
C. Di Chio et al. (Eds.): EvoApplications 2012, LNCS 7248, pp. 426–435, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Fair Comparison of Modern CPUs and GPUs Running
the Genetic Algorithm under the Knapsack Benchmark

Jiri Jaros1 and Petr Pospichal2

1 The Australian National University, ANU College of Engineering and Computer Science,
Canberra, ACT 0200, Australia
jiri.jaros@anu.edu.au

2 Brno University of Technology, Faculty of Information Technology,
Bozetechova 2, 612 66 Brno, Czech Republic

ipospichal@fit.vutbr.cz

Abstract. The paper introduces an optimized multicore CPU implementation of
the genetic algorithm and compares its performance with a fine-tuned GPU ver-
sion. The main goal is to show the true performance relation between modern
CPUs and GPUs and eradicate some of myths surrounding GPU performance. It
is essential for the evolutionary community to provide the same conditions and
designer effort to both implementations when benchmarking CPUs and GPUs.
Here we show the performance comparison supported by architecture characte-
ristics narrowing the performance gain of GPUs.

Keywords: GPU, multicore CPU, knapsack, performance comparison, CUDA.

1 Introduction

The Genetic Algorithms (GAs) have become a widely applied optimization tool since
developed by Holland in 1975 [4]. Many researchers have shown GA abilities in real-
world problems such as optimization, decomposition, scheduling and design. As the
genetic algorithms are population based stochastic search algorithms, they often re-
quire hundreds of thousands test solutions to be created and evaluated.

One of the advantages of the genetic algorithms is their ability to be easily paralle-
lized. During the last two decades, plenty of different parallel implementations have
been proposed, such as island based or spatially structured GAs [19].

The trend over last few years has been to utilize Graphics Processing Units (GPUs)
as general purpose co-processors. Although originally designed for rasterization and
the game industry, their raw arithmetic power has attracted a lot of research [6], [15].

The evolutionary community has adopted this trend relatively quickly and a lot of
papers have been presented in this area, collected e.g. at www.gpgpgpu.com. Howev-
er, a developer experienced in computer architectures can shortly see that there is
something amiss in the state of GA. Most of the papers compare the speedup of the
GPU implementation against a sequential version, moreover, mostly implemented in
the simplest possible way [8], [13], [16]. This is an exact contradiction with the way

 A Fair Comparison of Modern CPUs and GPUs Running the Genetic Algorithm 427

the speedup of the parallel processing is defined. G.A. Amdahl in 1967 stated the
speedup as the performance of the parallel (GPU) version against the performance of
the best known sequential version (an SSE/AVX multi-thread CPU one in the 21st
century) [1]. What meaning would it make to accelerate the BubbleSort algorithm on
GPUs and compare it with a sequential CPU one both with O(n2) when a parallel
QuickSort with O(n log n) could be employed?

The main goal of this paper is to show a proper CPU and GPU implementation of
the GA, written the ground up taking into account each the architectures features. This
paper puts the reached speedups into relation with the architecture performance and
discusses the validity of the results. We will simply convince ourselves that there is
no way to reach speedups in order of 100 and beyond [7].

The well-known single-objective 0/1 knapsack problem is used as a benchmark. It
is defined as follows: given a set of items (L), each with a weight w[i] and a price p[i],
with i = 1,..,L. The goal is to pick such items that maximize the price of the knapsack
and do not excess the weight limit (C) [18]. The solutions that break this limit are
penalized according to amount of overweight and the peak price-weight item ratio.

As target architectures we have chosen the leading GPU and CPU on the market,
namely the NVIDIA GTX 580 and the Intel Xeon X5650. It does not make any sense
for the high performance computing community to compare with desktop CPUs pro-
viding that real-word problems require to be run on servers for a long time period.

2 Memory Layout of the GA

The section describes the memory layouts of the population, statistics and global data
structures. It is crucial to allocate all host structures intended for host-device transfers
by CUDA pinned memory routines. This makes it possible to use the Direct Memory
Access (DMA) and reach the peak PCI-Express performance [11]. On the other hand,
the host memory should be allocated using the memalign routine with 16B align-
ment when implementing the CPU only version. This helps CPU vector units to load
chunks of data much faster and the compiler to produce more efficient code.

2.1 Population Organization

The population of GA has been implemented as a C structure consisting of two one-
dimensional arrays. The first array represents the genotype while the second one
represents fitness values. Assuming the size of the chromosome is L and the size of
the population is N, the genotype is defined as an array[N*L/32]. As the knapsack
chromosomes are based on the binary encoding, 32 items are packed into a single
integer. This rapidly reduces the memory requirements as well as accelerates genetic
manipulations employing logical bitwise operations. The fitness value array has the
size of N.

Two different layouts of genotype can be found in literature [16]. The first one, re-
ferred to as chromosome-based, represents chromosomes as rows of a hypothetical

428 J. Jaros and P. Pospichal

2D matrix implemented as a 1D array whilst the second one, referred to as gene-
based, is a transposed version storing all genes with the same index in one row.

The chromosome-based layout simplifies the chromosome transfers in the selection
and replacement phases as well as the host-device transfers necessary for displaying
the best solution during the evolutionary process and in more advanced island-base
models. In this case, multiple CUDA threads work on one chromosome to evaluate its
fitness value. This layout should be preferred also for the CPU implementation in
order to preserve data locality and enable the CPU to store chromosomes in the L1
cache and exploit modern prefetch techniques.

On the other hand, the gene-based representation allows working with multiple
chromosomes at a time utilizing the SIMD/SIMT nature of CPUs and GPUs assuming
there are no dependencies between chromosomes. However, evaluating multiple
chromosomes at a time tends to run out of other resources such as registers, cache,
shared memories, etc.

Taking into account architecture characteristics, the only thing that matters is to al-
low threads inside a warp to work on neighbor elements. Different warps can access
different memory areas with only a small or no penalization. The chromosome-based
layout seems to be the most promising layout enabling the warp to work with the
genes of one chromosome, especially, if it is necessary for the fitness evaluation to
read genes multiple times. The different warps can simply operate on different chro-
mosomes. This reaches the best SIMD (SSE, CUDA) performance while reducing
registers, share memory, and cache requirements. For this reason, the chromosome-
based layout is used for both CPU and GPU.

2.2 GA Parameters Storage

A C data structure has been created to accommodate all the control parameters of the
GA. Such parameters include the population and chromosome size, the crossover and
mutation ratio, the statistics collecting interval, the total number of evaluated genera-
tions etc. Once filled in with command line parameters, the structure is copied to the
GPU constant memory. This simplifies CUDA kernel invocations and saves memory
bandwidth according to the CUDA C best practice guide [11].

2.3 Knapsack Global Data Storage

The knapsack global data structure describes the benchmark listing the price and
weight for all items possible included in the knapsack. The structure also maintains
the capacity of the knapsack and the item with the maximum price/weight rate. The
prices and weights are stored in two separate 1D arrays. The benefit over an array of
structures is data locality as all the threads first read prices and only then the weights.

The best memory area where to place this structure may seem to be the constant
memory. Unfortunately, this area is too small to accommodate real-world bench-
marks. Its capacity of 64KB allows solving problems up to 4K items. On the other
hand, introducing L2 caches and a load uniform (LDU) instruction in Fermi cards [11]
makes the benefits of constant memory negligible supposing all threads within a warp

 A Fair Comparison of Modern CPUs and GPUs Running the Genetic Algorithm 429

accesses the same memory location. As the result, the global data are stored in main
GPU memory. The problem size (the chromosome size in bits) is always padded to
a multiple of 1024 to prevent uncoalesced accesses.

3 Genetic Algorithm Routines

This section goes through the evolution process and comments on the genetic manipu-
lation phase, fitness function evaluation, replacement mechanism and statistics collec-
tion. Each phase is implemented as an independent CUDA kernel to put global
synchronization between each phase. The source codes can be downloaded from [5].

All the kernels of the GA has been carefully designed and optimized to exploit the
hidden potential of modern GPUs and CPUs. It is essential for a good GPU imple-
mentation to avoid the thread divergence and to coalesce all memory accesses to mi-
nimize the required memory bandwidth. Thus, the key terms here are the warp and
the warp size [11] . In order to write a good CPU implementation, we have to meet
exactly the same restrictions. The warp size is now reduced to SSE or AVX width and
coalescing corresponds to L1 (L2, L3) cache line accesses while GPU shared memory
can be directly seen as the L1 cache.

As the main principles are the same, the CPU implementation follows the GPU one
adding only an outer-most for cycle and the OpenMP pragma omp parallel
for sections [2] to utilize all available CPU cores and simulate GPU execution.

3.1 Random Number Generation

As genetic algorithms are stochastic search processes, random numbers are extensive-
ly used throughout them. CUDA does not provide any support for on the fly genera-
tion of a random number by a thread because of many associated synchronization
issues. The only way is to generate a predefined number of random numbers in a sep-
arate kernel [10]. Fortunately, a stateless pseudo-random number generator has re-
cently been published based on hash functions [14]. This generator is implemented in
C++, CUDA and OpenCL. The generator has been proven to be crush resistant with
the period of 2128. The generator is three times faster than the standard C rand func-
tion and more than 10x faster than the CUDA cuRand generator [12], [14].

3.2 Genetic Manipulation Phase

The genetic manipulation phase creates new individuals performing the binary tour-
nament selection on the parent population and exchanging genetic material of two
parents using uniform crossover with a predefined probability. Every gene of the
offspring is mutated by the bit-flip mutation and stored in the offspring population.

The key for the efficient implementation of the genetic manipulation kernel is
a low divergence and enough data to utilize all the CUDA cores. Each CUDA block is
organized as two dimensional. The x dimension corresponds to the genes of a single
chromosome while the y dimension corresponds to different chromosomes. The size

430 J. Jaros and P. Pospichal

of the x dimension meets the warp size of 32 to prevent lots of divergence within
a warp. The size of y dimension of 8 is chosen based on the assumption that 256
threads per block is enough [15].

The entire grid is organized in 2D with the x size of 1, and the y size corresponding
to the offspring population size divided by the double of the y block size (two
offspring are produced at once). Since the x grid dimension is exactly the 1, the warps
process the individuals in multiple rounds.

The selection is performed by a single thread in a warp. Based on the fitness val-
ues, two parents are selected by the tournament and their indices within the parent
population are stored in shared memory.

Now, each warp reads two parents in chunks of 32 integer components (one integer
per thread). As binary encoding enables 32 genes to be packed into a single integer,
the warp effectively reads 1024 binary genes at once. Since this GA implementation
is intended for use with very large knapsack instances, uniform crossover is imple-
mented to allow better mixing of genetic material. Each thread first generates a 32b
random number serving as the crossover mask. Next, logic bitwise operations are
used to crossover the 32b genes. This removes all conditional code from the crossover
except testing of the condition whether or not to do the crossover at all. This condition
does not introduce any thread divergence as it is evaluated in the same way for the
whole warp.

Mutation is performed in a similar way. Each thread generates 32 random numbers
and sets the bit of the mask to 1 if the random number falls into the mutation probabil-
ity interval. After that, the bitwise xor operation is performed on the mask and the
offspring. This is done for both the offspring. Finally the warp writes the chromosome
chunk to the offspring population and starts reading the next chunk.

3.3 Fitness Function Evaluation

The fitness function evaluation kernel follows the same grid and block decomposition
as the genetic manipulation kernel. Evaluating more chromosomes at a time allows
the GPU to reuse the matching chunk of global data and saves memory bandwidth.

Every warp processes one chromosome in multiple rounds handling a single 32b
chunk at a time. In every round, the first warp of the block transfers the prices and
weights of 32 items into shared memory employing coalesced memory accesses. Af-
ter the barrier synchronization, every warp can read the knapsack data directly from
shared memory. Now, every warp loads a single 32b chunk into shared memory. As
all the threads within a warp access the same memory location (one integer), the L2
GPU cache is exploited. Every thread masks out an appropriate bit of the 32b chunk,
multiplies it with the item price and weight, and stores the partial results into shared
memory. When the entire chromosome has been processed, the partial prices and
weights of the items placed in the knapsack have to be reduced to a single value.
Since the chromosome is treated by a single warp a barrier-free parallel reduction can
be employed. Finally, a single warp thread checks the total capacity of all the items
and if the capacity has been exceeded, the fitness is penalized. Finally, the fitness
value is stored in the global memory.

 A Fair Comparison of Modern CPUs and GPUs Running the Genetic Algorithm 431

The CPU implementation evaluates chromosomes one by one provided that the
global data can be easily stored in L3 cache. The evaluation process is distributed
over multiple cores using OpenMP. The evaluation can be carried out immediately
after a new offspring has been created which results in the chromosome being eva-
luated stored in L1 cache. This might also be possible for the GPU implementation,
however, the kernel would run out of registers and shared memory resulting in poor
GPU occupation and low performance.

3.4 Replacement Phase

The replacement phase employs the binary tournament over the parents and offspring
to create the new parent population. The kernel and block decompositions are the
same as in the previous phases. The only modification is that the kernel dimensions
are derived from the parent population size.

Every warp compares a randomly picked offspring with the parent laying on the
index calculated from the y index of the warp in the grid. If the offspring fitness value
is higher than the parent one, the entire warp is used to replace the parent by the
offspring. This restricts the thread divergence to the random number generation phase.

3.5 Statistics Collection

The last component of the genetic algorithm is the class collecting necessary statistics
about the evolutionary process. It maintains the best solution found so far, and hand-
ing them over the CPU for saving into a log file.

The statistics collection consists of a kernel and statistics structure initialization.
The GPU statistic structure maintains the highest and lowest fitness values over the
population as well as the sum and the sum-of-squares over of fitness values. The last
two values are necessary for calculating the average fitness value and the standard
deviation. The last value is the index of the best individual.

The kernel is divided into twice as many blocks as the GPU has stream processors.
Each block is decomposed into 256 threads based on the practice published in [15].
After the kernel invocation, the chunks of fitness values are distributed over the
blocks. Each thread processes as many fitness values as necessary and stores the par-
tial results into shared memory. After the barrier synchronization, the reductions over
highest, lowest and two sum values are carried out. Finally, the first thread of each
block uses a global memory lock to modify the global statistics.

After completion, the statistics structure is downloaded to host memory to compute
average value and the standard deviation over the fitness values. Finally, the best
solution is downloaded from GPU based on the index stored in the statistics structure.

The CPU implementation of the statistics collection has been left in a sequential
form because the overhead of parallel execution would exceed the execution time
provided by parallel processing.

432 J. Jaros and P. Pospichal

4 Experimental Comparison of CPU and GPU Implementations

The goal of the experiments is to compare an optimized multicore CPU implementa-
tion with a well-designed GPU version and provide some insight into realistically
achievable speedups. All the experiments were carried out on a dual Intel Xeon
X5650 server equipped with a single NVIDIA GTX 580 running Ubuntu 10.04 LTS.

The knapsack benchmark with 10,000 items and a population size of 12,000 indi-
viduals were used. We chose such a big benchmark and large population to show the
most optimistic results. The smaller the benchmark and population are, the slower
a GPU will be compared to a multicore CPU. This is given by the massively parallel
architecture of modern GPUs. Six thousand new individuals are created and evaluated
every generation. The genetic algorithm works with tournament selections and re-
placement, a crossover ratio of 0.7, and a mutation ratio of 0.01. The statistics are
collected after every generation. All the proposed codes were compiled using GNU
C++ with the highest optimization level, SSE 4.2 support, the OpenMP library [2] and
the CUDA 4.0 developer kit [11].

As the reference, we chose the GALib library [20] adopted by a lot of scientists.
GALib is a comprehensive rapid prototyping library for evolutionary algorithms,
however, the last version comes from 1997. Because of its age, the library cannot
benefit from vector units (SSE/AVX) or multiple cores.

In order to validate the optimization abilities of the proposed implementations, we
carried out 30 independent runs. The average highest fitness values reached after 100
generations as well as the standard deviation are plotted in Fig. 1. Although there is
a statistically significant difference among the implementations, the practical impact
on the result quality is negligible (lower than 0.1%).

The performance results are revealing. As a lot of researchers do not pay enough
attention to the CPU implementation, the GALib is often compiled under default con-
ditions without any optimization and with debugging support enabled. This degrades
the performance (GALib-D) to 375 times slower than the GTX 580. Just a trivial
modification of the GALib makefile (turning on appropriate compiler optimizations)
can bring a huge performance gain for free. The GALib-O (Optimized) version is 221
times slower than the GPU (see Fig. 2).

Implementing the CPU version carefully rapidly decreases the execution time. The
single thread (1T) implementation is 68 times slower than the GPU. This is similar to
the speedup reported in many other studies, e.g. [17]. However, parallelization of the
1T version is trivial. It is only necessary to put three OpenMP pragmas in the entire
code. The impact on the performance is significant! Running the GA on a single six-
core processor reduces the speedup to 11.82 (5.78 faster than 1T). As common HPC
servers are equipped with multiple CPU sockets, the dual Xeon5650 server takes only
6 times longer time to perform the task. This is appreciably different to the results
reported speedups to 800x, 1000x, 2072x in [13], [16], [8], respectively.

The reason for such a big difference in the CPU codes is shown in Table 1. Three
different CPU implementations were investigated using the PAPI performance coun-
ter library [9]. The key to the fast CPU code is to utilize cache memories properly.

 A Fair Comparison of M

Fig. 1. Solution fitness v
generations achieved
implementations

The first line of the tabl
problem lays in the way g
number of copy construct
number of L2 cache acces
(caused by accesses with s
custom CPU implementatio
thread implementation). T
distribution over multiple L
better in the case of GALib
by 3 orders which leads to
interpreting the number of
spends more than 99.99% o

All these inefficiencies a
1,099 MIPS (Million Instru
Xeon running the optimize
can touch up to 67,248 M
floating point FLOPs here
prices and weights being en

Given that fixed-point S
floating-point instructions
code. The dual Intel Xeon 5
LINPACK benchmark. Th
which is pretty good. As th
attacks 405 GFLOPS. Altho
formance of the GTX580,
can never approach the pea
fitness function evaluation
thread operations inside th
store statistics, and many o
CUDA cores working in ev

Modern CPUs and GPUs Running the Genetic Algorithm

value after 100
by different

Fig. 2. Speedup comparisons of GP
against different CPU implementations

le clearly shows an awful L2 cache hit of the GALib. T
genotype and phenotype are organized, and the imme
ors employed virtually everywhere. Moreover, from
sses we can deduce, the L1 cache is also not exploi

stride, e.g., when calculating the statistics in GALib). T
on reduces L2 access by factor of 26 (in case of the sin
he 12 thread implementation further benefits from d
L2 caches. In contrast, the L3 cache hit ratio seems to
b. However, the number of L3 accesses of GALib is hig
o an enormous number of ALU stalls. On the other ha
f cache accesses in the table, the optimized CPU vers
of time working within the L1 cache.
are projected to the CPU performance. GALib only reac
uctions Per Second). On the other hand, the same six c
ed code reaches about 33,600 MIPS and the entire ser
IPS. We have measured fixed point arithmetic instead
because of the nature of GA encoding and the knaps

ncoded as integers.
SIMD instructions are nearly as fast as single precis
on the CPU, we can calculate the efficiency of the C
5650 server reaches of 118 GFLOPs in the Intel optimi
e overall efficiency of the CPU code is thus about 56

he GPU is about 6 times faster, the peak GPU performa
ough this is roughly one fourth of the theoretical peak p
it represents a very good result [7]. It should be clear

ak performance because of many parallel reductions in
and statistics kernel, necessary synchronization and sin

he genetic manipulation, handing data over to the CPU
other issues. The peak performance would require all

very clock cycle, which is not possible for such operation

433

PU

The
ense

the
ited
The
ngle
data
o be
gher
and,
sion

ches
core
rver
d of
sack

sion
CPU
ized
6%,

ance
per-
we
the

ngle
U to

the
ns.

434 J. Jaros and P. Pospichal

Table 1. PAPI performance counters profililng data of 100k knapack and 100 generations using
GALib and the custom implementation on dual Intel Xeon X5650

 GALib-O CPU-1T 2xCPU-6T
L2 cache hit 18.01% 98.81% 96.82%
L2 accesses 21 267M 800M 24M
L3 cache hit 99.04% 57.07% 81.3%
L3 accesses 17 278M 8M 12M
MIPS 1 099 5 392 67 248
Execution time 165.25s 48.52s 3.81s

In order to compare the 405 GFLOPs of this implementation with other CUDA ap-

plications, consider these values measured by SHOC benchmark [3] in single preci-
sion: FFT = 213 GFLOPS, GEMM = 529 GFLOPS, parallel reduction = 93 GFLOPS,
parallel sort = 2 GFLOPS.

5 Conclusions

This paper points out the way many authors presents the speedups of the GPU imple-
mentation of the genetic algorithm against the CPU version. A lot of papers have used
only a single thread implementation, [8], [13], [16], [17]. Such authors should have
immediately divided their speedups by the factor of 6 at least. Do not forget there is
nothing like a single thread CPU on the market any more. As we always need to per-
form multiple trials to produce good results, we can run as many trials as physical
cores with negligible impact on the performance. The trials are embarrassingly paral-
lel. The reason why some authors did not do so might lie in a foolish hunt for the
highest speedup, or an attempt to hide the fact the performance gain by a GPU would
have been so low that it would not have justified the amount of effort put it into.

The best GPU on the market has the peak performance of 1.5 TFLOPS while a typ-
ical server processor reaches the peak of 60 GFLOPs. Confronted with these architec-
ture limits, it is not possible to report speedups of more than 100. Such speed-ups only
show that CPU implementation is not well optimized. Fair comparison is to say how
fast the implementation is in terms of GFLOPS, and what fraction of the peak perfor-
mance has been achieved.

Modern GPUs have amazing computational power, and it is worth it porting
computationally expensive applications such as evolutionary algorithms onto them.
However, we must be careful about making the performance comparisons. We have
clearly shown that a carefully implemented CPU version can be up to 30 times faster
than a single thread default-compiled GALib. We have also shown that realistically a
single NVIDIA GTX580 can outperform an Intel Xeon X5650 by a factor of around 12
while reaching an execution efficiency of 26% and performance of 405 GFLOPS. The
proposed CPU and GPU implementations have been released as open source at [5].

Acknowledgement. This research has been partially supported by the research grant
"Natural Computing on Unconventional Platforms", GP103/10/1517, Czech Science
Foundation (2010-13), and the research plan "Security-oriented research in informa-
tion technology", MSM 0021630528 (2007-13).

 A Fair Comparison of Modern CPUs and GPUs Running the Genetic Algorithm 435

References

1. Amdahl, G.M.: Validity of the single processor approach to achieving large scale compu-
ting capabilities. In: Proceedings of the April 1820 1967 Spring Joint Computer Confe-
rence, vol. 23(4), pp. 483–485 (1967)

2. Chandra, R., Dagum, L., Kohr, D., et al.: Parallel programming in OpenMP. Morgan
Kaufmann (2001)

3. Danalis, A., Marin, G., et al.: The Scalable HeterOgeneous Computing (SHOC) Bench-
mark Suite Categories and Subject Descriptors. In: Proceedings of the Third Workshop on
General-Purpose Computation on Graphics Processors, GPGPU 2010 (2010)

4. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press
(1975)

5. Jaros, J.: Jiri Jaros’s software website,
http://www.fit.vutbr.cz/~jarosjir/prods.php.en

6. Kirk, D.B., Hwu, W.-M.: Programming Massively Parallel Processors: A Hands-on
Approach. Morgan Kaufmann (2010)

7. Lee, V.W., Hammarlund, P., Singhal, R., et al.: Debunking the 100X GPU vs. CPU myth.
In: Proceedings of the 37th Annual International Symposium on Computer Architecture,
ISCA 2010, p. 451. ACM Press, New York (2010)

8. Luong, T.V.: GPU-based Island Model for Evolutionary Algorithms. Evaluation,
1089–1096 (2010)

9. Malony, A.D., Biersdorff, S., Shende, S., et al.: Parallel Performance Measurement of He-
terogeneous Parallel Systems with GPUs. Performance Computing

10. NVIDIA: CUDA Toolkit 4. 0 CURAND Guide (2011)
11. NVIDIA: Cuda c best practices guide (2011)
12. NVIDIA: Math Library Performance CUDA Math Libraries (2011)
13. Pospichal, P., Schwarz, J., Jaros, J.: Parallel genetic algorithm solving 0/1 knapsack prob-

lem running on the gpu. In: 16th International Conference on Soft Computing MENDEL,
pp. 64–70. Brno University of Technology, Brno (2010)

14. Salmon, J.K., Moraes, M.A., Dror, R.O., Shaw, D.E.: Parallel Random Numbers: As Easy
as 1, 2, 3. In: Proceedings of 2011 International Conference for High Performance Compu-
ting, Networking, Storage and Analysis, SC 2011, pp. 16:1–16:12. ACM Press, New York
(2011)

15. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU
Programming. Addison-Wesley (2010)

16. Shah, R., Narayanan, P., Kothapalli, K.: GPU-Accelerated Genetic Algorithms,
cvit.iiit.ac.in

17. Simonsen, M., Pedersen, C.N.S., Christensen, M.H.: GPU-Accelerated High-Accuracy
Molecular Docking using Guided Differential Evolution. In: Proceedings of the Genetic
and Evolutionary Computation Confernce GECCO 2011. ACM Press (2011)

18. Simões, A., Costa, E.: An Evolutionary Approach to the Zero / One Knapsack Problem
Testing Ideas from Biology. In: The Fifth International Conference on Artificial Neural
Networks and Genetic Algorithms (ICANNGA 2001), April 22-25 (2001)

19. Tomassini, M.: Spatially Structured Evolutionary Algorithms. Springer, Heidelberg (2005)
20. Wall, M.: GAlib: A C ++ Library of Genetic Algorithm Components. Statistics (August

1996)

	A Fair Comparison of Modern CPUs and GPUs Running the Genetic Algorithm under the Knapsack Benchmark
	Introduction
	Memory Layout of the GA
	Population Organization
	GA Parameters Storage
	Knapsack Global Data Storage

	Genetic Algorithm Routines
	Random Number Generation
	Genetic Manipulation Phase
	Fitness Function Evaluation
	Replacement Phase
	Statistics Collection

	Experimental Comparison of CPU and GPU Implementations
	Conclusions
	References

