of all components of the online system and



discusses the possibilities of its setting and evalua-
tion. Chapter 5 describes the dataset used for cre-
ation of classifiers, the definition of human actions and
describes all experiments and their results. Finally,
Chapter 6 concludes the paper with the discussion.

2 Interest points extractors and
processing

This Chapter introduces the possibilities of space-time
interest points detection, description process, and the
whole proposed on-line system with all its compo-
nents.
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Figure 1. space-time interest points visualization

In Figure 1 shows the scheme of the principle of
space-time feature extraction. The video stream is pro-
cessed frame by frame and the local extrema are lo-
cated according to two domains; the spatial domain is
represented by the width and height of the single video
frame; the temporal domain is represented by time do-
main which is digitalized using the video frame rate.
When these local extrema are determined, the local
neighborhood of the extrema is used for computing
of the extrema local descriptor. These descriptors are
computed from all detected extrema and the feature
extraction process returns the list of extrema positions
and its descriptors.

2.1 Space-time interest points detection

Laptev and Lindeberg proposed [1] the Harris3D space-
time interest points detector; it is extension of the Har-
ris detector [8]. The spatio-temporal second-moment
matrix is computed at each video point

w(50,7) = g(+;80,87) % (VL(-; 0,7)(VL(- 0,7))T)
(1)
using independent spatial and temporal scale values
o, T, a separable Gaussian smoothing function g and

space-time gradients VL. The final locations of space-
time interest points are given by local maxima of the
following function:

H = det(p) — k trace®(u), H < 0,k ~ 0.005  (2)

Another approach is proposed by Dollr et al. [6], it
is called Cuboids detector and it is based on a spatial
Gaussian smoothing filters and temporal Gabor filters.
The response function has the form:

R=(I%g%he)?+ (I%g%*heg)? (3)
where g(z,y;t) is the 2D spatial Gaussian smooth-
ing kernel, and h., and h,q are a quadrature pair
of 1D Gabor filters, which are applied only tempo-
rally. The Gabor filters are defined by he, (t;7,w) =
— cos(2mtw)e™t /7" and hoq(t; T, w) = — sin(2rtw)e /7
with w = 4/7. The two parameters o and 7 of the re-
sponse function R corresponds approximately to the
temporal and spatial scale of the detector. The in-
terest points are defined as the local maxima of the
response function R.

The Hessian detector was proposed by Willems et
al. [5] as a spatio-temporal extension of the Hessian
saliency measure for blob detection in images. The
detector measures the saliency with the determinant
of the 3D Hessian matrix. The position and scale of
the interest points are simultaneously localized with-
out any iterative procedure. In order to speed up the
detector, the approximative box-filter operations on
an integral video structure may be used. Each octave is
divided into 5 scales, with a ratio between subsequent
scales in the range 1.2 — 1.5 for the inner 3 classes.
The determinant of the Hessian is computed over sev-
eral octaves of both the spatial and temporal scales.
Finally, a non-maximum suppression algorithm selects
joint extrema over space, time and both scales.

Dense sampling may be used for defining the space-
time interest points. The whole spatio-temporal space
is covered by uniform 3D grid which defines the points
which will be used for description; instead of evalua-
tion of some response function. The space-time inter-
est points may be generally extracted with different
settings for spatial and temporal scales and spatial
and temporal grid parameters; they may be individu-
ally adjusted according to the processed situation.

2.2 Space-time interest points description

The HOG/HOF descriptors were introduced by Laptev
et al. [1]. Local motion an dapperance is characterized
using histograms of spatial gradient and optic flow ac-
cumulated in space-time neighborhoods of detected in-
terest points. For the combination of HOG/HOF de-
scriptors with interest point detectors, the descriptor



size is defined by A, (o) = Ay(0) = 180, A(T) = 8.
Each volume is divided into a n, x n, x n; grid of cells;
for each cell, 4-bin histogram of gradient orientations
(HOG) and 5-bin histogram of optic flow (HOF') are
computed. Histograms are further normalized; parts
can be used separately or as a combined feature vec-
tor.

The HOGS8D descriptor was proposed by Klaser et
al. [2]. It is based on histograms of 3D gradient orien-
tations and can be seen as an extension of the popular
SIFT descriptor [3] to video sequences. The gradients
are computed using an integral video representation.
Regular polyhedrons are used to uniformly quantize
the orientation of spatio-temporal gradients. There-
fore, the descriptor, combines shape and motion infor-
mation at the same time. A given 3D patch is divided
into ng X my x ny cells. The corresponding descriptor
concatenates gradient histograms of all the cells and
is then normalized.

ESURF (extended SURF) which extends the im-
age SURF descriptor [4] proposed by Willems et al.
[5]. Simillary to previous desctiptor, the 3D patches
are divided into n, x ny X n; cells. The size of the 3D
patch is given by A,(0) = Ay(o) = 30, A(7) = 37.
For the feature descriptor, each cell is represented by
a vector of weighted sums v = (D dg, > dy, > di)
of uniformly sampled responses of the Haar-wavelets
dy,dy,d; along the three axes.

The Cuboid descriptor was introduced by Dollar
et al. [6]. At each interest point, position of the small
cube is extracted and called cuboid. On such cuboids,
the transformations are applied: (1) pixel values nor-
malisation, (2) brightness gradient, and (3) windowed
optical flow. The brightness gradient is calculated at
each spatio-temporal location (z,y,t), giving rise to
three channels (G, Gy, G¢) each the same size as the
cuboid. Lucas-Kanade optical flow [7] can be extracted
to obtain motion information; it is calculated between
each pair of consecutive frames creating two channels
(Vz,Vy). Each channel is the same size as the cuboid
minus one frame.

The resulting feature vector can be created using
the results of one of the methods presented above or
their combination. The simplest method involves flat-
tening of the cuboid to the vector; however, the result-
ing vector is potentially sensitive to small cuboid per-
turbations. An alternative method involves histogram-
ming the values in the cuboid. Such a representation
is robust to perturbations but also discards all posi-
tional information (spatial and temporal). Thus the
cuboid is divided into a number of regions and a local
histogram is created for each region. The goal is to im-
prove robustness to small perturbations while retain-
ing some positional information. The possible output
feature vector is then the joined local histograms of

optical flow or the joined local histogram of gradient
extracted into a cuboid. The descriptor quality may
be increased when both of these representations are
joined together and produce the longer local feature
vector.

2.3 Interest points processing pipeline

The input video stream is processed as follows (see
Figure 2); the space-time interest points are extracted
from the individual frames of input video and are stored
to the queue in the memory. The length of the queue
is constant and is defined by the length of the video
sub-shot which is used for classification of the activity
in the input video.
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Figure 2. On-line processing system schema

When the queue is filled, its content is used to cre-
ate the bag-of-words [11] representation (feature vec-
tor with constant size) which characterizes the current
video sub-shot in the new feature space.

The main component needed for creatinon of such
vectors is the codebook. It is created from the training
part of the dataset (see Chapter 5) using the cluster-
ing algorithm. Subset of the local feature vectors is
selected and used for the modelling such local feature
space and clustering algorithm creates the finite num-
ber of representatives of local feature space.

As mentioned above, the codebook is used for trans-
lation of local features of the current video sub-shot
into constant size feature vector representation; the di-
mensionality of resulting bag-of-words representation
equals to the codebook size. The output feature vec-
tors are classified using the series of classifiers (one
classifier for every distinguished class) whose response
is thresholded to achieve the decision whether the ac-
tivity in the video is presented or not.

The bag-of-words creation and classification do not
have to be specifically converted into the on-line ver-
sion unlike the feature extractors. Their purpose is
generally to do the conversion of finite set of input
data (associated to currently processed shot) into out-
put data. For bag-of-words descriptor creation, the in-
put low level feature vectors are converted to the out-
put descriptor using codebook, while in classification
task, the input feature vector is converted into the
classifiers response. None of these procedures is too



computationally time-consuming task in comparison
to the extraction of the space-time features.
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Figure 3. Offline feature extractor schema

3 On-line adaptation

The two main components of the space-time interest
points extractor are the detection of the interest points
and the output descriptors creation function that must
be performed for all such points.

In the offline processing (see Figure 3), the whole
input video cube is presented in memory (usually an-
other same-sized cube with the response function is
created in the memory and the response cube is pro-
cessed with the algorithm to obtain the list of interest
points). The list is sequentially processed to obtain the
output descriptors; the input data for that procedure
is usually obtained from the input video cube.

The on-line processing adaptation is depicted in
Figure 4. The main approach is to extend the extrac-
tor using two queues, the input video queue and the
partial response queue. The Input video queue is filled
by input video frames and the partial response queue
is used for storing the partial results of the response
function. The interest points detection is running on
the partially collected results of response function and
the points list is established. The points description
process is then executed similarly to the offline mode;
the difference from the offline processinh is that the
input data is read from the input image queue and
the sufficient number of frames has to be present in
that queue.

The whole process is constrained and every sub-
component needs some amount of results of preceding
operations to produce its results. The size of both of
the queues must fulfill the following equation: s, >
maz(ly,lep, lac), where [, — the minimum number of
frames needed for the response function evaluation for
one frame; lcp, — the minimum number of frames for
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Figure 4. On-line feature extractor schema

which the response function must be evaluated in or-
der to get all the interest points for the current frame;
lge — number of frames needed for descriptor creation.

The above presented procedure can be summarized
in following way:

Preparation steps:

1. Create the queue of input images with minimum
length s,.

2. Create the queue for response function with min-
imum length s,.

3. Re-implement all functions affected by added queues.

4. Fill in the input queue with the video frames.

Processing steps:

1. Execute the response function for all computable
frames and insert the results to the response func-
tion queue.

2. If the response function queue is filled enough:

3. (a) Analyze the response function queue and es-
tablish the space-time interest points for the
computable frame;

(b) execute the description process for all interest
points detected , in the step above and produce
the feature vectors.

4. Add the new frame into the queue and go to step 1;
perform the procedure for all frames in input video.

4 Parameters selection

The whole system presented in Chapter 2.3 contains
number of procedures which have many parameters
which have to be adjusted. The main resource for ob-
taining these parameters is the annotated dataset of
actions.

The dataset is usually organised as a set of videos
with annotations describing occurence of specific ac-
tions, and has two main parts: training part and test-



ing part. Training part is used for adjustment of com-
ponents, such as codebook and classifiers, and the test-
ing dataset is used to assess the quality of the whole
processing.

The input parameters of all the components can
be searched in many ways, the simplest one being the
brute-force technique which we used. The set of all the
possibilities is identified and all of them are computed
and evaluated; the best ”setup” is selected as a final
solution.

The main parameters that needs to be adjusted in
the proposed on-line system are:

— Feature extractor parameters,

— the classified shot duration,

— size of the codebook used for bag-of-words pro-
cessing,

— resolution of the input video,

— the classifier creation general parameters.

The classifier creation parameters are dependent on
the type of the classifier used and may be optimized
while the training process is in progress. For exam-
ple, the cross-validation and bootstrapping approaches
may be used.

Cross-validation uses splitting of input data to di-
vide the input data into exact number of subparts.
Usually, the bigger amount of subparts is used for
training and the rest is used for testing. In such setup,
all possibilities of training parameters are tried and

of the acquired video shot the reduction of the reso-
lution shurely decreases the output system quality. In
the case when the detected action is performed on the
whole video frame, the reduction of the resolution may
decrease the quality minimally or the accuracy may be
even increased. The reduction of the video resolution
has the main advantage, namely, the processing speed
is increased.

The shot duration parameter has to be set accord-
ing to the constitution of the actions detected in the
video. It can be expected that longer actions need
longer video sub-shot to be processed but the longer
delay the final classifier decision on the sub-shot.

Feature extractor parameters are dependent on the
type of the extractor. When dense sampling is used in
such extractor, its basic parameters are the space and
temporal step that control the creation of the spatio-
temporal grid and also control the number of points
in such grid.

Creation of the codebook component and all clas-
sifiers has to be performed using a framework, which is
able to automate the process. This procedure is called
learning phase and its purpose is creation of the code-
book and the classifiers components.

Learning phase extracts all feature vectors from all
videos in the training and testing dataset. Using the
training part, the codebook is created and all local low
level features are translated to bag-of-words represen-
tation. The training bag-of-words vectors are used for
creation of the output classifiers while the testing ones

evaluated. Thhen the splitting of the subparts is changed are used for accuracy checking. The whole process has

and the whole process is repeated several times; finally,
the algorithm selects the best solution.

Bootstrapping approach is based on selecting train-
ing subparts the same way as described above, the
training is performed on specific subpart and the test-
ing is performed on the second one. When the training
is evaluated, the miss-classified part of the testing sub-
part is removed from the testing subpart and added
to the training one. Training is then repeated and the
testing subpart is updated again in the similar way.
After several iterations, the process generates the clas-
sifier model.

The methods mentioned above may improve the
classifier creation process such so that we can see the
classifier creation process as a black box where only the
input feature vectors with annotations are known and
the process creates the best model automatically. The
model is then used for evaluation using the testing part
of dataset. This improvement can be used for classifier
creation part of the system and yields the reduction
of the systems’ parameters space.

The input video resolution parameter has to be set
according to the constitution of the video data used.
If the detected action is performed in the small area

to be repeated for each input parameters settings.

5 Experiments and results

The proposed approach was used to study the human
behavior during the place-distributed video conference
where the particular groups of participants are con-
nected using the internet connection. All groups have
the television and a set of cameras in the room and the
conference controlling system needs to do the cutting
of the incoming video streams acquired using all cam-
eras and produces the output video which is showed on
the televisions. The detection of such human actions
may significantly improve the cutting process.

The detected actions were waving and clapping
performed by the persons in the video. For creation of
such on-line detection system, we have created dataset
with the following properties: 15 videos, 9 performing
persons, each video contains the block where the wav-
ing is performed, the block where the clapping is per-
formed, and also the block where the other activities
are performed. All of these videos are annotated and
the resolution of the videos is cropped to 380x426 pix-



els; the unused regions of the video (in which nothing
is happening) were removed. Table 1. The accuracy of the system (average precision

As the offline testing framework, our solution [9] measure) as a dependency to the input parameters.
has been used with some amount of modifications.

In all of our experiments, the dense sampling feature Shot Res DS DT C(Bsize WAVING CLAPPING

extractor was used; the interest points description is

done using the cuboids descriptors based on local his- RS S 4501926 822? 8§§Z
tograms of brightness gradients (see subchapter 2.2). 6100 0.655 0.591
The linear SVM classifier [10] was used apd the classi- 0 S 5 5 12 0.679 0.546
fier parameters were set automatically using the cross- 4096 0.795 0.577
validation approach; thus, the main processing param- 6100 0.717 0.648
eters which are left and need to be adjusted are: 0 R 10 5 512 0.619 0.705
— The processed size of the video sub-shot, 3000 0.632 0.614

. 4096 0.659 0.614

— the dense sampling parameters of the feature ex- 5000 0.610 0.614
tractor, , 6100 0.618 0.591

— the codebook size, . 40 S 10 5 512 0.491 0.679
— the resolution of the input video. 3000 0.502 0.653
The parameter space of the system is very large and it 4096 0.528 0.620
. 5000 0.501 0.674

presents full evaluation of all parameters. For exam- 6100 0.540 0.666
ination of the system properties, some subset of the — ——
parameters space needed to be selected. 2 Ro7T 512 0.559 0.669
The metrics for evaluation of system quality were 3000 0.548 0.646

.. Ly 4096 0.568 0.629

used the average precision which is defined as the area 5000 0.531 0.616
under the precision-recall curve [12]. The system qual- 6100 0.558 0.608
ity denotes the frequency of miss-predicted samples. 2 S 7 7 512 0.455 0.323
The subspace of parameters space has been searched. 3000 0.468 0.405
The results achieved are presented in Table 1; The 4096 0.550 0.456
Shot column depicts the length of classified shot (in 5000 0.511 0.461
frames). Res column depicts the input resolution pa- 6100 0.533 0.456
rameter, R means the regular (full) size, S means the 49 R 7 7 512 0.591 0.649
shrunk size. DS and DT column specifies the dense 3000 0.509 0.545
sampling parameters for the spatial domain (DS) and 4096 0.548 0.595
the temporal domain (DT). CBsize column specifies 5000 0.559 0.635
the length of the codebook used and WAVING and 6100 0.547 0.603
the CLAPPING columns specify the average precision 49 S 7 7 512 0.484 0.354
of the resulting classifier using specified creation pa- 3000 0.552 0.403
rameters. 4096 0.580 0.384
Table 1 shows all the possible combinations of the 5000 0.512 0.433
input parameters which were tried in our experiments. 6100 0.591 0.439
The boundaries of the shot duration parameter was 5% R 5 5 512 0.637 0.612
specified to the interval from 40 to 60. The main goal 4096 0.583 0.615
is to set this parameter to the minimum possible value. 6100 0.698 0.663
The numbers above this interval can be used and pos- 5 S 5 5 512 0.684 0.598
sibly can gain the system accuracy, but the extension 4096 0.714 0.654
6100 0.591 0.489

of this parameter causes the extension of the detection
delay; in the environment, where the resulting system 60 R 5 5 512 0.640 0.644
will be used, is this extension infeasible. 4096 0.705 0.601

The resolution of the input video parameter was 6100 0.706 0.551

set to two sizes: The regular resolution (the original 60 S 5 5 512 0.680 0.606
resolution) and the shrunk one (the resolution is re- 4096 0.74 0.62

duced to one half in both ways). The interesting re- 6100 0.658 0.572
search can be done in this parameter evaluation, the
bigger amount of possibilities of this parameter should
be evaluated; The most interesting may be the survey



of the turning point, where the system accuracy dras-
tically decreases. This evaluation also depends on the
constitution of the videos in the training dataset and
on the size and the position of the object which actions
needed to be recognised.

The dense sampling parameters were set experi-
mentally and are closely related to the video resolution
parameter. For example, when the video resolution is
reduced to one half in both ways, it is the same as
the increasing of the extractor’s spatial sampling pa-
rameters two times, in both adjustments, the feature
extractor produces the same results. In Table 1 can be
seen , that the extension of the dense sampling param-
eters to numbers higher than 10 in spatial domain and
the numbers higher than 7 in temporal domain will be
probably causing significant decrease of systems accu-
racy.

The codebook size were selected experimentally,
similarly as in image categorisation task (where the
image features are used). The optimum codebook size
cannot be easily recommended; every experiment has
its own best codebook size and it cannot be said gen-
erally that some size is the best one. The experiments
suggest the need to try another codebook configura-
tions, such as 256 words and some number bigger than
6100 should be explored too.

In Table 1, the configurations in which the system
produces the best solution are marked with underline
for both classes (it is anticipated that only one code-
book will be used in the future). The last but not least
aspect for whole system is the processing speed. It
can be affected by dense sampling parameters and the
resolution of the video parameter. The increasing of
the dense sampling parameters causes that the smaller
number of the space-time interest points needed to be
described in the feature extractor. Analogous situa-
tion is in the input video resolution parameter. When
building analogous system and when some combina-
tion of the parameters needed to be selected, the best
solution is to execute some amount of experiments and
search the parameter space and then select the best
parameters combination according to the systems re-
quirements, such as the processing speed, the memory
size constraint and the output system accuracy.

6 Conclusion

This contribution presented a novel approach to on-
line space-time interest point processing intended for
human action detection. The approach has been suc-
cessfully designed, implemented, and evaluated from
the point of view both computational requirements
and latency caused by the number of video frames
needed for detection of the events.

The evaluation of the approach also included den-
sity of sampling, length of video sequence (number
of frames), resolution of frames parameter evaluation
with respect to its impact on gesture recognition per-
formance.

Future work includes further evaluation especially
of the latency issues in order to enable as quick as
possible ”on-line” reaction to the events in video.
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