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Abstract. The paper introduces an optimized multicore CPU implementation of 
the genetic algorithm and compares its performance with a fine-tuned GPU ver-
sion. The main goal is to show the true performance relation between modern 
CPUs and GPUs and eradicate some of myths surrounding GPU performance. It 
is essential for the evolutionary community to provide the same conditions and 
designer effort to both implementations when benchmarking CPUs and GPUs. 
Here we show the performance comparison supported by architecture characte-
ristics narrowing the performance gain of GPUs.  
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1 Introduction 

The Genetic Algorithms (GAs) have become a widely applied optimization tool since 
developed by Holland in 1975 [4]. Many researchers have shown GA abilities in real-
world problems such as optimization, decomposition, scheduling and design. As the 
genetic algorithms are population based stochastic search algorithms, they often re-
quire hundreds of thousands test solutions to be created and evaluated. 

One of the advantages of the genetic algorithms is their ability to be easily paralle-
lized. During the last two decades, plenty of different parallel implementations have 
been proposed, such as island based or spatially structured GAs [19]. 

The trend over last few years has been to utilize Graphics Processing Units (GPUs) 
as general purpose co-processors. Although originally designed for rasterization and 
the game industry, their raw arithmetic power has attracted a lot of research [6], [15]. 

The evolutionary community has adopted this trend relatively quickly and a lot of 
papers have been presented in this area, collected e.g. at www.gpgpgpu.com. Howev-
er, a developer experienced in computer architectures can shortly see that there is 
something amiss in the state of GA. Most of the papers compare the speedup of the 
GPU implementation against a sequential version, moreover, mostly implemented in 
the simplest possible way [8], [13], [16]. This is an exact contradiction with the way 
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the speedup of the parallel processing is defined. G.A. Amdahl in 1967 stated the 
speedup as the performance of the parallel (GPU) version against the performance of 
the best known sequential version (an SSE/AVX multi-thread CPU one in the 21st 
century) [1]. What meaning would it make to accelerate the BubbleSort algorithm on 
GPUs and compare it with a sequential CPU one both with O(n2) when a parallel 
QuickSort with O(n log n) could be employed? 

The main goal of this paper is to show a proper CPU and GPU implementation of 
the GA, written the ground up taking into account each the architectures features. This 
paper puts the reached speedups into relation with the architecture performance and 
discusses the validity of the results. We will simply convince ourselves that there is 
no way to reach speedups in order of 100 and beyond [7]. 

The well-known single-objective 0/1 knapsack problem is used as a benchmark. It 
is defined as follows: given a set of items (L), each with a weight w[i] and a price p[i], 
with i = 1,..,L. The goal is to pick such items that maximize the price of the knapsack 
and do not excess the weight limit (C) [18]. The solutions that break this limit are 
penalized according to amount of overweight and the peak price-weight item ratio. 

As target architectures we have chosen the leading GPU and CPU on the market, 
namely the NVIDIA GTX 580 and the Intel Xeon X5650. It does not make any sense 
for the high performance computing community to compare with desktop CPUs pro-
viding that real-word problems require to be run on servers for a long time period. 

2 Memory Layout of the GA 

The section describes the memory layouts of the population, statistics and global data 
structures. It is crucial to allocate all host structures intended for host-device transfers 
by CUDA pinned memory routines. This makes it possible to use the Direct Memory 
Access (DMA) and reach the peak PCI-Express performance [11]. On the other hand, 
the host memory should be allocated using the memalign routine with 16B align-
ment when implementing the CPU only version. This helps CPU vector units to load 
chunks of data much faster and the compiler to produce more efficient code.  

2.1 Population Organization 

The population of GA has been implemented as a C structure consisting of two one-
dimensional arrays. The first array represents the genotype while the second one 
represents fitness values. Assuming the size of the chromosome is L and the size of 
the population is N, the genotype is defined as an array[N*L/32]. As the knapsack 
chromosomes are based on the binary encoding, 32 items are packed into a single 
integer. This rapidly reduces the memory requirements as well as accelerates genetic 
manipulations employing logical bitwise operations. The fitness value array has the 
size of N. 

Two different layouts of genotype can be found in literature [16]. The first one, re-
ferred to as chromosome-based, represents chromosomes as rows of a hypothetical 



428 J. Jaros and P. Pospichal 

2D matrix implemented as a 1D array whilst the second one, referred to as gene-
based, is a transposed version storing all genes with the same index in one row.  

The chromosome-based layout simplifies the chromosome transfers in the selection 
and replacement phases as well as the host-device transfers necessary for displaying 
the best solution during the evolutionary process and in more advanced island-base 
models. In this case, multiple CUDA threads work on one chromosome to evaluate its 
fitness value. This layout should be preferred also for the CPU implementation in 
order to preserve data locality and enable the CPU to store chromosomes in the L1 
cache and exploit modern prefetch techniques.  

On the other hand, the gene-based representation allows working with multiple 
chromosomes at a time utilizing the SIMD/SIMT nature of CPUs and GPUs assuming 
there are no dependencies between chromosomes. However, evaluating multiple 
chromosomes at a time tends to run out of other resources such as registers, cache, 
shared memories, etc. 

Taking into account architecture characteristics, the only thing that matters is to al-
low threads inside a warp to work on neighbor elements. Different warps can access 
different memory areas with only a small or no penalization. The chromosome-based 
layout seems to be the most promising layout enabling the warp to work with the 
genes of one chromosome, especially, if it is necessary for the fitness evaluation to 
read genes multiple times. The different warps can simply operate on different chro-
mosomes. This reaches the best SIMD (SSE, CUDA) performance while reducing 
registers, share memory, and cache requirements. For this reason, the chromosome-
based layout is used for both CPU and GPU. 

2.2 GA Parameters Storage 

A C data structure has been created to accommodate all the control parameters of the 
GA. Such parameters include the population and chromosome size, the crossover and 
mutation ratio, the statistics collecting interval, the total number of evaluated genera-
tions etc. Once filled in with command line parameters, the structure is copied to the 
GPU constant memory. This simplifies CUDA kernel invocations and saves memory 
bandwidth according to the CUDA C best practice guide [11]. 

2.3 Knapsack Global Data Storage 

The knapsack global data structure describes the benchmark listing the price and 
weight for all items possible included in the knapsack. The structure also maintains 
the capacity of the knapsack and the item with the maximum price/weight rate. The 
prices and weights are stored in two separate 1D arrays. The benefit over an array of 
structures is data locality as all the threads first read prices and only then the weights. 

The best memory area where to place this structure may seem to be the constant 
memory. Unfortunately, this area is too small to accommodate real-world bench-
marks. Its capacity of 64KB allows solving problems up to 4K items. On the other 
hand, introducing L2 caches and a load uniform (LDU) instruction in Fermi cards [11] 
makes the benefits of constant memory negligible supposing all threads within a warp 
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accesses the same memory location. As the result, the global data are stored in main 
GPU memory. The problem size (the chromosome size in bits) is always padded to 
a multiple of 1024 to prevent uncoalesced accesses. 

3 Genetic Algorithm Routines 

This section goes through the evolution process and comments on the genetic manipu-
lation phase, fitness function evaluation, replacement mechanism and statistics collec-
tion. Each phase is implemented as an independent CUDA kernel to put global  
synchronization between each phase. The source codes can be downloaded from [5]. 

All the kernels of the GA has been carefully designed and optimized to exploit the 
hidden potential of modern GPUs and CPUs. It is essential for a good GPU imple-
mentation to avoid the thread divergence and to coalesce all memory accesses to mi-
nimize the required memory bandwidth. Thus, the key terms here are the warp and 
the warp size [11] . In order to write a good CPU implementation, we have to meet 
exactly the same restrictions. The warp size is now reduced to SSE or AVX width and 
coalescing corresponds to L1 (L2, L3) cache line accesses while GPU shared memory 
can be directly seen as the L1 cache.  

As the main principles are the same, the CPU implementation follows the GPU one 
adding only an outer-most for cycle and the OpenMP pragma omp parallel 
for sections [2] to utilize all available CPU cores and simulate GPU execution. 

3.1 Random Number Generation 

As genetic algorithms are stochastic search processes, random numbers are extensive-
ly used throughout them. CUDA does not provide any support for on the fly genera-
tion of a random number by a thread because of many associated synchronization 
issues. The only way is to generate a predefined number of random numbers in a sep-
arate kernel [10]. Fortunately, a stateless pseudo-random number generator has re-
cently been published based on hash functions [14]. This generator is implemented in 
C++, CUDA and OpenCL. The generator has been proven to be crush resistant with 
the period of 2128. The generator is three times faster than the standard C rand func-
tion and more than 10x faster than the CUDA cuRand generator [12], [14]. 

3.2 Genetic Manipulation Phase 

The genetic manipulation phase creates new individuals performing the binary tour-
nament selection on the parent population and exchanging genetic material of two 
parents using uniform crossover with a predefined probability. Every gene of the 
offspring is mutated by the bit-flip mutation and stored in the offspring population.  

The key for the efficient implementation of the genetic manipulation kernel is 
a low divergence and enough data to utilize all the CUDA cores. Each CUDA block is 
organized as two dimensional. The x dimension corresponds to the genes of a single 
chromosome while the y dimension corresponds to different chromosomes. The size 
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of the x dimension meets the warp size of 32 to prevent lots of divergence within 
a warp. The size of y dimension of 8 is chosen based on the assumption that 256 
threads per block is enough [15]. 

The entire grid is organized in 2D with the x size of 1, and the y size corresponding 
to the offspring population size divided by the double of the y block size (two 
offspring are produced at once). Since the x grid dimension is exactly the 1, the warps 
process the individuals in multiple rounds. 

The selection is performed by a single thread in a warp. Based on the fitness val-
ues, two parents are selected by the tournament and their indices within the parent 
population are stored in shared memory.  

Now, each warp reads two parents in chunks of 32 integer components (one integer 
per thread). As binary encoding enables 32 genes to be packed into a single integer, 
the warp effectively reads 1024 binary genes at once. Since this GA implementation 
is intended for use with very large knapsack instances, uniform crossover is imple-
mented to allow better mixing of genetic material. Each thread first generates a 32b 
random number serving as the crossover mask. Next, logic bitwise operations are 
used to crossover the 32b genes. This removes all conditional code from the crossover 
except testing of the condition whether or not to do the crossover at all. This condition 
does not introduce any thread divergence as it is evaluated in the same way for the 
whole warp. 

Mutation is performed in a similar way. Each thread generates 32 random numbers 
and sets the bit of the mask to 1 if the random number falls into the mutation probabil-
ity interval. After that, the bitwise xor operation is performed on the mask and the 
offspring. This is done for both the offspring. Finally the warp writes the chromosome 
chunk to the offspring population and starts reading the next chunk.  

3.3 Fitness Function Evaluation 

The fitness function evaluation kernel follows the same grid and block decomposition 
as the genetic manipulation kernel. Evaluating more chromosomes at a time allows 
the GPU to reuse the matching chunk of global data and saves memory bandwidth.  

Every warp processes one chromosome in multiple rounds handling a single 32b 
chunk at a time. In every round, the first warp of the block transfers the prices and 
weights of 32 items into shared memory employing coalesced memory accesses. Af-
ter the barrier synchronization, every warp can read the knapsack data directly from 
shared memory. Now, every warp loads a single 32b chunk into shared memory. As 
all the threads within a warp access the same memory location (one integer), the L2 
GPU cache is exploited. Every thread masks out an appropriate bit of the 32b chunk, 
multiplies it with the item price and weight, and stores the partial results into shared 
memory. When the entire chromosome has been processed, the partial prices and 
weights of the items placed in the knapsack have to be reduced to a single value. 
Since the chromosome is treated by a single warp a barrier-free parallel reduction can 
be employed. Finally, a single warp thread checks the total capacity of all the items 
and if the capacity has been exceeded, the fitness is penalized. Finally, the fitness 
value is stored in the global memory.  
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The CPU implementation evaluates chromosomes one by one provided that the 
global data can be easily stored in L3 cache. The evaluation process is distributed 
over multiple cores using OpenMP. The evaluation can be carried out immediately 
after a new offspring has been created which results in the chromosome being eva-
luated stored in L1 cache. This might also be possible for the GPU implementation, 
however, the kernel would run out of registers and shared memory resulting in poor 
GPU occupation and low performance.  

3.4 Replacement Phase 

The replacement phase employs the binary tournament over the parents and offspring 
to create the new parent population. The kernel and block decompositions are the 
same as in the previous phases. The only modification is that the kernel dimensions 
are derived from the parent population size.  

Every warp compares a randomly picked offspring with the parent laying on the 
index calculated from the y index of the warp in the grid. If the offspring fitness value 
is higher than the parent one, the entire warp is used to replace the parent by the 
offspring. This restricts the thread divergence to the random number generation phase.  

3.5 Statistics Collection 

The last component of the genetic algorithm is the class collecting necessary statistics 
about the evolutionary process. It maintains the best solution found so far, and hand-
ing them over the CPU for saving into a log file. 

The statistics collection consists of a kernel and statistics structure initialization. 
The GPU statistic structure maintains the highest and lowest fitness values over the 
population as well as the sum and the sum-of-squares over of fitness values. The last 
two values are necessary for calculating the average fitness value and the standard 
deviation. The last value is the index of the best individual.  

The kernel is divided into twice as many blocks as the GPU has stream processors. 
Each block is decomposed into 256 threads based on the practice published in [15]. 
After the kernel invocation, the chunks of fitness values are distributed over the 
blocks. Each thread processes as many fitness values as necessary and stores the par-
tial results into shared memory. After the barrier synchronization, the reductions over 
highest, lowest and two sum values are carried out. Finally, the first thread of each 
block uses a global memory lock to modify the global statistics. 

After completion, the statistics structure is downloaded to host memory to compute 
average value and the standard deviation over the fitness values. Finally, the best 
solution is downloaded from GPU based on the index stored in the statistics structure.  

The CPU implementation of the statistics collection has been left in a sequential 
form because the overhead of parallel execution would exceed the execution time 
provided by parallel processing.  
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4 Experimental Comparison of CPU and GPU Implementations 

The goal of the experiments is to compare an optimized multicore CPU implementa-
tion with a well-designed GPU version and provide some insight into realistically 
achievable speedups. All the experiments were carried out on a dual Intel Xeon 
X5650 server equipped with a single NVIDIA GTX 580 running Ubuntu 10.04 LTS. 

The knapsack benchmark with 10,000 items and a population size of 12,000 indi-
viduals were used. We chose such a big benchmark and large population to show the 
most optimistic results. The smaller the benchmark and population are, the slower 
a GPU will be compared to a multicore CPU. This is given by the massively parallel 
architecture of modern GPUs. Six thousand new individuals are created and evaluated 
every generation. The genetic algorithm works with tournament selections and re-
placement, a crossover ratio of 0.7, and a mutation ratio of 0.01. The statistics are 
collected after every generation. All the proposed codes were compiled using GNU 
C++ with the highest optimization level, SSE 4.2 support, the OpenMP library [2] and 
the CUDA 4.0 developer kit [11]. 

As the reference, we chose the GALib library [20] adopted by a lot of scientists. 
GALib is a comprehensive rapid prototyping library for evolutionary algorithms, 
however, the last version comes from 1997. Because of its age, the library cannot 
benefit from vector units (SSE/AVX) or multiple cores. 

In order to validate the optimization abilities of the proposed implementations, we 
carried out 30 independent runs. The average highest fitness values reached after 100 
generations as well as the standard deviation are plotted in Fig. 1. Although there is 
a statistically significant difference among the implementations, the practical impact 
on the result quality is negligible (lower than 0.1%). 

The performance results are revealing. As a lot of researchers do not pay enough 
attention to the CPU implementation, the GALib is often compiled under default con-
ditions without any optimization and with debugging support enabled. This degrades 
the performance (GALib-D) to 375 times slower than the GTX 580. Just a trivial 
modification of the GALib makefile (turning on appropriate compiler optimizations) 
can bring a huge performance gain for free. The GALib-O (Optimized) version is 221 
times slower than the GPU (see Fig. 2).  

Implementing the CPU version carefully rapidly decreases the execution time. The 
single thread (1T) implementation is 68 times slower than the GPU. This is similar to 
the speedup reported in many other studies, e.g. [17]. However, parallelization of the 
1T version is trivial. It is only necessary to put three OpenMP pragmas in the entire 
code. The impact on the performance is significant! Running the GA on a single six-
core processor reduces the speedup to 11.82 (5.78 faster than 1T). As common HPC 
servers are equipped with multiple CPU sockets, the dual Xeon5650 server takes only 
6 times longer time to perform the task. This is appreciably different to the results 
reported speedups to 800x, 1000x, 2072x in [13], [16], [8], respectively.  

The reason for such a big difference in the CPU codes is shown in Table 1. Three 
different CPU implementations were investigated using the PAPI performance coun-
ter library [9]. The key to the fast CPU code is to utilize cache memories properly. 
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Table 1. PAPI performance counters profililng data of 100k knapack and 100 generations using 
GALib and the custom implementation on dual Intel Xeon X5650 

 GALib-O CPU-1T 2xCPU-6T 
L2 cache hit 18.01% 98.81% 96.82% 
L2 accesses 21 267M 800M 24M 
L3 cache hit 99.04% 57.07% 81.3% 
L3 accesses 17 278M 8M 12M 
MIPS 1 099 5 392 67 248 
Execution time 165.25s 48.52s 3.81s 

 
In order to compare the 405 GFLOPs of this implementation with other CUDA ap-

plications, consider these values measured by SHOC benchmark [3] in single preci-
sion: FFT = 213 GFLOPS, GEMM = 529 GFLOPS, parallel reduction = 93 GFLOPS, 
parallel sort = 2 GFLOPS. 

5 Conclusions 

This paper points out the way many authors presents the speedups of the GPU imple-
mentation of the genetic algorithm against the CPU version. A lot of papers have used 
only a single thread implementation, [8], [13], [16], [17]. Such authors should have 
immediately divided their speedups by the factor of 6 at least. Do not forget there is 
nothing like a single thread CPU on the market any more. As we always need to per-
form multiple trials to produce good results, we can run as many trials as physical 
cores with negligible impact on the performance. The trials are embarrassingly paral-
lel. The reason why some authors did not do so might lie in a foolish hunt for the 
highest speedup, or an attempt to hide the fact the performance gain by a GPU would 
have been so low that it would not have justified the amount of effort put it into.  

The best GPU on the market has the peak performance of 1.5 TFLOPS while a typ-
ical server processor reaches the peak of 60 GFLOPs. Confronted with these architec-
ture limits, it is not possible to report speedups of more than 100. Such speed-ups only 
show that CPU implementation is not well optimized. Fair comparison is to say how 
fast the implementation is in terms of GFLOPS, and what fraction of the peak perfor-
mance has been achieved.  

Modern GPUs have amazing computational power, and it is worth it porting  
computationally expensive applications such as evolutionary algorithms onto them. 
However, we must be careful about making the performance comparisons. We have 
clearly shown that a carefully implemented CPU version can be up to 30 times faster 
than a single thread default-compiled GALib. We have also shown that realistically a 
single NVIDIA GTX580 can outperform an Intel Xeon X5650 by a factor of around 12 
while reaching an execution efficiency of 26% and performance of 405 GFLOPS. The 
proposed CPU and GPU implementations have been released as open source at [5]. 
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