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Abstract. Cartesian genetic programming (CGP) is a branch of genetic
programming which has been utilized in various applications. This paper
proposes to introduce coevolution to CGP in order to accelerate the task
of symbolic regression. In particular, fitness predictors which are small
subsets of the training set are coevolved with CGP programs. It is shown
using five symbolic regression problems that the (median) execution time
can be reduced 2–5 times in comparison with the standard CGP.

Keywords: Cartesian genetic programming, Coevolution, Symbolic
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1 Introduction

Cartesian genetic programming (CGP) is a variant of genetic programming (GP)
that uses a specific encoding in the form of directed acyclic graph and a mutation-
based search [11, 10]. CGP has been successfully employed in many traditional
application domains of genetic programming such as symbolic regression. It has,
however, been predominantly applied in evolutionary design and optimization
of logic networks.

The fitness evaluation is typically the most time consuming part of CGP
in these applications. In the case of digital circuit evolution, it is necessary to
verify whether a candidate n-input circuit generates correct responses for all
possible input combinations (i.e., 2n assignments). It was shown that testing
just a subset of 2n test vectors does not lead to correctly working circuits [6, 9].
Recent work has indicated that this problem can partially be eliminated in real-
world applications by applying formal verification techniques [15].

In the case of symbolic regression, k fitness cases are evaluated during one
fitness function call, where k typically goes from hundreds to ten thousands.
The time needed for evaluating a single fitness case depends on a particular ap-
plication. Usually, the goal of GP system design and GP parameters’ tuning is
to obtain a solution with predefined accuracy and robustness using a minimum
number of evaluated fitness cases or fitness function calls. In order to reduce
the evaluation time, fitness approximation techniques have been employed. One
of them is fitness modeling which uses fitness models with different degrees of
sophistication to reduce the fitness calculation time [7]. It is assumed that the

A. Moraglio et al. (Eds.): EuroGP 2012, LNCS 7244, pp. 182–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Coevolution in Cartesian Genetic Programming 183

fitness model can be constructed and updated in a reasonable time. The mo-
tivation for fitness modeling can be seen not only in reducing the complexity
of fitness evaluation but also in avoiding the explicit fitness definitions, coping
with noisy data, smoothing the fitness landscape and promoting diversity [14].
Fitness modeling is typically based on machine learning methods, subsampling
of training data or partial evaluation.

Fitness prediction is a low cost adaptive procedure utilized to replace fitness
evaluation. A framework for reducing the computation requirements of symbolic
regression using fitness predictors has been introduced for standard genetic pro-
gramming by Schmidt and Lipson [14]. Their method combines fitness prediction
with coevolution to eliminate disadvantages of a classic fitness modeling, in par-
ticular the effort needed to train a fitness model and adapt the level of approx-
imation and accuracy. The method utilizes a coevolutionary algorithm which
exploits the fact that one individual can influence the relative fitness ranking
between two other individuals in the same or a separate population [5]. Coe-
volving the training samples as the method of fitness modeling in GP has been
studied in many aplication domains [2, 3, 4, 8] and in the symbolic regression
problem [1, 12, 13, 14].

The goal of this paper is to introduce coevolving fitness predictors to CGP
and show that by using them, the execution time of symbolic regression can sig-
nificantly be reduced. The proposed coevolution of CGP programs and fitness
predictors in the symbolic regression problem uses two populations evolving
concurrently. Properties of individuals in the population of candidate programs
change in response to properties of individuals in the population of fitness pre-
dictors and vice versa. It is expected that CGP which has been accelerated using
coevolution will be implemented on a chip in our future work. Hence the pro-
posed approach will also be useful for evolvable hardware purposes. Note that
hardware implementation of CGP is straightforward which is not the case of
tree-based GP [10].

The proposed coevolutionary CGP method is compared with a standard CGP
on five symbolic regression problems. A brief comparison of CGP and tree-based
GP is also performed on selected benchmark problems.

The rest of the paper is organized as follows. Section 2 introduces Cartesian
genetic programming and its application to the symbolic regression problem. In
Section 3, a new coevolutionary approach to CGP is presented. Section 4 com-
pares the proposed coevolutionary algorithm with the standard CGP on five test
problems. Experimental results are discussed in Section 5. Finally, conclusions
are given in Section 6.

2 Cartesian Genetic Programming

In standard CGP (chapter 2 of [10]), a candidate program is modeled as an array
of nc (columns) ×nr (rows) of programmable elements (nodes). The number of
primary inputs, ni, and outputs, no, of the program is fixed. Each node input
can be connected either to the output of a node placed in previous l columns or
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Fig. 1. A candidate program in CGP, where l = 4, nc = 4, nr = 2, ni = 1, no = 1,
na = 2, Γ = {+ (1), - (2), * (3), / (4)} and chromosome is: 0, 0, 1; 0, 0, 1; 0, 0, 3; 2, 2, 2;
3, 1, 4; 3, 0, 3; 3, 6, 2; 3, 6, 1; 8

to one of the program inputs. The l-back parameter, in fact, defines the level of
connectivity and thus reduces/extends the search space. Feedback is not allowed.
Each node is programmed to perform one of na-input functions defined in the
set Γ . Each node is encoded using na + 1 integers where values 1 . . . na are the
indexes of the input connections and the last value is the function code. Every
individual is encoded using nc · nr · (na + 1) + no integers. Figure 1 shows an
example of a candidate circuit. While the primary inputs are numbered 0 . . . ni−1
the nodes are indexed ni . . . ncnr + ni − 1.

A simple (1+λ) evolutionary algorithm is used as a search mechanism. It
means that CGP operates with the population of 1 + λ individuals (typically, λ
is between 1 and 20). The initial population is constructed either randomly or
by a heuristic procedure. Every new population consists of the best individual
of the previous population (so-called parent) and its λ offspring. However, as a
new parent an offspring is always chosen if it is equally as fit or has better fitness
than the parent. The offspring individuals are created using a point mutation
operator which modifies h randomly selected genes of the chromosome, where h is
the user-defined value. The algorithm is terminated when the maximum number
of generations is exhausted or a sufficiently working solution is obtained.

For symbolic regression problems, the goal of evolution is usually to minimize
the mean absolute error of a candidate program response y and target response
t. The fitness function (taking candidate program s as its argument) is then
defined

f (s) =
1

k

k∑

j=1

|y(j)− t(j)| (1)

where k is the number of fitness cases. Alternatively, the number of hits can
represent the fitness value. The number of hits is defined

f (s) =

k∑

j=1

g (y (j)) , where (2)

g (y (j)) =

{
0 if |y (j)− t (j)| ≥ ε
1 if |y (j)− t (j)| < ε

(3)

and ε is a user-defined acceptable error.
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3 Coevolution of Fitness Predictors in CGP

The aim of coevolving fitness predictors and programs is to allow both solutions
(programs) and fitness predictors to enhance each other automatically until a
satisfactory problem solution is found. We propose to adopt Schmidt’s and Lip-
son’s approach [14] using CGP for the task of symbolic regression. Figure 2 shows
the overall scheme of the proposed method. There are two concurrently working
populations: (1) candidate programs (syntactic expressions) evolving using CGP
and (2) fitness predictors evolving using a genetic algorithm.

Fig. 2. Coevolution of candidate programs and fitness predictors
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3.1 Population of Candidate Programs

Evolution of candidate programs is based on principles of CGP as introduced
in Section 2. The fitness function for CGP is defined as the relative number of
hits. There are, in fact, two fitness functions for candidate program s. While the
exact fitness function fexact(s) utilizes the complete training set, the predicted
fitness function fpredicted(s) employs only selected fitness cases. Formally,

fexact (s) =
1

k

k∑

j=1

g (y (j)) (4)

fpredicted (s) =
1

m

m∑

j=1

g (y (j)) (5)

where k is the number of data points in the training set and m is the number of
data points in the fitness predictor (i.e., m is the size of a subset of the training
set).

3.2 Set of Trainers

The set of trainers which contains several candidate programs is used to evaluate
fitness predictors. The proposed implementation differs from [14] in the organi-
zation and update strategy. In particular, the set of trainers is divided into two
parts. The first part is periodically updated from the population of candidate
programs (the best-scored candidate program is sent to the trainers set if its
fitness value differs from the best-scored candidate program in the previous gen-
eration) and the second part is periodically and randomly generated to ensure
genetic diversity of the set of trainers. The size of trainers set is kept constant
during evolution. For every new selected or generated trainer, the exact fitness
is calculated and the new trainer replaces the oldest one in the corresponding
part of the trainers set.

3.3 Population of Fitness Predictors

Fitness predictor is a small subset of training data. An optimal fitness predictor
is sought using a simple genetic algorithm (GA) which operates with a popula-
tion of fitness predictors. Every predictor is encoded as a constant-size array of
pointers to elements in the training data. In addition to one-point crossover and
mutation, a randomly selected predictor replacing the worst-scored predictor in
each generation has been introduced as a new genetic operator of GA. The fit-
ness value of predictor p is calculated using the mean absolute error of the exact
and predicted fitness values of trainers

f (p) =
1

u

u∑

i=1

|fexact (i)− fpredicted (i)| (6)
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where u is the number of candidate programs in the trainers set. The predictor
with the best fitness value is used to predict the fitness of candidate programs
in the population of candidate programs.

3.4 Implementation

Two threads are used. The first one is responsible for candidate programs evolu-
tion using CGP. The second thread performs evolution of fitness predictors using
a simple genetic algorithm. The coevolution is implemented as follows. The first
thread randomly initializes both populations and also randomly creates the first
individuals in the set of trainers. After the second thread is activated both pop-
ulations are evaluated.

CGP evolution loop begins with loading the fittest training data sample from
population of fitness predictors. This is performed periodically, but not in every
iteration due to a slower rate of fitness predictors evolution. This results in
a lower computational effort. It is not necessary to run the fitness predictor
evolution as fast as the candidate program evolution, because fast changes of
the best rated fitness predictor do not contribute to convergence.

The next step involves calculating the predicted fitness of all individuals in the
candidate program population. The best rated individual is then selected and
its number of hits is checked. If the predicted fitness value is not in the interval
of acceptable fitness values, CGP will create a new population, eventually new
trainer will be selected or generated. If predicted fitness value falls into the
interval of acceptable fitness values, the exact fitness of candidate program is
evaluated. If the exact fitness falls into the interval of acceptable fitness values,
a solution is found, and coevolution is terminated. Otherwise, the update of the
best rated fitness predictor is signaled and the coevolution has to continue.

The second thread performs the evolution of fitness predictors. The fitness
values of all fitness predictors are evaluated using trainers. The best rated pre-
dictor is selected and stored to shared memory. The next step involves creating of
a new generation of fitness predictors by means of GA operators. Subsequently,
the GA waits for a signal from the first thread. After receiving the signal, the
GA loop continues with the next iteration, or if a solution is discovered, GA is
terminated.

4 Results

This section presents benchmark problems, experimental setup, experimental
evaluation of the proposed coevolutionary approach to CGP and its comparison
with standard CGP.

4.1 Benchmark Problems

Five test functions (F1 – F5) were selected as data point sources for evaluation
of the proposed method:
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(a) Training data set F1 (b) Training data set F2 (c) Training data set F3

(d) Training data set F4 (e) Training data set F5

Fig. 3. Training data sets: x values on horizontal axes, f(x) values on vertical axis

F1 : f(x) = x2 − x3, x ∈ 〈−10, 10〉 (7)

F2 : f(x) = e|x| sin(x), x ∈ 〈−10, 10〉 (8)

F3 : f(x) = x2esin(x) + x+ sin
( π

x3

)
, x ∈ 〈−10, 10〉 (9)

F4 : f(x) = e−xx3 sin (x) cos (x)
(
sin2 (x) cos (x) − 1

)
, x ∈ 〈0, 10〉 (10)

F5 : f(x) =
10

(x− 3)
2
+ 5

, x ∈ 〈−2, 8〉 (11)

In order to form a training set, 200 equidistant distributed samples were taken
from each function (see Fig. 3). Functions F1, F2 and F3 are taken from [14]
and functions F4 and F5 from [16]. Table 1 shows acceptable errors and the
acceptable number of hits.

4.2 Experimental Setup

Table 1 shows that various settings of the components involved in the proposed
coevolutionary method have been tested. Over 100,000 independent runs were
performed to find the most advantageous setting which is presented in the right-
most column and which is later used in all reported experiments.
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Programs are evolved using CGP with the following setup: l = nc, nr = 1,
ni = 1, no = 1, every node has two inputs (i1, i2) and Γ = { i1 + i2, i1 − i2,
i1 · i2, i1

i2
, sin (i1), cos (i1), e

i1 , log (i1)}. Table 1 shows various setting of nc, λ
and h considered during parameters tuning.

Fitness predictors evolution is conducted using a simple GA. Table 1 shows nu-
merous setting of the chromosome length, population size and genetic operators.

Other parameters of coevolution, such as the size of trainers set, frequency
of trainers substitutions and predictors evolution deceleration are also given in
Table 1.

4.3 Comparison of Coevolving CGP with Standard CGP

The proposed coevolutionary algorithm was compared with standard CGP us-
ing test functions F1-F5. Parameters of both algorithms were chosen according
to Table 1 and 50 independent runs were performed. Table 2 gives the result-
ing success rate (the number of runs giving a solution with predefined quality),
the number of generations, the number of data point evaluations and time to
converge calculated as median out of 50 independent runs. Figure 4 shows quar-
tile graphs of the number of generations and data point evaluations for all five
training data sets.

Figure 5 shows the progress of the best fitness value during a typical run on the
F2 data set. It can be seen that while the progress is monotonic for the standard
CGP, the coevolutionary algorithm produces very dynamic changes ending with
a significant increase of the best fitness value at the end of evolution. The changes
of the best fitness value are caused by updating of the best fitness predictor.

Table 1. Experimental setup

Parameter Tested values
Selected
values

CGP

Chromosome length nc 16, 24, 32, 64, 96, 128 32
Population size λ 4, 8, 12, 16, 20 12
Number of mutations h

1-4, 1-8, 1-12, 1-16 1-8
per individual

Trainers,
All trainers substitution 1 per 500 generations of CGP 500
Trainers set size 8, 12, 16, 24, 32 8

Coevolution Predictor evolution 1 per 10, 25, 50, 100, 150, 200
100

deceleration generations of CGP

GA-Predictors

Chromosome length 4, 8, 12, 16, 24, 32, 64 12
Population size 8, 12, 16, 24, 32, 48, 64, 96, 128 32

Offspring creation
2-tournament selection,
single point crossover

Mutation probability 0.2 0.2

Test functions
Acceptable error F1, F2: 0.5; F3: 1.5;
of data point F4, F5: 0.025
Acceptable number of hits 97% 97%
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Table 2. Comparison of standard CGP and CGP with coevolution for five training
data sets

F1 F2 F3 F4 F5

Success rate
stand. CGP 100% 100% 78% 80% 24%
coevolution 100% 100% 100% 100% 100%

Generations to stand. CGP 1.11 · 103 4.46 · 103 1.76 · 105 7.15 · 105 1.36 · 106
converge (median) coevolution 2.62 · 103 2.53 · 103 1.10 · 105 1.00 · 106 1.34 · 106
Data point evaluations stand. CGP 2.68 · 106 1.08 · 107 4.24 · 108 1.72 · 109 3.28 · 109
to converge (median) coevolution 5.20 · 105 5.01 · 105 2.19 · 107 2.00 · 108 2.67 · 108
Time to converge stand. CGP 35.4611 55.1476 98.8585 44.0388 104.6826
(median) [s] coevolution 17.4588 21.1178 18.1257 17.1079 20.4529

(a) Standard CGP. (b) CGP with coevolution.

Fig. 5. Progress of the best fitness value during a typical run for the F2 data set

5 Discussion

It can be seen from Table 2 that the proposed coevolutionary method has reached
a satisfactory solution using much fewer data point evaluations than the standard
CGP. The speedup measured on the Intel R© CoreTM i5-2500 machine is between
2.03 (F1) and 5.45 (F3). Detailed analysis of execution time is shown in Fig. 6
where quartile graphs are given for 50 independent runs. However, it should be
pointed out that the standard CGP evaluates 200 fitness cases in every fitness
function call while the coevolutionary algorithm evaluates only 12 fitness cases.
The number of generations is similar for both methods. A notable observation
is that while the standard CGP was not able to produce a satisfactory solution
in 23.6% runs the proposed method reached a satisfactory solution in all cases.
Moreover, the results generated by multiple runs of coevolutionary CGP are
more stable than those produced by the standard CGP.

There is only one data set (F2) and corresponding results of the tree-based
coevolutionary GP [14] which can serve for a direct comparison with our CGP-
based coevolution. While tree-based GP requires 1 · 103 generations and 7 · 106
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(a) Standard CGP. (b) CGP using coevolution.

Fig. 6. Time of evolution

data point evaluations to converge, the proposed CGP-based approach requires
3 · 103 generations and only 5 · 105 data point evaluations to converge. The
proposed method seems to be competitive with [14].

6 Conclusions

Symbolic regression has not been considered as a typical application domain
for CGP. We have shown in this paper that CGP equipped with coevolution of
fitness predictors can significantly be accelerated in this particular application.
The speedup obtained for five test problems is 2.03 – 5.45 over the standard
CGP. Results are also very competitive with the tree-based GP.

Our future work will be devoted to utilization of the proposed coevolutionary
algorithm in other applications domains where the standard CGP has been suc-
cessful so far. Another goal will be to implement the coevolutionary CGP on a
chip and use it in a real-world application.
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