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The notion of locality is fundamental for cellular automata. How-
ever, introducing a kind of global information to some or even
all the cells can significantly increase the effectiveness of com-
putation. We used a two-value discrete global signal which al-
lowed the cells to change the local transition function during
computation. On the basis of the signal we could generate new
patters in a simple 1D cellular automaton and accelerate self-
replication of Byl’s loop in a 2D cellular automaton (the speedup
obtained is 48%). In the case of 1D automaton we demonstrated
that the overhead introduced with the global control can be rel-
atively small if the implementation is performed using polymor-
phic gates controlled by the level of power supply voltage.
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1 INTRODUCTION

Cellular automata (CA) are spatially-distributed dynamical system models
consisting of many relatively simple computing elements (cells) [26, 4, 25,

? This is authors’ created manuscript of the paper: Sekanina Lukas, Komenda Tomas:
Global Control In Polymorphic Cellular Automata. Journal of Cellular Automata, Vol. 6,
No. 4-5, 2011, p. 301-321. For the final version, see Old City Publishing, Inc. at
http://www.oldcitypublishing.com/JCA/JCAcontents/JCAv6n4-5contents.html

† email: sekanina@fit.vutbr.cz
‡ email: KomendaTomas@seznam.cz

1



27]. All interactions among the cells are purely local. The cells usually
contain and exchange only a small amount of information. Despite of their
simplicity, cellular automata can exhibit emergent properties, including dy-
namical behaviors, that are not deducible from their elementary components.

The notion of locality is one of the most crucial concepts behind the idea
of cellular automata. One implication of this principle is that no one cell has
a global view of the entire system, i.e. there is no central controller [20].
However, introducing a kind of global information to some or even all the
cells can significantly increase the effectiveness of computation. For exam-
ple, Chandler has introduced a cellular automaton that chooses the function
to apply (by a particular cell) on the basis of the global state of the automaton.
Resulting cellular automata with global control proved quite useful in model-
ing interactions in which behavior depends on the behavior of neighbors and
on global information produced by some sort of aggregating mechanism [3].
The global control is also important when a cellular system has to be initial-
ized to a particular state or some results of computations have to be stored at
a given time point.

The implementation of a global control is not difficult when cellular au-
tomata are modeled in software because each cell is accessible in a constant
time. However, as physical fabrication of cellular automata-based hardware
truly utilizes the concept of locality (only neighboring cells are physically
connected) there is limited or no way how to access each particular cell from
boundary cells. Software implementations could be also slow in cases when
really large grids (such as a cellular machine with 1023 cells proposed in [5])
have to be simulated. Various cellular automata-based platforms have been
developed [25, 5, 9, 18, 19]. One of the approaches is to create an array of
simple locally connected electronic circuits – cells (see CellMatrix [5] and
Embryonics [9] platforms). The problem with the global control is that in
addition to routing of power supply voltage and synchronization signal (if the
cellular automaton is synchronous) to every cell, another global control sig-
nal has to be distributed on the chip. Having millions of cells, routing the
additional signals will be very area expensive. Hence an ideal implementa-
tion from the hardware point of view should not use any wires connected to
all the cells expect the power supply connections.

The first goal of this article is to show that there is another way how to
globally change the local function of the cells. The solution is based on
the implementation of local transition functions using polymorphic gates. A
polymorphic gate is capable of switching among two or more logic functions
as a response to some external factors, e.g. to the level of the power sup-
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ply voltage (Vdd), temperature or light [22, 23, 21, 30, 13]. If the transition
function is implemented as a digital circuit using polymorphic gates sensitive
to Vdd, all the cells can in parallel reconfigure their local transition functions
when Vdd is changed. Then, the global control can be achieved without the
need of special routing signals. This phenomenon will be demonstrated us-
ing a polymorphic chip REPOMO32 [16]. Another interesting property of
polymorphic gates is that they, in fact, act as sensors when controlled by tem-
perature or light. Cellular automaton containing such polymorphic gates can
be dynamically reconfigured as response to changing environments.

The second goal is to demonstrate that the global control can be utilized
to accelerate some computations typically conducted using cellular automata.
Particularly, we will show that the number of steps needed to self-replicate the
Byl’s loop [2] can significantly be reduced if the rule set is changed in pre-
computed time points. As self-replicating mechanisms are of great interest
for artificial life, programming massively parallel computers, nanocomputing,
computer viruses and other fields, the investigation of fast self-replicating
structures is important.

The paper is organized as follows. Section 2 introduces one- and two-
dimensional cellular automata and their basic modifications, including the
global control. Section 2.3 surveys the approaches developed to self-replication
in the framework of cellular automata. In Section 3, the concept of polymor-
phic circuits is described. Section 4 is devoted to the first case study: design
of a simple one-dimensional globally controlled cellular automaton which is
implemented by means of polymorphic gates controlled using Vdd. The sec-
ond case study – Byl’s loop and the acceleration of its self-replication using
the concept of global control – is described in Section 5. Discussion of ob-
tained results is presented in Section 6. Conclusions are given in Section 7.

2 CELLULAR AUTOMATA AND SELF-REPLICATION

2.1 Cellular Automata
A cellular automaton is a d-dimensional grid of finite automata (known as
cells) that operate according to their local transition functions. In a classic
scenario, the cells work synchronously – a new state of every cell is calcu-
lated from its previous state and the previous states of the cell’s ‘neighbors’ at
each time step. If all automata of the grid are identical (that is, the automata
operate according the same local transition function, rule) the automaton is
called uniform, otherwise it is non-uniform. By configuration of the cellu-
lar automaton we mean the states of all the cells at a given moment. The
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global behavior is captured in the global transition function, which defines
a transformation from one configuration to the next configuration of the cel-
lular automaton. The sequence of configurations, determined by the global
transition function, represents the computation of the cellular automaton.

In theory, the cellular automaton model supposes that the number of cells
is infinite. However, in the case of practical applications the number of cells is
finite. Then, it is necessary to define the boundary conditions, i.e. the setting
of the boundary cells. One of the states is also usually used as quiescent
or inactive state. A convention is that when a quiescent cell has an entirely
quiescent neighborhood, it will remain quiescent at the next time step.

A simple one-dimensional uniform cellular automaton, with only two states
and nearest neighbors neighborhood N = {-1, 0, 1} (only left and right neigh-
bor cells together with the cell itself are relevant for the local transition func-
tion), can exhibit very complex behavior [27]. Each such cellular automaton
is defined by a mapping {0, 1}N → {0, 1} uniquely. Hence there are 28 such
cellular automata, each of which is uniquely specified by the (transition) rule
i (0 ≤ i < 256).

In case of two-dimensional cellular automata, the neighborhood usually
comprises of five or nine cells (see Fig. 1). We usually include the central cell
into its own neighborhood. In the 5-neighbor model, the individual transition
rules would be in the form CTRBL→ C

′
where CTRBL specifies the states

of the Center, Top, Right, Bottom, and Left positions of the neighborhood’s
present state and C

′
represents the next state of the center cell.

FIGURE 1
Typical neighborhoods in 2D cellular automata: (a) von Neumann neighborhood; (b)

Moore neighborhood

Cellular automata have been applied in many scientific areas, especially
for the modeling of complex (biological, chemical, computational, etc.) phe-
nomena. Because the number of cells is typically very large, the cellular
automaton can model a massively parallel computational system where some
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useful computation can emerge only on the base of local interactions. The
properties of cellular automata have been investigated by means of analytic
as well as experimental methods [6, 19, 25, 27, 28]. In general, the objectives
are twofold: (i) to find a method for the design of cellular automaton rules
for a given application or (ii) to predict the global behavior of a given cellular
automaton if the rules and the initial configuration are known.

2.2 Modifications of the Basic Model
In order to obtain specific behaviors, the concept of cellular automata has
been modified in several ways, for example:

• Non-uniform cellular automata were introduced which do not employ
the same rule in each cell. Sipper has shown that it is easier to achieve
computational universality with non-uniform cellular automaton than
with the uniform one [19].

• In another modification – non-local cellular automaton – the concept
of locality is not satisfied [14]. Although the non-locality is not plau-
sible from the point of view of physics, dynamical systems with non-
local connections have potential applications to economic and biologi-
cal systems.

• Asynchronous cellular automata do not update the cells in identical time
points [1]. The asynchronous operation is typical for large cellular au-
tomata in which it is difficult to ensure precise synchronization for ev-
ery cell.

We will mainly be interested in cellular automata with a global control.
One of possible approaches to achieve it is to observe the global state of the
automaton and perform scheduled actions when a particular global state is
detected [3]. A possible strategy could be to observe the parity (or majority
or any relevant function) of the cellular automaton at a given point. If the
parity is, for example, even the rule is modified; otherwise the rule remains
unchanged. Another option is to modify the rule when a particular step of
the automaton is achieved. Finally, by combining mentioned strategies, rich
spatio-temporal interactions can be obtained.

2.3 Self-Replication
Self-replication represents one of key principles which is intensively studied
using cellular automata in the field of artificial life. The goal is to find such

5



rules for cellular automata which will be able to create a copy of a given con-
figuration only on the basis of local interactions. Performing self-replication
effectively is crucial for configuring and repairing some massively parallel
systems such as bio-inspired hardware [5, 9].

The first study on self-replicating machines was conducted by von Neu-
mann and Ulam who created a 29-state 5-neighbor cellular system with the
ability of universal construction/computation, replication of structures and
self-replication [26]. The automaton rules were designed in such a way that
they simulated a digital circuit working in the manner similar to Turing ma-
chine. However, because of the overall complexity of the model it was im-
possible to simulate it on a computer at that time.

Another significant contribution to self-replication was due Langton who
proposed self-reproducing loops (known as Langton loops or Q loops) [7].
Langton used 8-state 5-neigbor cellular automaton. Langton’s loop consists
of cells containing ‘genetic information’ (modelled using special states in
the cells), which flows continuously around the loop and out along an ‘arm’
which is forming the daughter loop. These relatively small structures (in com-
parison to von Neumann automaton) were not designed to be universal since
Langton postulated that the constructional universality of automata is not nec-
essary condition for self-reproduction. This idea was generally accepted and
the approaches to self-replication based on loops have dominated until now.
We will describe this concept in greater detail in Section 5 where we will deal
with Byl’s loop which is a smaller version of Langton’s self-replicating loop.
While Langton’s loop (consisting of 86 cells) replicates in 151 steps [7], Byl’s
loop (consisting of 13 cells) creates its own copy in 25 steps [2].

Table 1 surveys major work in the area of self-replication. In order to over-
come difficult and time consuming design process of self-replicating struc-
tures, Lohn and Reggia have used genetic algorithms to design these struc-
tures automatically [8].

So far, we have discussed self-replication in the logic sense. Attempts to
perform physical self-replication were also reported, see, for example, self-
replicating robots [31].

3 POLYMORPHIC CIRCUITS

Polymorphic electronics was introduced by A. Stoica’s group at NASA Jet
Propulsion Laboratory as a new class of electronic devices that exhibits a
new style of (re)configuration [22]. Polymorphic gates play the central role
in the polymorphic electronics. For example, Stoica’s polymorphic bifunc-

6



TABLE 1
Major approaches to self-replication using cellular automata

Loop Neigborhood Number of states Numer of cells Steps to replicate
Langton’s loop [7] von Neumann 8 86 151
Byl’s loop [2] von Neumann 6 13 25
Chou-Reggia’s loop [12] von Neumann 8 5 15
Tempesti’s loop [24] Moore 10 148 304
Perrier’s loop [11] von Neumann 64 158 235
SDSR loop [15] von Neumann 9 86 151
Evoloop [15] von Neumann 9 149 363
Sexyloop [10] von Neumann 10 various various

tional NAND/NOR gate controlled by Vdd operates as NOR for Vdd = 1.8 V
and NAND for Vdd = 3.3 V [21]. Another gate was developed to operate as
AND when temperature is 27◦C and as OR when temperature is 125◦C. For
a survey of polymorphic electronics, see [17].

The main motivation for the use of polymorphic gates is to obtain reconfig-
urable (and thus potentially adaptive) circuits for a very low cost and without
the need to implement the reconfiguration infrastructure (switches, multiplex-
ers, configuration registers etc.). Figure 2 shows an example of polymorphic
digital circuit and its equivalent behavior in both modes of the polymorphic
NAND/NOR gate (i.e., y = (a⊕ b) ∧ c and y = (a⊕ b) ∨ c). Although
polymorphic gates can be implemented relatively effectively using current
CMOS technology, we can expect the expansion of polymorphic devices with
further development of nanoelectronics and molecular electronics.

FIGURE 2
(a) Example of a polymorphic circuit; (b) Equivalent circuit in mode 1;

(c) Equivalent circuit in mode 2
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Another NAND/NOR gate controlled by Vdd was utilized in the REPOMO32
chip which is an experimental reconfigurable platform for development and
investigation of small combinational polymorphic circuits [16]. REPOMO32
consists of 32 two-input Configurable Logic Elements; each of them can be
programmed to perform one of the following functions: AND, OR, XOR
and polymorphic NAND/NOR (controlled by Vdd). When Vdd = 3.3V the
NAND/NOR gate exhibits the NOR function and when Vdd = 5V the gate ex-
hibits the NAND function. Remaining gates do not change their logic func-
tions with the changes of Vdd (for 3–5 V). The chip was fabricated in a 0.7-
micron AMIS technology. The REPOMO32 chip is used in experiments that
are reported in Section 5.

4 GLOBAL CONTROL OF A SIMPLE CELLULAR AUTOMATON

The objective of this section is to present an example of cellular automaton
implementation whose behavior can be controlled globally using the level of
Vdd. We will consider a 1D cellular automaton whose cells are implemented
as individual digital circuits. Figure 3 shows that the next state of the cell is
computed using a combinational block. This block can be implemented either
as a look up table (LUT) or, more efficiently, as a combinational logic.

FIGURE 3
Circuit implementation of a cell

In order to create a cellular automaton which is globally controlled using
polymorphic gates, we will use polymorphic gates to implement the local
transition functions. The automaton is uniform, with only two states and
nearest neighbors neighborhood. We will demonstrate how the changes in
Vdd level affect the behavior of the automaton. Two rules were chosen for this
example: Rule 150 (which is the 3-bit parity function) is the first rule which
the automaton uses when Vdd=3.9-5 V. Once the Vdd drops below 3.8 V the
automaton works according to rule 232 (the 3-bit majority function).
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Figure 4 shows the implementation of the local transition function us-
ing ordinary and polymorphic gates. The circuit consists of two polymor-
phic NAND/NOR gates, two XOR gates, two OR gates and two AND gates.
The circuit was designed using Cartesian Genetic Programming adopted for
synthesis of polymorphic circuits [17]. We implemented the circuit in RE-
POMO32 and measured its response for all possible assignments to the in-
puts and for two Vdd levels (see Fig. 5). We can observe that the change
of the local transition function can really be controlled globally and without
the need for a special signal determining the function of the cells. The imple-
mentation using polymorphic gates is also relatively efficient. A conventional
solution (without polymorphic gates but with a control signal used for func-
tion selection) would require two circuits – the 3-bit parity and 3-bit majority
- multiplexed according to the global signal g using a two-input multiplexer
(see Fig. 6). As the 3-bit parity is implemented using two two-input XOR
gates, the majority using four two-input gates and the multiplexer using three
two-input gates the conventional solution would cost 9 gates which is more
expensive than the polymorphic solution if the number of two-input gates is
counted.

FIGURE 4
An implementation of polymorphic 3-bit majority/3-bit parity function (rule 150/232)

The global behavior of the automaton is shown in Fig. 7 for the following
setting (i.e., for the Vdd levels): Rule 150 is applied for 11 steps, then rule 232
is used for 5 steps and the sequence is repeated five times. By introducing
the global control we obtained the patterns that no single CA of this type can
produce individually. The role of rule 232 is to keep some patterns unchanged
and delete all independent 1s. More examples are visible in Fig. 8 and Fig. 9.

Finally, the implementation of the global signal controller is straightfor-
ward. In our case, a counter equipped with detector of a particular value will
control the power supply unit.
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FIGURE 5
Behavior of the 3-bit parity/majority circuit (at 1 MHz). Only the least significant

input bit (c0) is shown.

FIGURE 6
Conventional multiplexing of the 3-bit majority and 3-bit parity

5 GLOBALLY CONTROLLED SELF-REPLICATION

We will demonstrate that the idea of global control can be utilized to reduce
the number of steps that have to be performed in order to replicate Byl’s loop.

5.1 Byl’s Self-Replicating Loop
Figure 10 shows that Byl’s loop consists of 13 cells; each of them is in one
of the six possible states (0–5), where 0 is depicted as white square [2].
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FIGURE 7
Development of 1D cellular automaton with rule 150 (11 steps), rule 232 (5 steps),

150 (11 steps), rule 232 (5 steps) etc.

The automaton uses a 5-neighbor neighborhood. The four inner cells cre-
ate so-called kernel which rotates during automaton development. The set
of rules that are required to replicate Byl’s loop is given in Appendix. The
process of self-replication is similar to that used by well-known Langton’s
self-replicating loop. The cell possessing state 5 (together with its neighbor)
forms a gate where a new arm (and then a new cell) grows from. The self-
replication is complete in 25 steps (see Fig. 10).

Figure 11 shows a colony of Byl’s loops. There are three loops in the
center of the colony that do not have space to replicate. Despite this fact, the
kernels of these loops rotate, open their gates and try to replicate; however,
unsuccessfully.

11



FIGURE 8
Development of 1D cellular automaton with rule 150 (15 steps), rule 232 (3 steps),

150 (15 steps), rule 232 (3 steps) etc.

5.2 Accelerated Replication of Byl’s Loop
In order to accelerate the self-replication we will utilize two sets of rules. The
first set is used in steps 1-9. Next four steps are performed using the second
set of rules. At the end of the 13th step, the replication is finished and we
obtain the same result as after 25 steps of the original approach (see Fig 12).
Now, the first set of rules has to be activated for steps 14-22, the second set
of rules takes place in steps 23-26 etc. Therefore, the pulse ratio of global
control signal is 9:4 in this case. Note that the kernel does not rotate when
the second set of rules is active. The overall reduction in time is 48% in
comparison with the original Byl’s loop (see the situation after 150 steps in
Fig. 13 which also shows the state to color assignment on top-left).
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FIGURE 9
Development of 1D cellular automaton with rule 150 (21 steps), rule 232 (2 steps),

150 (21 steps), rule 232 (2 steps) etc.

We choose the step 9 to change the rules because the loop is in a suitable
position: There is one disconnected cell in state 1 and the position of the
kernel is advantageous. The first (i.e. original) set of rules consists of 238
rules, including all rotations. The second set of rules consists of 277 rules. All
the changes in rule set were designed manually after numerous experiments.
Appendix 1 summarizes all the rules.

Similarly to the simple automaton reported in Section 4 we can implement
the transition function using a polymorphic circuit and control the replication
using power supply voltage. In this case the circuit would have five 3-bit
inputs and one 3-bit output as three bits are needed to encode the cell’s state.
However, the description of design and implementation of the polymorphic
circuit is out of the scope of this article.

There is one significant difference of accelerated Byl’s loop in comparison
to its original version. In the case of accelerated Byl’s loops, the kernels of the
inner cells of the colony stop their rotations after five unsuccessful attempts
to replicate. The first ‘frozen’ loop is visible at the 62nd step of simulation
(see Fig 14). This situation is caused by the fact that the second set of rules
contains the rule 12433 → 4 (CTRBL→ C ) which yields the state 4. After
getting back to the first set of rules, the loop does not have a way to go on and
freezes.
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FIGURE 10
Byl’s loop and its self-replication in 25 steps

5.3 Dissolvable Byl’s Loops

With inspiration in SDSR (Structurally Dissolvable Self-Reproducing) loops
which have a limited lifetime and dissolve at the end of their life cycle, we
created another modification of accelerated Byl’s loop. New rules were added
with the following purpose: Once a loop gets frozen, its cells have to subse-
quently converge to a new dissolving state (denoted as 6) and then to a qui-
escent state (denoted as 0). The process takes 16 steps (see Figure 15) and
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FIGURE 11
A colony of Byl’s loops: Labeled triplet of cells does not have space to replicate.

Labeled single cell can still be replicated.

its purpose is to free a space to vital loops. Figure 16 shows some dissolving
loops and the first dissolved loop in step 78. Figure 17 shows the population
of loops in step 260. We can observe that the loops form regular waves. There
is a ‘trash’ in the middle of the colony as some loops have not finished their
replication because of collisions with other loops.

6 DISCUSSION

There are numerous engineered as well as biological systems that are com-
posed of many components which create locally interconnected patterns. The
concept of locality allows creating massively parallel systems that can exhibit
emergent behaviors. The components can be relatively simple and process
a relatively small amount of information. However, as there is not a direct
access to inner components from outside it can be difficult to set some com-
ponent(s) to a particular state. The existence of this kind of globally working
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FIGURE 12
Steps 9 to 13 of the original Byl’s loop (a) and its accelerated replication (b)

operation can be very useful, for example, when one has to set some com-
ponents to a pre-specified state at the beginning of computation or configure
some of the components.

For example, in biology, cells benefit from this type of global information
in the process of differentiation. One of solutions existing in the embryo is to
distribute morphogen into the system and let each cell decide its function on
the basis of morphogen concentration in the place where the cell is located
[29]. The morphogen can be seen as the global positional information which
informs each cell what genes have to be synthesized, i.e. how to special-
ize. The positional information can be used to generate patterns in a growing
embryo.
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FIGURE 13
Comparison of colony of original (left) and accelerated (right) Byl’s loops after 150

steps (the state 0 is shown in black)

FIGURE 14
Labeled cell (step 61) has performed 5 unsuccessful attempts to replicate and will get

frozen in step 62
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FIGURE 15
The process of loop dissolving

We have shown that benefits coming with the global control introduced to
cellular automata are considerable and can be obtained for a relatively low
cost in some cases. We consider the proposed concept as important mainly
for physical implementations of very large scale cellular automata.

The concept of polymorphic components (polymorphic gates in our case)
seems to be promising for practical applications. One can imagine a very
large cellular automaton implemented using advanced nanotechnology in which
elementary cells can be easily reconfigured using light, electromagnetic field,
temperature or some other phenomena. Then, the possibility of the global
control is actually for free. Nowadays, it is possible to implement in hard-
ware, for example, a cellular automaton-based pseudorandom number gen-
erator with a programmable distribution controlled by means of the global
control signal such as Vdd level.

In general, the problem with the global control is twofold: (i) It is nec-
essary to know when and how the global control has to be activated. (ii) In
order to recognize the global signal, the cells have to be equipped with addi-
tional capabilities (e.g., additional hardware). The designer’s task is to find a
suitable trade off between the benefits coming with the global control and the
implementation overhead. Another issue is related to the synchronization of
the cellular automaton. We have assumed that the computations are perfectly

18



FIGURE 16
Several dissolving loops and one dissolved loop in a colony of modified Byl’s loops

in step 78

synchronized. The proposed approach will fail in the case of Byl’s loops if
all the loops are not in the same phase. We plan to study the global control of
asynchronous cellular automata in our future work.

7 CONCLUSIONS

We have demonstrated that the global control signal can be useful for com-
putations with cellular automata. In our very simplified case we, in fact, used
a two-value discrete global signal which allowed the cells to change the local
transition function. On the basis of the signal we could generate new patterns
in a simple 1D cellular automaton and accelerate self-replication of Byl’s loop
in a 2D cellular automaton. In the case of 1D automaton we demonstrated that
the overhead introduced with the global control can be relatively small if the
implementation is performed using polymorphic gates controlled by the level
of power supply voltage.

Future work will be devoted to searching for other applications of pro-
posed concept. Another research could be devoted to analyzing properties of
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FIGURE 17
Dissolving and dissolved loops in colony of modified Byl’s loops in step 260 (state 6

is shown in cyan)

globally controlled cellular automata using techniques developed for standard
cellular automata.
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9 APPENDIX: RULES OF BYL’S LOOP

The original set of rules which is needed to replicate Byl’s loop contains
238 rules (including rotations to ensure the replication in all directions). The
second set of rules used to accelerate the self-replication in steps 10 - 13
contains 277 rules. Table 2 and Table 3 present 317 rules - the union of the
two sets of rules. There are 190 rules that are identical for both sets.
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TABLE 2
The union of the original rules and the rules for acceleration of Byl’s loop self-
replication (Part I). The individual rules are in the form CTRBLX-Y where CTRBL
specifies the states of the Center, Top, Right, Bottom, and Left positions of the neigh-
borhood’s present state, X represents the next state for the first set of rules, ‘-’ is
separator, and Y represents the next state for the second set of rules. Symbol ‘!’ just
indicates that X differs from Y.

000010-5! 031001-1 130123-3 242042-0! 321331-3! 420234-0! 502402-2
000031-1 040022-5! 130451-2! 244202-0! 321511-1 420250-0 503005-4!
000100-5! 040040-2! 132244-1! 251005-5 321535-5 421433-3 503105-4!
000135-5 040050-2! 132404-1! 251205-5 322111-1 422313-4! 504202-2
000212-2 042000-5! 132414-4 252025-5 322131-3! 423003-3 504422-2
000233-5! 044000-2! 132434-4 253203-2! 323411-1 423013-4! 505005-0!
000242-5! 045000-2! 133000-0 300010-0 324433-2! 423055-5 510025-2!
000301-1 050040-2! 133244-4 300030-0 325131-1 423113-3 510035-4!
000311-1 051002-2 134424-4 300100-0 325415-5 423123-4! 511505-2!
000420-5! 052005-0! 135423-3 300110-0 330000-0 423153-3 512024-4
000440-2! 052200-5! 140124-4 300211-1 332101-1 423204-0! 513002-2
000450-2! 054000-2! 140324-1! 300300-0 332111-3! 425104-0! 515015-2!
000512-2 100000-0 141124-4 301000-0 332131-3! 425200-0 520042-2
000525-0! 100010-0 141224-4 301100-0 332155-5 425313-3 520214-4
000540-2! 100033-3 141324-4 301211-3! 332211-3! 430004-2! 520220-0
001000-5! 100100-0 142344-4 302101-1 332443-2! 430023-3 520442-2
001010-5! 100303-3 142353-3 303000-0 332511-1 430123-4! 521005-2!
001305-5 100330-0 143224-1! 303211-1 333211-3! 430525-5 521204-4
002102-2 101000-0 143324-4 305122-2 334121-1 431123-3 522020-0
002303-5! 101233-3 144234-4 310000-0 341231-1 431223-4! 522200-0
002402-5! 101244-4 145301-2! 310010-0 341255-5 431253-3 522300-0
003001-1 103003-3 153041-2! 310021-1 343243-2! 431523-3 523020-0
003101-1 103244-1! 154233-3 310121-3! 344323-2! 432024-0! 523242-2
004200-5! 103300-0 200000-0 310321-1 351202-2 432143-3 524002-2
004400-2! 104531-2! 200220-0 311000-0 351211-1 443213-3 524232-2
004500-2! 110000-0 200515-5 311221-1 351321-1 451024-0! 525545-0!
005102-2 111244-4 202122-0! 311321-3! 353215-5 452020-0 530005-4!
005205-0! 112244-4 202200-0 312052-2 354125-5 452305-5 530012-2
005220-5! 112303-3 202525-5 312101-3! 400034-2! 452313-3 530220-0
005400-2! 112404-4 204422-0! 312151-1 400233-3 453123-3 531005-4!
010000-5! 112414-4 205105-5 312211-1 400304-2! 500005-0! 532422-2
010022-2 113244-4 205125-5 312341-1 401233-4! 500035-4! 540022-2
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TABLE 3
The union of the original rules and the rules for acceleration of Byl’s loop self-
replication (Part II).

010031-1 122414-4 205323-2! 312545-5 402303-3 500055-0! 542002-2
010052-2 122434-1! 210055-5 313211-3! 402324-0! 500132-2 542042-2
010100-5! 123013-3 212022-0! 313221-3! 402514-0! 500215-2! 542322-2
013005-5 123444-4 212055-5 313251-1 402520-0 500242-2 542555-0!
020040-5! 123543-3 220020-0 313321-3! 403004-2! 500305-4! 544202-2
020055-0! 124014-4 220212-0! 315121-1 405235-5 500315-4! 550005-0!
020520-5! 124034-1! 220255-5 315325-5 410254-0! 500422-2 550115-2!
021002-2 124114-4 220442-0! 320512-2 411233-3 500505-0! 554255-0!
022050-5! 124124-4 220515-5 321001-1 412233-4! 501155-2! 555425-0!
023003-5! 124134-4 220533-2! 321011-3! 412303-4! 501302-2
024002-5! 124324-1! 221202-0! 321031-1 412313-3 502105-2!
030001-1 124334-4 222000-0 321121-1 412533-3 502124-4
030015-5 130003-3 225205-5 321131-3! 414323-3 502220-0
030023-5! 130030-0 232053-2! 321321-3! 415233-3 502230-0
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