
Lightweight benchmarking of platforms

for network traffic processing

Pavol Korcek, Martin Zadnik

Brno University of Technology, IT4Innovations Centre of Excellence

Bozetechova 2, Brno, Czech Republic

Email: {ikorcek, izadnik}@fit.vutbr.cz

Abstract—Embedded processors seem to be a viable solution
for network traffic processing. We can observe that the current
network development boards utilize ARM, MIPS rather than
specialized network processors. The processors for embedded
applications are low cost, low power but their performance is
not clear. In this work we aim at revealing their performance in
terms of their throughput and processing power. To this end, we
select three network processing functions such as longest prefix
match, filtering and pattern matching. We benchmark several
available platforms with embedded processors by implementing
and running these tests in a controlled environment.

I. INTRODUCTION

Building low cost specialized network devices is more

and more challenging due to increasingly higher network

bandwidth. Even more so, if the goal is to achieve also low

power consumption which might allow the device to utilize

Power over Ethernet or to withstand short-term power failures

using batteries.Our intention is to find out whether currently

available platforms, from the area of embedded networking,

may address this challenge, i.e., enough performance and low

power consumption.

There are several off-the-shelf platforms which might be

customized to perform specific network traffic processing, e.g.

home-based routers. Some of these routers support Open-

WRT [1] which also provides API to program packet handling.

Other platforms constitute of development boards and low

power general purpose platforms with specialized toolchain.

Although the specification of these platforms is clear from

the component perspective their performance in case of net-

work traffic processing has not been well documented.

General metrics, such as frequency, provides only rough

estimation of the performance. The suitability of a given plat-

form for a particular application should be revealed through

benchmarking.

Our goal is to design and implement a test suite and report

on the results we obtained during measurement of several

platforms which might serve for light-weight processing of

network traffic such as intelligent taps, probes, tunnels, load

balancers, etc.

II. RELATED WORK

Specialized benchmarks have been proposed for specialized

processors such as benchmark for DSP processors by Berkeley

Design Technology or MediaBench [2].

Also network processors (NPU) received their specific

benchmarks. Commbench [3] and NetBench [4] benchmarks

contain various tasks such as headerprocessing applications

(Radix-Tree Routing, packet fragmentation, Deficit round

robin scheduling, tcpdump kernel) and payload processing (ci-

phering, compressing, Reed-Solomon forward error correction,

jpeg compression).

Further, the Embedded Microprocessor Benchmark Consor-

tium [5] defines networking benchmark within its large set 34

application benchmarks. The EEMBC networking benchmarks

consists of Patricia route look-up, OSPF Dijkstra’s algorithm,

packet duplication.

Our report contributes to and extends previous work in three

aspects. We test processors for embedded (mostly network-

ing) applications in the light of network traffic processing

and we report the obtained results. Besides the processors

performance, we also test network throughput of the complete

platforms which host the processors. We propose new test suite

which consists of specific state-of-the-art network algorithms.

III. DESIGN OF TESTS

We propose two types of tests. The first is focused on a

measurement of network throughput during routing, forward-

ing or packet capture whereas the rest of the tests is focused

on application-specific network operations.

A. Test of network throughput

Throughput tests aim at measuring throughput of a device

when it is deployed in the network and processes passing

traffic. In case of a device with a single network port, it is

possible to measure throughput when the device captures or

transmits packets. Whereas for multi-port devices the tests

are designed to measure throughput the device is capable

to achieve when forwarding or routing passing packets. The

throughput is measured in a number of bits per second on sev-

eral packet lengths (64, 256, 512, 1024, 1500). The throughput

is measured using iperf tool [6]. In case of forwarding and

routing throughput, the iperf client and server are hosted by

high-performance PCs which are connected together via the

device under test (DUT). In case of a single port device, the

DUT is connected directly with the measurement PC and the

DUT runs once as an iperf client and once as an iperf server.

978-1-4673-1188-5/12/$31.00 ©2012 IEEE

B. Performance measured on network algorithms

We select three basic network algorithms in order to mea-

sure DUTs performance when executing specific tasks upon

an arrival of each packet. We consider the selected algorithms

to be the most common in the domain of application-specific

network traffic processing and measurement.
1) Test of LPM: Longest Prefix Match (LPM) is an oper-

ation essential for routing and IP packet classification. The

operation leads to many memory accesses due to a trie

structure. To address this potential bottleneck there are many

variations utilizing optimized and extended tries and hash

tables. Still the number of memory accesses might be an issue

and therefore it is important to test promising LPM algorithms.

TreeBitmap (TBM) [7] is based on a concept of a Trie.

It assembles multiple nodes of a trie into multinodes. Each

of these nodes represents a full subtree of the same shape.

A lookup operation upon such a structure allows traversing

multiple tree-levels by a single memory access which reduces

the number of total accesses per a complete lookup. Moreover,

it provides quite efficient range encoding of the multinodes

which reduces memory consumption.

Shape Shifting Tries [8]. Similarly to TBM, the SST modi-

fies a simple trie. It assembles multiple nodes in a multinode

with the main difference that the shape of each subtree

represented by the multinode may be different to others and

is stored in each multinode. This way a sparsely occupied

tree may be represented more effectively which leads to fewer

memory lookups but higher computational requirements.

The number of bits traversed at each level of the search

through the tree is called the stride length. We experiment

with two stride lengths for each look-up algorithm to see the

impact of the stride on the performance.
2) Test of filtering: Effective filtering scheme is essential

for applications which process only a portion of the whole

traffic. The filter must be simple enough to deal with a full

traffic rate and at the same time it has to consume only a

small amount of resources. Generally, Bloom filters and their

variants are considered very effective and have been proposed

as a solution for many applications. We test basic Bloom

filter and Counting Bloom filter. The test inherently includes

computation of Bob Jenkin’s hash function (lookup3) with

various seeds. The hash values are used as indexes to access

the filter.

Bloom Filter (BF). Bloom filter [9] is a probabilistic datas-

tructure that captures information about the presence of a given

element in a set which elements were previously fingerprinted

into the datastructure. It provides a false answer in case when

the element was not fingerprinted but its fingerprint overlaps

with fingerprints of others. The underlying datastructure is

a one bit-wide array. An element is fingerprinted into the

array by setting up ones at positions indexed by multiple

hash functions computed on the key of the inserted element.

The query is performed by computing hashes on the queried

element and inspecting bits at positions given by the hashes.

If all bits are set up to one then the element has been inserted

or it is a false positive with certain probability. Basic Bloom

filter supports only insert and query operations. The removal

of a fingerprint would invalidate other fingerprints as well.

Counting Bloom Filter (CBF). CBF [10] extends Bloom

filter with the ability to delete an element from a filter. CBF

underlying datastructure is an array of counters (suggested bit

length of a counter in literature is 4 bits). The fingerprint of

an element is inserted into the filter by incrementing counters

at positions indexed by multiple hash functions. Whereas,

by decrementing the counters the element is removed. If

indexed counters are greater than zero then the element is

present in the set. There are several parameters (of both Bloom

filters) that need to be set such as number of elements in the

inserted set, number of bits/counters of the array, probability

of false positive. During testing these parameters are set up to

different values but clearly the whole parameter space cannot

be evaluated.

3) Test of Pattern matching: The tests above are focused

on network or transport layer. But many applications require

to parse application layer or to inspect packet payload. This

constitutes of pattern or regular expression matching on a fairly

large database of expressions. We test an algorithm based on

deterministic automaton as well as an algorithm based on a

combination of deterministic and non-deterministic automaton

which promises better theoretical cost.

Delay Input DFA. D2FA [11] is based on common determin-

istic finite automaton (DFA). It extends DFA with additional

implicit transitions. Implicit transition is taken when no other

transitions from the current state are allowed. The implicit

transitions may reduce the total number of states necessary to

represent the whole pattern database. The next state logic is

encoded in a transition table. Upon each incoming character,

one or more memory accesses are required into the transition

table. The current state is saved in a register.

Hybrid FA (HFA). HFA [12] combines DFA and non-

deterministic finite automaton (NFA). HFA utilizes NFA to

represent regular expressions and DFA to represent patterns.

Such division allows reducing the number of states hence

reducing the state transition table. On the other hand, eval-

uation of NFA parts may require evaluating potentially viable

transitions.

IV. EVALUATION

The evaluation of selected embedded platforms was per-

formed according to the proposed tests. The evaluation of

raw throughput was followed by performance measurement

of several network algorithms.

A. Tested platforms

It is usually not straight-forward to alter functionality of

home-based routers. It requires replacing an original OS with

an open-source OS such as OpenWRT. Needless to say, that

the router must be ready to support such an operation. There

might be obstacles such as insufficient quantity of flash or

RAM, no Linux/driver support or too old processor.

Table I lists tested platforms with their configuration. First

three selected platforms are based purely on the MIPS archi-

tecture. First one, Linksys WAG160N, is widely used home-

based router but for 100 Mbps networks only. Next two devices

are almost the same. The only difference between the second

D-Link DIR-825 and the third Ubiquiti platform is in the size

of the main memory.

Next platforms are based on well-known ARM architecture.

First one, denoted as Econa is a small 1 Gbps development

platform with quite an old type of processor running only at

frequency of 250 MHz but with a quite large main memory

(512 MB, compared to other selected platforms). Although

we made algorithmic tests for this platform, we are not going

to show them in this work. We made this decision due to

very low speed caused not only by small processor frequency

but also because of old processor architecture. On the other

hand, this platform provides a unique hardware support for

packet processing (HNAT - Hardware Network Address Table)

accessible using special driver from applications. Whenever

possible, the throughput tests on this platform explore available

variants, i.e., the fast data path using HNAT as well as

the slow path through processor. The hardware support can

be disabled by not uploading its associated driver module.

Second ARM-based platform is Avila GW2348 with Intels’

XScale processor running at 533 MHz. This is a specially

modified processor (DES, AES hardware encryption support)

for network applications running on 100 Mbps networks. Last

one in ARM-based group is a classical network disc - Seagate

Dockstar. It is equipped with 1.2 GHz processor of a bit older

ARM architecture compared to the previous one. This platform

has only one 1 Gbps port.

MikroTIK RB800 is a router board used not only for small

to medium enterprises networking. Its processor is based on

Freescale PowerQUICC3, which is the third generation of pro-

cessors especially designed for networking. Beside L1 cache,

this processor has also 256 kB of L2 cache. It also utilizes

a different type of OS (RouterOS, deployed by MikroTIK)

which supports its hardware features correctly. On the other

side, it was not possible to run algorithmic tests due to no

utilizable toolchain support for this platform.

Finally, we select to test two personal computers with

one 1 Gbps network port. The aim of this selection is to

demonstrate a gap, if there is any, among embedded and

common processors. First one, small computer eeePC is based

on Intel Atom D510 running at 1660 MHz with 2 GB main

memory and 1 MB L2 cache. The Intel Atom processor design

aims at deployment in embedded computing [13]. The last one

in Table I is an EsprimoPC equipped with fast processor. It is

Intel Core2Duo running at 2.4 GHz with its 3 MB L2 cache

and 3 GB main memory.

B. Throughput tests

The throughput measurement was performed by iperf tool as

proposed in the design section. Besides various packet lengths

we also tested several combinations of network and transport

protocol, i.e., TCP/UDP for both IPv4 and IPv6, if IPv6 is

available on the given platform.

We assume that tested embedded platforms achieve lower

network throughput than current personal computers. There-

fore we utilize ordinary PCs as packet generators or capture

machines and measure the bottleneck of the DUT very cheaply.

Whenever the throughput of any tested DUT is close to

the reference PCs throughput it is not possible to estimate

maximum throughput. Naturally, the first test was carried out

to reveal the throughput of two directly connected PCs.The

lowest throughput of 300 Mbps is achieved on the shortest

packet-length. The full link capacity is reached at length 512

and higher.

Multi-port devices are compared in forwarding and routing

performance whereas single port devices are evaluated in terms

of their capturing (iperf client) and transmitting (iperf server)

throughput. The methodology of throughput measurement is

managed by iperf internally. In case of TCP iperf tunes TCP

control parameters to achieve maximal bandwidth utilization

with no packet loss and reports the achieved throughput. In

case of UDP, we setup the bandwidth to 1 Gbps and observe

reported packet loss. Only correctly delivered packets are

accounted for the bandwidth report. Each test of particular

configuration lasted 10 s and was repeated 5 times. The

presented values in graphs are arithmetical average of these 5

measurements. We observed that the deviations of successive

tests were at most 2% of the average results in all cases.

Forwarding. The achieved forwarding throughput for TCP

and UDP is depicted in Fig. 1 and 2 respectively. If a platform

supports IPv6 then the results are stated for both protocols and

can be recognized by the suffix in the label. The Figures show

that the highest forwarding throughput is achieved by D-Link

and Ubiquiti consistently for TCP and UDP. Forwarding is

the only case when the throughput of some DUTs is higher

than the throughput of reference PCs as it is most likely

performed by dedicated chip in tested platforms. From the

platforms supporting 1 Gbps Ethernet, Econa achieves the

lowest throughput when tested without enabled HNAT. If

its HNAT is utilized then its forwarding throughput exceeds

the reference PC as well. Therefore the worst forwarding

throughput from measured 1 Gbps platforms is achieved by

MicroTik. LinkSys as a 100 Mbps router almost achieves its

maximum. In case of TCP, the forwarding throughput grows

with increasing packet length in most tests whereas, in case of

UDP, better forwarding bandwidth is achieved using 1024 B

long packets. This happens due to a limited buffer size of

the DUT when the throughput limit of the DUT is reached.

The buffer is more likely to accommodate a shorter packet,

moreover, if there is a packet loss then it is more efficient to

lose shorter packet than longer one.

Routing. The achieved routing throughput for TCP and UDP

is depicted in Fig. 3 and 4 respectively. For TCP, The Econa

platform with enabled HNAT outperforms other platforms. The

second best ends up Ubiquiti, surprisingly, when routing IPv6

traffic. D-Link achieves quite low throughput for both IPv4

and IPv6 traffic. Again, routing throughput of UDP reveals

that it is better to use packets of length 1024 B to achieve

better link utilization.

TABLE I: Configuration of tested platforms.

Label Processor type Architecture
Frequency
[MHz]

Cache [kB]
Memory
[MB]

OS type

Linksys
WAG160N

Broadcom
BCM6538

MIPS 300 I:32, D:16 32 OpenWRT

D-Link DIR-825
Atheros
AR7161

MIPS 680 24 64 OpenWRT

Ubiquiti
Atheros
AR7161

MIPS 680 24 128 OpenWRT

Econa
Cavium
StarCS1102

ARMv4T 250 I:16, D:16 512 Linux, 2.6.16

Avila GW2348 Intel IPX425
ARMv5
XScale

533 I:32, D:32 64 OpenWRT

Seagate
Dockstar

Marvell
Kirkwood

ARMv5TE 1200 I:16, D:16 128 OpenWRT

MicroTIK
RB800

Freescale
MPC8544

Power
QUICC3

800 I:32, D:32 256 RouterOS 4.0

eeePC
Intel
AtomD510

- 1660 L2:1024 2048 Linux, 2.6.35

EsprimoPC Intel Core2Duo - 2400 L2:3072 3072 Linux, 2.6.38

Packet Length [B]

D−Link−IPv6
Ubiquiti−IPv4
D−Link−IPv4
Link−IPv4
Micro−IPv4
Econa

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t [

M
bp

s]

Ubiquiti−IPv6

Fig. 1: Forwarding throughput TCP.

Packet Length [B]

D−Link−IPv6
Ubiquiti−IPv4
D−Link−IPv4
Link−IPv4
Micro−IPv4
Econa

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t [

M
bp

s]

Ubiquiti−IPv6

Fig. 2: Forwarding throughput UDP.

Iperf capture and transmit. The achieved throughput for

TCP client and server configuration is depicted in Fig. 5.

The Figure shows that the throughput of all devices with

either IPv4 or IPv6 configuration is quite similar. Surprisingly,

Seagate is far slower for UDP (350 Mbps for longest packets)

than expected considering 1.2 GHz processor. All tested

devices achieve better throughput when receiving packets.

The difference is approximately 100 Mbps in comparison to

transmitting throughput.

The achieved throughput for UDP client and server is not

depicted due to a lack of space. In case of this measurement

with iperf, the throughput of UDP is always lower than

of a TCP, but remarkably, UDP/IPv6 traffic achieves better

performance than UDP/IPv4.

During throughput tests, we have made several observations:

 1200

Link−IPv4
D−Link−IPv4

 1400 1600

Ubiquiti−IPv4

Micro−IPv4

T
hr

ou
gh

pu
t [

M
bp

s]

Packet Length [B]

D−Link−IPv6

 0

 100

Ubiquiti−IPv6
 200

 300

 400

 500

 600

 0 200 400 600 800

Econa

 1000

Fig. 3: Routing throughput over TCP/IPv4.

 1200

Link−IPv4
D−Link−IPv4

 1400 1600

Ubiquiti−IPv4

Micro−IPv4

T
hr

ou
gh

pu
t [

M
bp

s]

Packet Length [B]

D−Link−IPv6

 0

 100

Ubiquiti−IPv6
 200

 300

 400

 500

 600

 0 200 400 600 800

Econa

 1000

Fig. 4: Routing throughput over UDP/IPv4.

• Specialized HW support can significantly improve

throughput performance

• UDP is likely to reach overall lower throughput with

correctly delivered packet than TCP

• IPv6 routing might be on some platforms faster than IPv4

• Processor frequency influences the throughput less than

expected

C. Algorithmic tests

The proposed tests of network algorithms were implemented

in C. None of the algorithms utilizes any specific feature of

the platform (e.g., there is only one instance of the algorithm

running with no extra parallelism although dual core processor

might be available). The tests are intentionally designed and

implemented in such a way that they can be easily compiled

 200 400 600 800 1000 1200

Seagate−client

 1400

eeePC−client

 1600

eeePC−server

T
hr

ou
gh

pu
t [

M
bp

s]

Packet Length [B]

EsprimoPC−client

EsprimoPC−server

 0
 100

Seagate−server

 200
 300
 400
 500
 600
 700
 800
 900

 0

Fig. 5: Throughput of DUT running iperf receiving TCP.

for any platform and any OS. This is achieved due to inde-

pendence of the test suite on any specific software library and

independence on any specific packet interface.

Rather than to read input data from a packet interface,

the input data are retrieved directly from a memory where

they are loaded from a file before a test starts. As a result

the overhead of a packet interface is not accounted for. This

overhead is measured separately during network throughput

tests. The intention of algorithmic tests is to measure solely the

fitness of a specific processor architecture (ALU, instruction

set, CPU pipeline, memory hierarchy, etc.) for a given network

operation. It takes various time each architecture to finish

processing the input dataset. The metric we use for comparison

is the number of operations per second. An operation consists

of an access to the block of input data (block of data represents

a packet or packet header), execution of a network algorithm

and producing the result which is stored in the memory so

that correctness of the output can be always verified. The

number of operations per second gives an upper bound on

what is possible to achieve on a given platform since in a

real deployment the overhead of the packet processing must

be accounted for.

We measured the performance with gcc compiler opti-

mization set up to various levels. In this paper we report

only the fastest results which were consistently achieved with

optimization -O3 on all platforms. The configurations and

workloads of all algorithmic tests are summarized in Table II.

TABLE II: Workload and configuration for tests.

LPM Prefixes [#] Depth [av,max] Queries [#]

BGP-FIT 1009 1.2,5 23204

BGP-BUT 10084 1.3,6 3382

Filt. Size
[items,bits]

Hashes
[#]

Insert
[#]

Query
[#]

Remv
[#]

Req.
[#]

BF 64K,64K 8 192000 192000 - -

CBF 64K,256K 8 192000 192000 96000 96000

Matching Patterns
[#]

Regexp
[#]

D2FA
States [#]

HFA
States [#]

aut1 1 0 6 8

aut2 2 1 16 18

aut3 0 35 231 44

LPM. We use two BGP tables and we test TBM with stride

length 4 (tbm4) and 5 (tbm5) and SST with stride length 7

 3000

 4000
Seagate

D−Link
 5000

 6000

sst7 sst15

Avila

tbm4 tbm5

EsprimoPC

Pe
rf

. [
th

ou
s.

 o
f

lk
ps

/s
]

Stride

 0

Linksys

 1000

Ubiquiti
 2000

eeePC

Fig. 6: Performance of LPM algorithms.

Linksys

 0
 10000

Ubiquiti

 20000
 30000
 40000

Esprimo

Avila
 50000
 60000
 70000
 80000
 90000

D−Link

 100000

Seagate

insert query
Pe

rf
. [

op
er

at
io

ns
/s

]
Operation

eeePC

Fig. 7: Performance of filtering with Bloom Filter.

(sst7) and 15 (sst15) for each table. We display results for the

larger dataset only as the evaluation results are consistent on

both tables.

Figure 6 compares performance of TBM and SST in the

number of lookups per second for each platform. The in-

teresting thing to notice is that D-Link and Ubiquiti (MIPS

architecture) work very close to EsprimoPC (Intel architecture)

which outperforms any embedded processor in other tests.

Also, eeePC (another Intel architecture) is nearly two times

slower compared to D-Link or Ubiquiti. EeePC is also slower

than Avila (ARM architecture) running only at 533 MHz.

Moreover eeePC performance in this task is very close to

only 300 MHz Linksys (again MIPS architecture). It also

seems that the embedded processors support SST better as

the performance is constantly higher in comparison to TBM.

Filtering. Initially, all items in the set are inserted in the filter

then the filter is queried with random lookups. In case of CBF,

the query stage is followed by removal of 1

3
of items from the

filter. Finally, the resulting filter is queried again.Figures 7

and 8 show the performance measured individually for each

operation.

We can see that each operation is approximately of the same

cost across all platforms since all operations must compute

hashes and access memory to alter the array. The exception is

EsprimoPC in which the query operation runs very fast. We

argue that such behavior is caused by large caches (3 MB)

in comparison to other processor architectures. As a result

the cache can accommodate whole filter. From within the

set of classical embedded processors, the best performance

is achieved this time by Seagate platform. In this task, all

processors with MIPS architecture seem to be a bad fit.

Pattern Matching. Pattern matching performance was mea-

query remove

Linksys

requery

Pe
rf

. [
op

er
at

io
ns

/s
]

Operation

D−Link

 1000

 10000

 100000

 1e+06

Esprimo

Ubiquiti
Seagate

insert

Avila

eeePC

Fig. 8: Performance of filtering with Counting Bloom Filter.

aut3

Pe
rf

. [
th

ou
s.

 o
f

ch
ar

s/
s]

Ubiquiti

D−Link

Automaton

Seagate

 100

 1000

Avila

Esprimo

 10000

 100000

aut1

Linksys

aut2

eeePC

Fig. 9: Pattern matching performance of D2FA.

sured using 3 pattern/regular sets, each with different char-

acteristics. The results are presented in Fig 9 and 10. The

measurements confirm the assumption that D2FA is better for

pattern matching while HFA performs better on the sets with

mix of patterns and regular expressions.

Final note. We also have tested μ-Blaze processor (8.00.b)

running at 50 MHz synthesized into Spartan-3 FPGA on the

Xilinx Spartan-3E XC3S1600E development board. The per-

formance is 10+ times lower than the performance of classical

embedded processor which is in line with more than ten

times lower frequency. We have evaluated two versions, one

with branch predictor and two times bigger cache memories

and the other without branch predictor. The branch prediction

and increased cache size improved μ-Blaze performance by

approx. 100% for LPM algorithms but only for ten percent in

case of other algorithms.

During tests, we have made several observations:

• In case of filtering and pattern matching, the higher

processor frequency the better result.

• For LPM, eeePC is more than two times slower than

MIPS processor running at 680 MHz.

• Again for LPM, faster (1.2 GHz), but older (ARMv5TE)

processor is slower compared to newer (ARMv5-XSCale)

running on lower frequency (533 MHz).

• MIPS architecture is generally faster than ARM for LPM.

• Only a small change in μ-Blaze architecture invokes more

than 2 times better performance.

V. CONCLUSION

The paper reported measurement results obtained on sev-

eral currently available platforms for embedded networking.

This paper also presented a design and implementation of a

Automaton

Seagate

D−Link

 10

 100

 1000
Avila

 10000

 100000

Esprimo

aut1 aut2

Linksys

aut3

Ubiquiti

Pe
rf

. [
th

ou
s.

 o
f

ch
ar

s/
s] eeePC

Fig. 10: Pattern matching performance of HFA.

test suite to measure and compare performance of platforms

for embedded network applications. The suite can be easily

ported and compiled on any platform and OS. It consists of

algorithm source codes, setup and measurement scripts, input

data samples and generators. We provide all materials publicly

available 1 so that designers and researchers can test and

compare platforms of their interest. In our future work, we plan

to evaluate further platforms when these become available.

Acknowledgments. This work has been partially supported

by the Research Plan MSM 0021630528, IT4Innovations

Centre of Excellence project CZ.1.05/1.1.00/02.0070, the grant

BUT FIT-S-12-1 and Sec6net project VG20102015022.

REFERENCES

[1] Openwrt team. openwrt wireless freedom, 2012.
[2] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: a tool

for evaluating and synthesizing multimedia and communicatons systems.
In Proceedings of the 30th annual ACM/IEEE international symposium

on Microarchitecture, MICRO 30, pages 330–335, 1997.
[3] T. Wolf and M. Franklin. Commbench-a telecommunications benchmark

for network processors. In Proceedings of the 2000 IEEE International

Symposium on Performance Analysis of Systems and Software, pages
154–162, Washington, DC, USA, 2000. IEEE Computer Society.

[4] G. Memik, W. H. Mangione-Smith, and W. Hu. Netbench: a benchmark-
ing suite for network processors. In Proceedings of the 2001 ICCAD.

[5] EEMBC. Embedded microprocessor benchmark consortium.
[6] Nlanr/dast. iperf tool, 2012.
[7] W. Eatherton, G. Varghese, and Z. Dittia. Tree bitmap: hard-

ware/software ip lookups with incremental updates. SIGCOMM Comput.

Commun. Rev., 34:97–122, April 2004.
[8] H. Song, J. Turner, and J. Lockwood. Shape shifting tries for faster

ip route lookup. In Proceedings of the 13TH IEEE International

Conference on Network Protocols, pages 358–367, USA, 2005.
[9] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13:422–426, July 1970.
[10] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese.

An improved construction for counting bloom filters. In Proceedings

of the 14th conference on Annual European Symposium - Volume 14,
ESA’06, pages 684–695, London, UK, UK, 2006. Springer-Verlag.

[11] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner. Al-
gorithms to accelerate multiple regular expressions matching for deep
packet inspection. In Proceedings of the SIGCOMM’06, pages 339–350,
New York, NY, USA, 2006.

[12] M. Becchi and P. Crowley. A hybrid finite automaton for practical deep
packet inspection. In Proceedings of the 2007 ACM CoNEXT conference,
CoNEXT ’07, pages 1:1–1:12, New York, NY, USA, 2007.

[13] Intel corp. intel atom processors n450, d410 and d510 for embedded
computing - platform brief, 2010.

1The test suite is called procbench and can be downloaded from
www.fit.vutbr.cz/research/view product.php?id=174

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

