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Abstract—This paper proposes to implement multifunctional
image filters using multifunctional gates such as polymorphic
gates or multiplexed ordinary gates. The design procedure is
based on evolutionary design and optimization conducted using
Cartesian genetic programming (CGP). Because of the complex-
ity of the problem the design is decomposed to two phases. In
the first step, a multifunctional filter is evolved at the register-
transfer level (RTL) using a set of processing elements containing
functions such as minimum/maximum, minimum/average etc.
over two pixels. In the second step, gate-level implementations
of the processing elements utilized in evolved filters are designed
and optimized using CGP in combination with conventional logic
synthesis tools. It is shown that resulting filters exhibit good
filtering capabilities. They are also area-efficient in comparison
with solutions based on multiplexing of ordinary filters.

I. INTRODUCTION

Obtaining flexibility, adaptation and multifunctionality di-
rectly at the hardware level is one of the most important
goals we can now observe in the reconfigurable hardware
field [1]. These objectives are usually achieved by hardware
reconfiguration which is performed by supplying a new con-
figuration bit stream to a configuration memory. The configu-
ration bit stream then activates relevant configuration signals
and switches which, when activated, establish new circuit
connections and thus new functionality directly in hardware.
The main advantage is that many new configurations (even
those unanticipated during the design time) can be created
in the runtime. However, the associate area/latency overhead
caused by the reconfiguration infrastructure (configuration
switches, network and memory) makes this type of systems
very expensive in applications, where only a few preselected
configurations have to be employed.

One of possible approaches to achieving a low cost recon-
figuration could be based on multifunctional gates. They have
special physical structures enabling to behave differently with
respect to external conditions. Recently developed graphene
logic gates based on graphene pn junctions are capable of
performing several logic functions just by adjusting some
control voltages [2]. Various logic functions can also be
provided by polymorphic CMOS gates introduced ten years
ago. Their control is implemented via control voltages, power
supply voltage (Vdd) or temperature [3], [4]. As the Vdd-
based control does not require any additional wires the use
of polymorphic gates could reduce interconnecting networks
in reconfigurable chips significantly.

Fig. 1. Multifunctional circuit composed of three minimum/maximum
elements calculating y = min(a, b, c, d) in the first mode and y =
max(a, b, c, d) in the second mode.

In this paper, it is proposed to combine low-level image
processing functions such as noise elimination and edge detec-
tion into one compact multifunctional circuit - multifunctional
filter. The resulting circuit is then composed of multifunc-
tional gates connected using a network which is fixed and
predesigned. Predefined filtering functions are activated using
a suitable setting of control signals. It is supposed that a
significant reduction in the area and routing can be obtained
in comparison to a conventional implementation which is typ-
ically based on multiplexing of conventional filtering circuits.

Designing a compact multifunctional filter, which contains
multifunctional gates is a challenging task. In this paper,
we will consider multifunctional circuits performing just two
different functions (F1 and F2) and thus operating in two
different modes (although extending the concept for more
modes is straightforward). Formally, a single network contain-
ing multifunctional (and ordinary gates if needed) has to be
constructed such that F1 is implemented in the first mode and
F2 is implemented in the second mode (Fig. 1). Polymorphic
NAND/NOR gate is a typical elementary component of such
circuits [3], [4].

Various synthesis and optimization methods for multifunc-
tional gate-level circuits, including evolutionary design and
optimization, were proposed [5], [6]. Evolutionary design has
also been applied to design image filters suppressing a given
type of noise [7], [8]. However, image filter evolution has
been conducted at the functional level since the gate-level
representation is too low-level to evolve reasonably working
filters.

In order to evolve multifunctional image filters, we propose
to apply two-step evolution [9]. In the first step, multifunc-
tional filter is evolved at the register-transfer level (RTL)
using a set of processing elements containing functions such
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Fig. 2. A polymorphic multiplexer using NAND/NOR gates

as minimum/maximum, minimum/average etc. over two pix-
els [10]. It is assumed that such functions can easily be com-
posed using multifunctional gates. In the second step, gate-
level implementations of multifunctional processing elements
utilized in evolved filters are designed and optimized using
evolution. Both design tasks will be carried out using Cartesian
genetic programming (CGP). We will demonstrate on three
case studies that resulting filters are functionally comparable
with conventionally designed filters. The main contribution
of this paper is that it shows that evolved filters are area-
efficient in comparison with solutions based on multiplexing
of ordinary filters.

II. MULTIFUNCTIONAL CIRCUITS

Logic function of multifunctional gates can be selected by
various means, including external logic signals (such as the
selector in multiplexers) or external voltage signals. When the
control variable is Vdd or temperature then there is no addi-
tional wire needed. For instance, a 6-transistor NAND/NOR
gate controlled by Vdd was fabricated in a 0.5-micron HP tech-
nology [4]. Another NAND/NOR gate controlled by Vdd was
utilized in the REPOMO32 chip [11]. A graphene gate which
is configured by external voltages is capable of performing
8 different functions in its basic mode [2].

Theoretical works on polymorphic networks such as the
completeness theory can be found in [12], [13]. Paper [5] sur-
veys the methods proposed to design multifunctional circuits.

Polymorphic multiplexing is the most straightforward design
approach. It employs a polymorphic multiplexer – a compo-
nent which propagates signal A in the first mode of multifunc-
tional gates and signal B in the second mode of multifunctional
gates 2 (Fig. 2). Consider that a target polymorphic circuit
has to implement F1 and F2. A conventional approach is used
to synthesize a circuit implementing F1 and another circuit
implementing F2 independently. The outputs of the circuits
are then multiplexed using polymorphic multiplexers. In order
to reduce the number of gates, the goal of synthesis can be to
maximize the number of gates that are shared by both circuits
and minimize the number of outputs that have to be equipped
with polymorphic multiplexers.

CGP is capable of evolving very area-efficient multifunc-
tional circuits, however, the approach evaluating 2n input
assignments for n-input circuits is not scalable [14], [5], [15].
Only small polymorphic FIR filters were designed using this
method [16]. In order to overcome this very time consuming
evaluation, we will apply a functional equivalence checking
algorithm in Section VI as suggested in [6] .

Fig. 3. The 9-input median circuit

Fig. 4. The 9-input averaging circuit

III. CONVENTIONAL AND MULTIFUNCTIONAL IMAGE
FILTERS

The target application for this work is a multifunctional
image filter operating with a 3× 3-pixel kernel. Every image
filter is considered as a digital circuit of nine 8-bit inputs (the
3× 3-pixel kernel) and a single 8-bit output, which processes
grayscale (8-bits/pixel) images. CGP is employed to devise a
filter composed of ordinary and multifunctional components
capable of suppressing a given type of noise in the first mode
and another type of noise in the second mode. In addition to
noise filtering (in particular, shot noise and Gaussian noise
elimination), edge detection, dilatation and erosion are other
target functions.

There are well-established conventional methods allowing
us to suppress a given type of noise. The shot noise (also
called the salt-and-pepper noise) is usually suppressed by a
(nonlinear) median filter which calculates the median value
from the nine input pixels. Fig. 3 shows the area-optimal
(pipeline) implementation which consists of compare-and-
swap (CS) components and registers (D) [17]. The CS com-
ponent calculates the minimum and maximum out of the two
input values. The Gaussian noise elimination is based on a
linear convolution – a simple averaging filter is shown in
Fig. 4. In case of edge detection, Sobel detector will be
used in our case study. An ideal dilatation filter calculates
the maximum out of the input pixels and similarly, an ideal
erosion filter calculates the minimum out of the input pixels
[18].

A straightforward implementation of a multifunctional filter
will multiplex an ordinary circuit created to eliminate the first
type of noise and another ordinary circuit created to eliminate
the second type of noise. As structures of both filters are



TABLE I
LIST OF FUNCTIONS FOR EVOLUTION OF IMAGE FILTERS AND THEIR

IMPLEMENTATION COST.

code function description gates area
const c constant 0 0.0
ident x identity 0 0.0
or x ∨ y bitwise OR 8 10.7
nor ¬(x ∨ y) bitwise OR inverted 8 8.0
and x ∧ y bitwise AND 8 10.7
nand ¬(x ∧ y) bitwise AND inverted 8 8.0
xor x⊕ y bitwise XOR 8 16.0
nxor ¬(x⊕ y) bitwise XOR inverted 8 13.6
_or (¬x) ∨ y not and bitwise OR 16 13.3
inv ¬x inversion 8 5.3
div2 x >> 1 division by 2 0 0.0
div4 x >> 2 division by 4 0 0.0
add x+ y add 38 49.3
adds min(x+ y, 255) add with saturation 45 55.7
mean (x+ y) >> 1 average 40 50.3
max max(x, y) maximum 61 60.0
min min(x, y) minimum 61 60.0

usually completely different, the final cost (area) is expected
to be roughly a sum of the areas required for both filters

IV. CIRCUIT EVOLUTION USING CGP

Functional-level as well as gate-level evolution of mul-
tifunctional circuits will be performed by CGP which has
been applied for evolution and optimization of combinational
circuits (i.e., acyclic directed graphs) for more than 10 years
[19], [20], [21].

To model a generic combinational circuit, a candidate solu-
tion is represented as an array of nc (columns) × nr (rows)
of 2-input processing elements. All candidate circuits have
ni primary inputs and no primary outputs. Every processing
element can be connected either to the output of an element
placed in previous L columns or to one of the primary inputs.
A processing element can perform either a single function
(then it is not a multifunctional element) or two functions.
In the second case, the processing element is considered as
multifunctional providing that the first function is activated
in the first mode and the second function is activated in the
second mode. The set of available functions is denoted Γ.
Table I shows typical 8-bit functions for evolution of image
filters.

The chromosome is a list of integers starting with the
value of c if a constant-outputting function is included to Γ.
Then, it contains nc × nr triplets, each of them encoding a
single processing element (input1, input2, function code). The
primary inputs are addressed by 0, 1 . . . ni− 1 and processing
elements by ni . . . ncnr+no−1. The last no integers define the
primary outputs of the circuit. An example of chromosome and
a corresponding circuit is given in Fig. 5. Polymorphic control
is modeled by Boolean signal s. In the first mode (s = 0), the
functions shown in the upper part of boxes are active. In the
second mode (s = 1), the functions of the bottom part are
active. Notice that some elements (13 and 16) are not utilized.

CGP usually employs a simple (1 + λ) evolution strategy
to search in the space of candidate circuits [19]. The initial

Fig. 5. Function-level CGP supporting multifunctional elements:
ni = 9, no = 1, nc = 2, nr = 2, L = 2, R =
{min(0),max(1),mean(2),min/max(3),mean/min(4), and/min(5)}.
Chromosome: 5,7,3; 3,1,0; 9,4,4; 8,10, 5; 11. Function codes are typed bold.

population is randomly generated or seeded using conventional
designs. Then, it is evaluated and the best-scored individual is
considered as the parent for a new population. However, as a
new parent an offspring is always chosen if it is equally as fit or
has better fitness than the parent. CGP uses a mutation operator
to create λ offspring of the parent to fill the new population.
The mutation randomly picks µ integers and replaces them
by randomly generated (but legal) values. The evolution is
terminated after producing g generations.

Fitness function is application specific. In some cases, all
possible input assignments are generated and resulting vectors
are compared with requested vectors. The fitness value is then
the number of correctly calculated bits. In other cases, only
a subset of input vectors is utilized or specific procedures
such as simulation of electronic properties [22] or functional
equivalence checking [20] are applied. Multifunctional circuits
have to be evaluated in all supported modes of operation.

We will present particular setting of CGP parameters and
application-specific fitness functions in Sections V and VI.

V. EVOLUTION OF MULTI-FUNCTION FILTERS AT RTL

A. CGP Setting and Fitness Function

All candidate circuits have nine 8-bit primary inputs and
one 8-bit primary output, i.e. ni = 9, no = 1. Processing
elements accept two 8-bit inputs and provide a single 8-
bit output. Multifunctional elements are composed of two
functions taken from Table I. A subset of functions used in a
particular experiment will be denoted R. Figure 5 shows an
example of a candidate circuit and its encoding.

Similarly to evolution of single-purpose filters, the original
uncorrupted (training) image is needed to determine the fitness
value. The goal of CGP is to find a circuit minimizing the
difference between the original image and the output of the
filter in both modes. The quality of filtering is expressed as
the mean absolute error per pixel (mdpp):

f =
1

2N2

N∑
i=1

N∑
j=1

(|B1(i, j)−C1(i, j)|+ |B2(i, j)−C2(i, j)|).

(1)
The ideal image which we are attempting to reach in the

first mode (second mode) is denoted by C1 (C2). The filtered
image which was obtained in the first mode (second mode)
is denoted by B1 (B2). Finally, N × N denotes the size of
image. Figure 6 shows the ideal version of the training image.
Note that the functionality is the only objective applied in this



Fig. 6. Training image, 256× 256 pixels

TABLE II
DILATATION/EROSION – COMPARISON OF SIX CGP CONFIGURATIONS.

CGP array size 4× 4 5× 5 6× 6
L 2 3 2 3 2 3
Average mdpp 3.44 3.37 4.62 4.59 5.03 4.75
Best mdpp 0.25 0.68 1.18 1.64 1.64 1.60

paper. The circuit cost is controlled only indirectly by setting
the maximum number of processing elements (nr · nc).

Experiments were performed for three target multifunctional
filters. We started with the following setting of CGP param-
eters: λ = 4; µ = 1 integer; the number of generations
g =20,000; the number of independent runs r = 40; all
possible functions and their combinations from Table I were
allowed in R. We compared mdpp for different setting of nc,
nr and L. In the following subsections, results are given for
the training image.

B. Case study 1: Dilatation/Erosion

In order to test whether the basic version of the proposed
method works, we firstly evolved a simple dilatation/erosion
filter. It is a very good candidate for multifunctional approach
since an ideal dilatation filter calculates the maximum out of
the input pixels and similarly, an ideal erosion filter calculates
the minimum out of the input pixels [18]. Figure 7 shows
the best evolved filter which is very close to the expected
solution. Table II gives the best mdpp (the best run) and the
average mdpp (the average out of 40 runs) in both modes
for six different CGP configurations. The best solution was
obtained for the smallest CGP array.
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Fig. 7. A filter evolved for Dilatation/Erosion

TABLE III
EDGES/SHOTS – COMPARISON OF SIX CGP CONFIGURATIONS.

CGP array size 4× 4 5× 5 6× 6
L 2 3 2 3 2 3
Average mdpp 8.29 9.53 9.47 8.63 9.00 9.14
Best mdpp 6.39 6.49 6.01 5.54 5.00 5.28

TABLE IV
EDGES/SHOTS – THE EFFECT OF MUTATION AND FUNCTION SET

SELECTION.

CGP array size 6× 6
L 2
Max. poly functions 10 unlimited
Mutations 1 2 3 1 2 3
Average mdpp 7.13 6.51 5.71 8.06 7.13 7.13
Best mdpp 4.53 4.79 3.47 5.30 4.73 3.94

C. Case study 2: Edges/Shots

The second objective was to evolve a filter performing edge
detection in the first mode and salt and pepper noise (5%)
elimination in the second mode (the Edges/Shots filter, for
short). In order to create a training image for edge detection,
we applied Sobel detector on the ideal image and used the
resulting image as the target for evolution. As the edge detector
(see e.g. [18]) and shot noise filter (Fig. 3) have very different
structures, we expected that obtained circuits will be more
complex than the dilatation/erosion filter.

We can see from Table III that while the best mdpp was
obtained for the largest CGP array, the average mdpp is
minimal for the smallest CGP array. Hence we performed
additional experiments with the 6×6 array where we modified
the mutation rate, reduced the function set and increased the
number of generations. Table IV shows that significantly better
results were obtained for the reduced function set and higher
mutation rate. The best-performing filter is shown in Figure 8.
Its performance is demonstrated in Fig 9.

D. Case study 3: Gauss/Shots

The third multifunctional filter we evolved is capable of
suppressing the Gaussian noise (σ = 0.1 for normalized inputs
〈0,0; 1,0〉) in the first mode and the shot noise (the 5% salt and
pepper noise) in the second mode (the Gauss/Shots filter, in
short). On the basis of previous experiments, we modified the
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Fig. 8. A filter evolved for Edges/Shots noise



(a) Input image (b) First mode output

(c) Sobel operator (d) 5% noise

(e) Second mode output (f) Median filter
Fig. 9. Edges/Shots – results for both modes of the multifunctional filter
and conventional filters.

TABLE V
GAUSS/SHOTS – COMPARISON OF SIX CGP CONFIGURATIONS.

CGP array size 4× 4 5× 5 6× 6
L 2 3 2 3 2 3
Average mdpp 12.60 10.94 12.67 11.33 13.96 10.85
Best mdpp 8.20 7.68 8.85 7.56 8.85 7.40

CGP setting to µ = 2, r = 20, g = 40000. A comparison of
results obtained for six CGP configurations is given in Table V.
Additional results reported in Table VI indicate that restricted
function set, L = 4, nc = 7 and nr = 4 give the best minimum
as well as the average mdpp.

The best-evolved filter is shown in Fig. 10. While the mean
function is the most frequent one used in the first mode, the
functionality of the second mode is based on computing the
minimum and maximum. We expected this type of function
utilization.

TABLE VI
GAUSS/SHOTS – EXTENDED TESTING

CGP array size 7× 4 8× 5
L 4 5
Max. poly functions 8 unlimited 8 unlimited
Mutations 2 2 2 2
Average mdpp 8.01 12.14 8.72 13.35
Best mdpp 6.40 7.32 6.63 7.39
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Fig. 10. A filter evolved for Gauss/Shots noise

E. Filtering Quality and Design Time

1) Filtering Quality: The best filters that we presented in
previous subsections were compared in both modes with con-
ventional filters. Table VII gives the average mdpp obtained
using a set of 16 test images shown in [8]. The evolved
salt-and-pepper filters exhibit lower mdpp with respect to the
median filter (Fig. 3). The average mdpp of the evolved filter
for Gaussian noise is slightly worse than the mddp obtained
for the conventional averaging filter. Results are not given for
dilatation, erosion and edge detection because corresponding
conventional operators were directly utilized to create training
images (i.e. mdpp is 0.0).

2) Time of Evolution: We measured the time of evolution
for the dilatation/erosion filter (λ = 4, g = 500, µ = 1, L = 2,
nc = nr = 4) using a laptop equipped with the Pentium M
1.8 GHz processor. Figure 11 shows that the time of evolution
significantly depends on the training image size. A typical
experiment utilizing a 256×256-pixel image and running for
20,000 generations then took approx. 48 min.

VI. GATE-LEVEL OPTIMIZATION OF PROCESSING
ELEMENTS FOR MULTI-FUNCTION FILTERS

In this section, we will explore possible gate-level imple-
mentations of the 16-bit input (2 x 8 bits) and 8-bit output
processing elements (such as min/max) that represent building
blocks of evolved filters shown in Fig. 7, 8 and 10. Resulting
implementations of evolved filters will be then compared with
conventional solutions based on multiplexing of the common

TABLE VII
COMPARISON OF MDPP FOR EVOLVED FILTERS AND CONVENTIONAL

FILTERS USING TEST IMAGES

evolved filter conventional filter
Dilatation/Erosion 0.1306 / 0.4160 – / –
Edges/Shots 4.3896 / 2.2172 – / 4.2166
Gauss/Shots 10.3673 / 2.2676 10.0192 / 4.2166



Fig. 11. The evolution time w.r.t. the training image size for λ = 4, g = 500,
µ = 1, L = 2, nc = nr = 4.

Fig. 12. Implementations of a processing element: multiplexer-based (left)
and polymorhic multiplexer-based (right). E1 and E2 are elementary functions
from Table I.

filters (e.g. median filter and Sobel filter) as presented in
Section III.

A. Multiplexer-based method

Figure 12 (left) shows the multiplexer-based approach pro-
posed to implement the multifunctional processing elements.
The construction has three steps.

(1) Elementary functions from Table I are described in
VHDL and synthesized using LeonardoSpectrum (LS) which
can utilize the gates from Table VIII (except NAND/NOR).
The implementation cost of resulting gate-level circuits is
expressed as a relative area and in absolute gate numbers in
Table I.

TABLE VIII
RELATIVE IMPLEMENTATION COST (AREA) OF GATES

Area Gate
0.67 NOT
1.00 NAND, NOR
1.33 AND, OR
1.66 XNOR
2.00 XOR
2.00 NAND/NOR

(2) Two elementary functions (E1 and E2 in Fig. 12)
are then connected using standard multiplexers in order to
obtain a single multifunctional processing element controlled
by selector s.

(3) Implementations of evolved filters (Fig. 7, 8 and 10) are
composed of the processing elements created in step (2). A
particular filter selection depends on setting of the selector s.

TABLE IX
THE COST (AREA) OF FILTERS CREATED USING VARIOUS APPROACHES

Evolved filter CoMux CoMux Polymux Polymux Polymux
ABC ABC ABC-CGP

Dilatatation/Erosion 880 569 1277 1048 659
Edges/Shots 1343 1089 1614 1458 1156
Gauss/Shots 1857 1639 2015 1950 1735

The final implementation cost of the filters is given by the
CoMux column in Table IX.

The gate-level netlists of processing elements can further be
optimized, e.g. by conventional tools such as ABC [23]. The
cost of filters composed of the processing elements that were
optimized using ABC is given by the CoMux-ABC column in
Table IX.

B. Polymorphic multiplexer-based method
The idea of polymorphic multiplexing of elementary func-

tions in the processing element is shown is Fig. 12 (right). The
first step of construction – the gate level design of elementary
functions – is the same as in the previous procedure. Then
two elementary functions (E1 and E2) are connected using
polymorphic multiplexers in order to obtain a single mul-
tifunctional processing element. Because every polymorphic
multiplexer contains two polymorphic gates (Fig. 2) each
multifunctional processing element contains 16 polymorphic
gates. The application of this basic construction procedure
leads to multifunctional filters whose implementation cost is
given by the Polymux column in Table IX.

The gate-level netlists of the processing elements can further
be optimized. However, as neither ABC nor LS support poly-
morphic gates, we can optimize only the implementations of
interconnected elementary functions E1 and E2 in the process-
ing element. Table X (the seed columns), shows the number of
gates (including polymorphic gates) in the processing elements
obtained after an optimization conducted using ABC and LS
respectively. It can be seen that ABC and LS provides very
similar results in average. The optimized implementations of
the processing elements were utilized as building blocks for
evolved filters. Table IX, the Polymux-ABC column, shows
that a small improvement has been obtained in all three cases
w.r.t. the Polymux approach.

C. Postsynthesis optimization using CGP
In order to further optimize the multifunctional processing

elements, we considered the resulting processing elements
that were obtained in the previous section as a seed
for the CGP circuit optimizer. The CGP array contains
nc × 1 nodes, where nc is the number of gates in the seed
circuit, ni = 16, no = 8, λ = 1, l = nc and µ = 2.
The values of parameters are chosen according to [6].
The set of functions includes ordinary two-input logic
functions, buffer, inverter and the NAND/NOR gate, i.e. Γ =
{BUF,NOT,AND,OR,XOR,NAND,NOR,NAND/NOR,
ZERO,ONE}. Similarly to [5], we have used just one
polymorphic function NAND/NOR.



1) Fitness Function: A straightforward approach to the
evaluation of a candidate polymorphic combinational circuit
requires applying 2ni assignments to the inputs, calculating
the number of correctly produced bits for the first mode and
repeating these two steps for the second mode. This is very
time consuming for our target 16-input/8-output multifunc-
tional circuits. In order to accelerate the evaluation, a SAT-
based equivalence checking algorithm is applied [6]. This
algorithm assumes that CGP is seeded using a fully functional
polymorphic circuit. The seed is utilized as a reference solution
for the SAT-based equivalence checking algorithm.

The fitness evaluation works as follows. The reference
circuit U as well as candidate circuit V (which is created
by mutation from the parent) is set to the first mode. A new
auxiliary circuit W1 is composed of the reference circuit in the
first mode (circuit U1), the candidate circuit in the first mode
(circuit V1) and a miter (a set of XOR gates followed by the
OR detector), see Fig. 13. Circuit W1 is transformed into one
Boolean formula in conjunctive normal form (CNF) which is
unsatisfiable if and only if circuits U1 and V1 are functionally
equivalent [24]. The transformation to CNF is conducted gate
by gate using the Tseitin’s algorithm [25]. If U1 and V1 are not
functionally equivalent then the fitness evaluation is finished
and CGP proceeds with another candidate circuit. Otherwise,
circuits U and V are set to the second mode and the process
is repeated. If the circuits are also functionally equivalent in
the second mode then the fitness value is given by the number
of gates. Otherwise, the fitness value is -1, i.e. the worst one.

Fig. 13. Equivalence checking of two combinational circuits

2) Results: The MiniSAT 2 (version 070721) has been used
as a SAT solver [26] because it can easily be embedded into
a custom application. The experiments were carried out on a
cluster consisting of Intel Xeon E5345 2.33 GHz processors
that enables to run several experiments in parallel. Two seeds
were compared – one coming form the ABC tool and another
one from the LS tool. For each seed and processing element,
25 parallel runs of CGP were performed. Every 15 minutes,
all runs were re-seeded using the best individual obtained
so far. The evolution was stopped when no progress has
been observed in last 15 minutes. The minimum, average and
maximum time spend by a single run was 1.25, 1.61 and 4
hours.

Table X shows the number of gates in the best circuit,
the number of polymorphic gates and resulting relative area.

We can observe that the averages calculated for our set of
processing elements depend on the seed chosen insignificantly.

As example, Figure 14 shows the progress of optimization
of the nand/min processing element seeded using a circuit
comming from the ABC tool.

The most area-efficient implementations of processing ele-
ments were then utilized to create the image filters according to
Fig. 7, 8 and 10. The Polymux ABC-CGP column in Table IX
shows a significant reduction in the area in comparison with
the Polymux-ABC method.

TABLE X
IMPLEMENTATION COST OF PROCESSING ELEMENTS BASED ON

POLYMORPHIC MULTIPLEXING, OPTIMIZED BY CGP WHICH WAS SEEDED
EITHER BY ABC OR LS.

Seeded by ABC Seeded by LS
processing seed best seed best
element gates gates polygates area gates gates polygates area
max / add 134 92 22 139.2 139 99 22 151.0
max / div2 102 67 16 98.9 102 68 18 103.3
mean / max 138 90 28 135.9 141 94 24 141.8
min / max 123 52 22 86.3 162 52 22 88.6
min / mean 146 97 27 148.8 141 96 21 144.9
nand / and 56 17 1 26.2 56 17 1 26.1
nand / min 118 65 19 100.9 109 61 16 100.0
or / adds 100 57 21 93.8 101 58 22 99.5

or / max 112 60 14 91.9 109 52 12 90.3
ident / add 76 53 16 88.1 78 53 14 90.1
ident / min 101 46 4 68.3 101 47 6 70.7
nxor / mean 79 60 19 102.9 88 59 19 97.8
xor / inv 56 18 1 26.8 56 17 1 25.5
xor / mean 85 56 13 83.5 88 53 11 83.0
Average 101.9 59.2 15.9 92.3 105.1 59.5 14.9 93.8

Fig. 14. The minimum, maximum and average number of gates from 25
runs of CGP for the nand/min processing element

D. Comparison with conventional filters

As proposed in Section III, the conventional implementa-
tions of filters can be multiplexed to develop multifunctional
filters. Hence we synthesized gate-level implementations of the
9-input median filter, 9-input averaging filter (9-Mean), 9-input
dilatation and 9-input erosion filter. Subsequently, multifunc-
tional filters were composed using multiplexers. Note that the
total area of the 8-bit multiplexer is 10.64. Table XI gives the
implementation cost of conventional filters and multiplexed
conventional filters.



By comparison of the relative costs, it can be seen that
evolved filters that were implemented using multiplexing at
the level of processing elements (Table IX) occupy much
smaller area than multiplexed conventional filters (Table XI).
If the CGP optimization is taken into account, polymorphic
multiplexing-based implementations are comparable to im-
plementations utilizing multiplexed processing elements. It is
important to emphasize here that the implementation cost of
polymorphic multiplexers is considered as relatively high and
more compact implementations are expected in the future.

TABLE XI
IMPLEMENTATION COST OF CONVENTIONAL 9-INPUT OPERATORS AND
FILTERS OBTAINED BY MULTIPLEXING OF CONVENTIONAL OPERATORS.

components total
operator min max mean add div2 mux gates area
Mean 8 320 402.4
Median 15 15 1830 1800.0
Dilatation 8 488 480.0
Erosion 8 488 480.0
Sobel 1 1 5 2 312 366.5

components total
filter min max mean add div2 mux gates area
Dilatation / erosion 8 8 1 977 970.6
Mean / median 15 15 8 1 2151 2213.0
Sobel / median 16 16 5 2 1 2143 2177.1

VII. CONCLUSIONS

A new two-step method for design of multifunctional image
filters has been proposed in this paper. In the first step, we
applied CGP to evolve image filters composed of multifunc-
tional processing elements operating over 8 bits. This approach
extended our previous work on image filter evolution. It was
shown that CGP can fit two different filtering tasks to a single
acyclic directed graph and the resulting filters exhibit desired
filtering quality. In the second step, we tested several methods
to implement processing elements involved in evolved filters
in order to minimize the area on a chip. Simple multiplexing
proved to be a very efficient method to accomplish this task.
By combining of CGP with SAT-based fitness function, we
were able to find interesting solutions for circuits with poly-
morphic gates even when a very pessimistic implementation
cost was assumed for polymorphic multiplexers.
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