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Abstract—The paper deals with the evolutionary post synthesis
optimization of complex combinational circuits with the aim
of reducing the area on a chip as much as possible. In order
to optimize complex circuits, Cartesian Genetic Programming
(CGP) is employed where the fitness function is based on a
formal equivalence checking algorithm rather than evaluating
all possible input assignments. The standard selection strategy
of CGP is modified to be more explorative and so agile in
very rugged fitness landscapes. It was shown on the LGSynth93
benchmark circuits that the modified selection strategy leads to
more compact circuits in roughly 50% cases. The average area
improvement is 24% with respect to the results of conventional
synthesis. Delay of optimized circuits was also analyzed.

I. INTRODUCTION

Cartesian Genetic Programming (CGP) can be considered
as one of the most efficient methods for evolutionary design
and optimization of digital combinational circuits [1], [2].
Miller and his collaborators showed more than 10 years ago
that small combinational circuits such as 4-bit multipliers can
be designed in a new way, often saving around 20% gates
in comparison with the state-of-the art conventional synthesis
tools. This seminal work has been extended in several ways.
The most recent research in the area of digital circuits includes
the evolution of novel standard cell libraries for future tech-
nology nodes [3] and a post synthesis optimization of complex
combinational circuits using formal verification principles [4].
While the achievable quality of resulting design/optimization
is usually very high, the computational time required to
achieve that result is the main drawback.

The fitness computation is the most time consuming proce-
dure. The basic method testing 2n input vectors for n-input
circuit is not scalable. Hence, good results were produced for
combinational circuits with only 10–20 inputs (depending on
a particular instance) [1], [2], [5], [6], [7], [8]. Most work in
this area considers the number of gates as the only criterion
for optimization. Delay, area on a chip, power consumption,
testability and other important properties are not usually
addressed. Multiobjective optimization has been applied for
very small problem instances only [9].

In this work, we will follow the path of the single-criterion
evolutionary synthesis with the aim of area minimization
because it is still the most important criterion for many
applications. Moreover, this is a classic subtask in the logic
optimization research where delay and other criteria are not
always considered [10]. The goal of this work is to obtain as

small phenotypes (resulting circuits) as possible for complex
combinational circuits. In order to reduce the fitness com-
putation time, we will replace the standard approach, which
applies all possible input combinations to determine the fitness
value of a candidate circuit by a formal equivalence checking
algorithm, which is able to relatively quickly check whether a
candidate solution is functionally correct even for most large-
scale circuit instances (hundreds of inputs) [11].

In this context, two selection strategies will be compared.
We will show that the selection of a parent on basis of its
functionality solely instead of compactness (the area on the
chip) can lead to small phenotypes at the end of evolution
for many of our benchmark problems. This behavior has
already been observed during evolution of small combinational
circuits [12]. In order to compare and evaluate the role of
selection mechanisms, we propose to measure the number of
nondestructive mutations during evolution. It is supposed that
the modified selection will generate more functionally correct
individuals than the standard selection of CGP.

In contrast to most works on this topic, the optimization
criterion will be the estimated area on a chip instead of
the number of gates. This approach will allow us to fairly
compare our results with the state-of-the-art synthesis tools
such as ABC [13] or SIS [14]. Another issue, which is
not usually addressed by the evolvable hardware community,
is to what extent the delay of a combinational circuit is
modified when the circuit is optimized for the area only. The
evaluation of proposed methods will be performed on a cluster
of workstations and using the LGSynth93 benchmark circuits.

The rest of the paper is organized as follows. Section II
presents CGP as a method for digital circuit evolution and
optimization. The modified selection mechanism for CGP
is introduced in Section III. We applied a fitness calcula-
tion based on formal equivalence checking. The method is
described in Section IV. Our proposal for combining the
modified selection strategy and equivalence checking-based
fitness function is presented in Section V. The results of
experiments are summarized in Section VI. Section VII deals
with discussion of obtained results and analysis of results
on the basis of the non-destructive mutations measurement.
Finally, conclusions are given in Section VIII.



Fig. 1. Example of a candidate circuit in CGP with parameters: nc = 3,
nr = 2, ni = 3, no = 3, l = 3, na = 2, Γ = {NOR (0), NAND (1),
XOR(2)}. Chromosome: 1, 2, 1, 0, 2, 1, 2, 3, 0, 0, 4, 0, 1, 2, 2, 5, 6, 1; 7,
5, 8. (Gate function is typed in bold.).

II. CIRCUIT EVOLUTION USING CGP

Cartesian Genetic Programming is a subarea of genetic
programming where candidate individuals are represented as
directed acyclic graphs, a mutation is considered as the main
genetic operator and evolution is carried out using the 1 + λ
evolution strategy [15], [1].

A. CGP

From the perspective of circuit design, a candidate circuit
is represented as an array of nc (columns) × nr (rows) of
programmable gates. The number of inputs, ni, and outputs,
no, is fixed. Each gate can be connected either to the output
of a gate placed in previous l columns or to one of the
circuit inputs. Setting of the l parameter allows to control the
maximum circuit delay. Feedback is not allowed. Each gate
is programmed to perform one of na-input functions defined
in the set Γ (nf denotes |Γ|). Each gate is encoded using
na + 1 integers where values 1 . . . na are the indexes of the
input connections and the last value is the function code. Every
circuit is encoded using nc.nr.(na+1)+no integers. Figure 1
shows an example of a candidate circuit and its chromosome.

CGP operates with population of 1+λ individuals (typically,
λ is between 1 and 20). The initial population is constructed
either randomly or by a heuristic procedure. Every new popu-
lation consists of the best individual of the previous population
and its λ offspring individuals. The offspring individuals are
created using a point mutation operator which modifies h
randomly selected genes of the chromosome, where h is a
user-defined value.

An important rule for selection of the parent is utilized. In
case when two or more individuals can serve as the parent, an
individual which has not served as the parent in the previous
generation will be selected as the new parent. This strategy
is important because it ensures a diversity of population [16].
The algorithm is terminated when the maximum number of
generations is exhausted or a sufficiently working solution is
obtained.

B. Fitness Function

In case of digital circuit evolution, the fitness value of a
candidate circuit is defined as [17]:

fit1 =
{
b when b < no2ni ,
b+ (ncnr − z) otherwise,

(1)

where b is the number of correct output bits obtained as
response for all possible assignments to the inputs, z denotes

the number of gates utilized in a particular candidate circuit
and nc.nr is the total number of available gates. It can be seen
that the last term ncnr − z is considered only if the circuit
behavior is perfect, i.e. b = bmax = no2ni . Alternatively,
we can replace the number of utilized gates by the number
of utilized transistors which is a more precise measure as
implementation costs of gates are different [18]. We can
observe that the evolution has to discover a perfectly working
solution firstly while the size of circuit is not important. Then,
the number of gates is optimized. Similarly, delay or power
consumption may be optimized.

Although many new designs have been discovered using
the standard CGP, the method is not applicable for design or
optimization of large circuits because of the time consuming
fitness evaluation. A multi-objective formulation of circuit
evolution problem was also proposed, but evaluated using
small benchmark problems only [9].

III. SELECTION MECHANISMS IN CGP

In the proposed modification of the selection mechanism,
there is only one requirement for selection of the parent
individual in case that a functionally correct circuit has already
been discovered: the parent must be fully functional. Note
that in the standard CGP, the parent is always the best
circuit discovered so far, i.e. functionality as well as size
are considered. The selection procedure can be formalized as
follows.

Let p denote the highest-scored individual with the fitness
value fp. The new selection strategy is proposed only for
situation when the number of gates is optimized, i.e. the
fitness value of the best individual is higher than or equal
to bmax. Otherwise, the algorithm works as the standard CGP.
As the best individual found so far will not be copied to the
new population automatically, it is necessary to store it in an
auxiliary variable. Let β denote the best discovered solution
and let fβ be its fitness value. In the first population, β is
initialized using p.

Assume that x1 . . . xλ are individuals (with fitness values
fx1 . . . fxλ ) created from the parental solution p using the
mutation operator and fβ ≥ bmax. Because the best individual
β and parental individual p are not always identical we have
to determine their new instances β′ and p′ separately. The
best-discovered solution is defined as:

β′ =
{
β when fβ ≥ fxi , i = 1 . . . λ,
xj otherwise,

(2)

where xj is the highest-scored individual for which fxj > fβ
holds. If multiple individuals exist in {x1 . . . xλ} that satisfy
the previous condition then one of them is randomly chosen.

The new parental individual is defined as:

p′ =
{
p when ∀i, i = 1 . . . λ : fxi < bmax
xj otherwise,

(3)

where xj is a randomly selected individual from those in
{x1 . . . xλ} which obtained the fitness score higher than or
equal to bmax.



In other words, the new parent must be a fully functional
circuit; however, the number of gates is not important for its
selection. Note that the result of evolution is no longer p but
β. Paper [12] showed that the modified selection strategy leads
to smaller circuits than the strategy used in the standard CGP
for majority of tested circuits; however, only small problem
instances have been studied so far.

IV. FAST FITNESS EVALUATION

Since there are many conventional circuit design methods,
we can easily obtain a (typically non-optimal) implementation
of target circuit and use it to seed the initial population for
CGP. Despite the fact that the conventional solution might bias
the search algorithm to some subareas of the search space
there are some benefits, namely the design time reduction
in comparison to a search from scratch. It is important for
us that the conventional solution can also be utilized as
a reference solution for an equivalence checking algorithm.
Instead of applying all possible assignments to the inputs
(see eq. 1) every new candidate circuit is compared with
the reference circuit in order to determine its functionality.
Functionally incorrect candidate circuits are discarded. In case
that a candidate circuit is fully functional then its fitness value
is given by the number of gates or transistors.
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Fig. 2. Equivalence checking of two combinational circuits

A. Equivalence Checking

Determining whether two Boolean functions are function-
ally equivalent represents a fundamental problem in formal
verification. Although the functional equivalence checking
is an NP-complete problem, several approaches have been
proposed so far to reduce the computational requirement for
practical circuit instances.

Most of proposed techniques are based on representing a
circuit by means of its canonical representation. Generally,
two Boolean functions are equivalent if and only if canon-
ical representations of their output functions are equivalent.
The Reduced Ordered Binary Decision Diagrams (ROBDD)
represent a widely used canonical representation in formal
verification [19]. Some of methods developed to determine
whether two ROBDDS are isomorphic are based on graph-
based algorithms. Other methods are based on the combination

of ROBDDs with the XOR operation and checking whether
the resulting ROBDD is a constant node (zero). And-or-invert
graphs represent another canonic representation with similar
properties. All these graph-based approaches rely on the fact,
that the number of nodes in the resulting graph will be relative
small, otherwise, the time of the ROBDD construction as well
as the time of comparison will be enormous. In practice, these
methods are rarely implemented directly without any further
circuit preprocessing. High consumption of memory resources
has motivated researchers to look for alternative methods.
Since the satisfiability (SAT) solvers were significantly im-
proved during the last few years, the SAT-based equivalence
checking becomes to be a promising alternative to the BDD-
based checking.

B. SAT-based Equivalence Checking

A SAT-based equivalence checking was applied to CGP in
[4], [11]. As Figure 2 shows the circuits to be checked are
compared using a set of XOR gates followed by the OR detec-
tor (so-called miter). In order to disprove the equivalence, it is
necessary to identify at least one XOR-gate which evaluates
to 1 for an input assignment, i.e. it is necessary to find an
input assignment for which the corresponding outputs yi and
y′i provide different values and thus zi = 1. The resulting
circuit, which is composed of Circuit A (reference circuit),
Circuit B (candidate circuit) and the miter, is transformed into
one Boolean formula in conjunctive normal form (CNF) which
is unsatisfiable if and only if circuits A and B are functionally
equivalent [20]. The transformation to CNF is conducted gate
by gate using the Tseitin’s algorithm [21]. Table I contains the
CNF representation for selected gates.

C. Optimized Approach for CGP

Although the SAT-based equivalence checking applied in the
fitness function allows us to optimize large logic circuits using
CGP, there exist circuits for which the runtime of the state-of-
the-art SAT solvers grows exponentially with increasing the
size of problem instance. In order to shorten the decision
time, various methods can be applied to reduce the number of
clauses for the SAT solver. We proposed to utilize knowledge
of genes which have been modified by the mutation operator
to calculate a ‘difference’ between the parent individual and its
offspring [11]. Note that this ‘difference’ circuit is sufficient
for checking the functional equivalence of parent circuit and
its offspring and thus only the ‘difference’ is submitted to
the SAT solver. An example of a reference (parent) circuit
and modified circuit (offspring) is shown in Fig. 3a,b. The
‘difference’ circuit (Fig. 3c) consists of 8 gates (7 + 1 XOR).
This is a significant reduction with respect to the standard all-
output approach which led to 17 gates (14 + 2 XOR + 1 OR).
Resulting CNF is shown in Fig. 3d.

V. EXPERIMENTS

The modified selection strategy will be combined with the
fast equivalence checking-based fitness function to optimize
complex combinational circuits. In order to investigate whether



TABLE I
CNF REPRESENTATION OF SOME COMMON GATES

Gate Corresponding CNF representation
y = NOT(x1) (¬y ∨ ¬x1) ∧ (y ∨ x1)
y = AND(x1, x2) (y ∨ ¬x1 ∨ ¬x2) ∧ (¬y ∨ x1) ∧ (¬y ∨ x2)
y = OR(x1, x2) (¬y ∨ x1 ∨ x2) ∧ (y ∨ ¬x1) ∧ (y ∨ ¬x2)
y = XOR(x1, x2) (¬y ∨ ¬x1 ∨ ¬x2) ∧ (¬y ∨ x1 ∨ x2)∧ (y ∨ ¬x1 ∨ x2) ∧ (y ∨ x1 ∨ ¬x2)
y = NAND(x1, x2) (¬y ∨ ¬x1 ∨ ¬x2) ∧ (y ∨ x1) ∧ (y ∨ x2)
y = NOR(x1, x2) (y ∨ x1 ∨ x2) ∧ (¬y ∨ ¬x1) ∧ (¬y ∨ ¬x2)

Fig. 3. Example of reference circuit (a) and its offspring (b) before a
conversion to CNF is performed. A ’difference’ circuit (c) is constructed and
transformed to CNF (d)

the approach is useful, we will compare two CGP-based
optimization methods.
• Method A utilizes standard CGP and a fast SAT-based

fitness function.
• Method B utilizes CGP with modified selection strategy

and a fast SAT-based fitness function.
The CGP parameters are identical for both methods:

Γ = {BUFF, NOT,AND,OR,XOR,NAND,NOR,XNOR},
λ = 2, l = Ng , 2 mutations/chromosome, nc = Ng and
nr = 1 where Ng is the number of gates of the reference
(seed) circuit, i.e. the circuit created using conventional
synthesis. The effect of setting of the CGP parameters on
the quality of optimization will be further investigated in
Section VI-A.

The circuits were mapped to the 2-input gates using SIS.
Note that ABC and SIS tools are deterministic. We have used
them with the standard setting and the aim to minimize the
area. In order to improve their results we applied them on
their own results iteratively. Implementation cost (i.e. area) of
a circuit is calculated as a weighted sum of gates that are
utilized in a candidate circuit. The weights which are given
in Table II reflect real sizes of corresponding transistor-level
implementations.

TABLE II
RELATIVE IMPLEMENTATION COST OF GATES (RELATIVE AREA)

Weight Gate
0.67 NOT
1.00 NAND, NOR
1.33 AND, OR
1.66 XNOR
2.00 XOR

The MiniSAT 2 (version 070721) has been used as a SAT
solver [22] because it can easily be embedded into a custom
application.

The experiments were carried out on a cluster consisting
of Intel Xeon X5670 2.4 GHz processors using the Sun Grid
Engine (SGE) that enables to run the experiments in parallel.
All statistical results were calculated from 50 independent 12-
hour runs.

VI. RESULTS

A. Setting of CGP parameters

In order to find suitable values for CGP parameters, we
have performed initial experiments for selected benchmark
circuits. We evaluated the effect of various combinations of



the population size (λ), mutation intensity (h) and l-back
parameter. Table III gives relative improvement (in %) of
the initial circuit that was achieved using Method A and B.
We can observe that increasing of mutation intensity leads to
increasing of circuit area which is not desired. Reducing the
population size and modifying the l-back parameter influences
the quality of optimization insignificantly. This observation
holds for Method A as well as Method B. Therefore, the
following setting seems to be the most suitable: λ = 2,
l = nc = Ng , h = 2, and nr = 1.

TABLE III
RELATIVE IMPROVEMENT (%) OF THE INITIAL CIRCUIT EVALUATED FOR

DIFFERENT CGP SETTINGS.

Method A
l λ h apex1 apex2 apex3 apex5 Mean

max 3 2 21.0 33.6 8.5 6.1 17.3
max 3 10 10.1 32.9 3.7 4.3 12.8
max 3 15 7.2 32.4 2.5 3.8 11.5

20 3 2 21.9 33.6 8.8 6.2 17.6
10 3 2 21.7 32.8 8.9 6.0 17.3

max 1 2 22.4 33.9 9.1 6.0 17.9
10 1 2 22.7 33.3 9.5 6.1 17.9

Method B
l λ h apex1 apex2 apex3 apex5 Mean

max 3 2 14.4 58.9 1.6 6.0 20.2
max 3 10 3.3 56.9 0.0 2.4 15.6
max 3 15 0.8 54.8 0.0 1.5 14.3

20 3 2 13.7 58.4 1.2 6.1 19.9
10 3 2 14.7 58.9 1.3 6.2 20.3

max 1 2 15.5 58.4 1.5 6.2 20.4
10 1 2 15.0 58.6 2.0 6.3 20.5

B. Optimization of LGSynth93 Benchmarks

Table IV gives basic parameters of 21 LGSynth93 bench-
mark circuits. It should be noticed that only circuits with 10
and more inputs were considered for our experiments. For each
circuit the number of inputs and outputs is given. The ‘Area’
column shows the weighted number of gates (relative area)
of an initial solution (a CGP seed), i.e. the best result of 100
iterative applications of a conventional synthesis conducted
using ABC. Delay is also reported. The number of evaluations
(the Eval column) allowed for CGP has resulted from a
particular circuit size and a total optimization time available.

Table V and Table VI summarize the results for Method A
and Method B in terms of:

• BstF – the best fitness (i.e. the smallest relative area).
• BstFD – delay of the best obtained circuit.
• BstD – the shortest delay obtained.
• BstDF – the area for the circuit with the shortest delay
• AvgF – the average fitness (with a standard deviation)

calculated out of 50 independent 12-hour runs.
• AvgDly - the average delay
• NDM – the percentage of non-destructive mutations.

Figure 4 shows 12-hour convergence curves for 8 selected
circuits that were optimized by Method A and B. The starting
point is always the best result of ABC.

TABLE IV
THE SET OF BENCHMARK CIRCUITS. ‘AREA’ AND ‘DELAY’ OBTAINED
USING ABC. ‘EVAL’ IS THE NUMBER OF EVALUATIONS ALLOWED FOR

CGP.

circuit Ni No Area Delay Eval×106

alu4 14 8 819.7 16 270
apex1 45 45 1761.3 14 15
apex2 39 3 206.3 13 195
apex3 54 50 1607.0 13 15
apex5 117 88 772.7 11 90
b12 15 9 61.0 6 600
cordic 23 2 55.0 8 405
cps 24 109 1021.7 12 15
duke2 22 29 330.7 11 75
e64 65 65 382.3 8 135
ex1010 10 10 2487.3 14 15
misex2 25 18 110.7 7 420
misex3 14 14 842.6 14 30
misex3c 14 14 499.3 13 60
pdc 16 40 503.0 13 60
sao2 10 4 132.3 9 195
spla 16 46 571.0 14 75
t481 16 1 25.0 5 645
table3 14 14 1382.3 15 15
table5 17 15 1068.0 14 15
vg2 25 8 92.3 9 240

VII. DISCUSSION

A. Comparison of Methods

We can see from Tables V and VI that Method B gives
more compact circuits in 11 out of 21 optimized cases. Both
methods significantly outperform the conventional ABC tool;
however, computational requirements are very different. While
iterative application of deterministic ABC quickly leads (in a
few seconds/minutes) to a small reduction of circuit size, no
further improvements have been observed in next 1 hour. The
progress of CGP optimization continues for a longer time. For
the cost of a runtime, the results of conventional synthesis were
significantly improved for the LGSynth93 benchmarks at the
end of optimization (area reduced by 24% on average). We
can also observe that all runs produced a very similar result
(standard deviation is relatively low) for a particular circuit
which is good for practice. Method B could be recommended
for optimization of smaller circuits (in terms of area; the
number of inputs is not important).

The most remarkable result has been obtained for the alu4
circuit where the relative area was reduced to 106.7 by Method
A and 70.8 by Method B from the original value of 819.7. This
result confirms that the conventional optimization generates
far from optimum solutions for some types of circuits (see the
same point in [23], [24], [25]). Hence it is worth to perform
this time consuming CGP-based optimization. Note that the
results are not directly comparable to our previous work since
we measured a relative area in this paper while papers [25],
[11] give the number of gates.

In contrast to our assumptions, the significant reduction
in the area is not automatically accompanied by a reduction
of delay. It can be calculated that delay of the most area-
efficient circuits (see the BstF columns) increased by 3.00
(5.19, respectively) for Method A (Method B, respectively)
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Fig. 4. Convergence curves for selected benchmark problems. The mean, minimum and maximum number of gates from 50 independent runs of Method A
and B when seeded using the best circuit obtained from the ABC tool.

in average in comparison with the CGP seeds. Moreover, the
circuits showing the shortest delay from all the independent
runs exhibit higher delays than the CGP seeds. The average
increase is 1.38 for Method A and 2.48 for Method B. Method
A provides more stable results in terms of delay than Method
B. The reason is that Method B samples more new candidate
(however, fully functional) circuits and hence the probability
that delay of the offspring is different w.r.t. its parent is higher.

B. Analysis of Selection

Although Method B does not consider the circuit size for
selection of a parent individual it still provides better results
than Method A for many problem instances. Recall that a
fitness landscape is rugged and neutral in case of digital circuit
evolution using CGP [26]. In the standard CGP, generating of
offspring individuals is biased to the best individual that has
been discovered so far. The best individual is changed only if
a better or equally-scored solution is discovered. In Method



B, the changes of the parent individual are more frequent
because the only requirement for a candidate individual to
qualify as a parent is its functional correctness. Hence, we
consider Method B as more explorative than Method A.

Paper [12] suggests that if a high degree of redundancy
is present in the genotype, the modified selection strategy
of Method B would generate more functionally correct in-
dividuals than Method A. And because the fitness landscape
is rugged and neutral, Method B would be more efficient in
finding compact circuit implementations than Method A. In
order to verify this hypothesis for our case (where large circuits
are optimized in contrast to small circuits in paper [12]), we
measured the number of non-destructive mutations (NDMs),
i.e. neutral-to-fitness and fitness-improving mutations.

Tables V and VI show the average percentage which is
taken by NDMs (calculated from all runs). Method B produces
6.2% more NDMs than Method A. If Method B gives a smaller
circuit than Method A it holds in 10 out of 11 cases that
percentage of NDMs is higher for Method B. On the other
hand, if Method A gives smaller circuits than Method B then
percentage of NDMs is higher for Method A only in 5 out of
10 cases.

VIII. CONCLUSIONS

We evaluated several aspects of the CGP based evolutionary
post-synthesis optimization of complex combinational circuits.
In particular, we utilized an equivalence checking algorithm
in the fitness function to reduce the fitness computation time.
In addition, two selection strategies were compared with the
aim of reducing the area (the weighted number of gates) in the
LGSynth93 benchmark circuits. It was shown that the modified
selection strategy leads to more compact circuits in roughly
50% cases in comparison with the original selection strategy
of CGP. The average area improvement is 24% with respect
to the results of conventional synthesis. The main drawback
of the proposed methods is that delay of optimized circuits
has increased in many cases. Our plan for future work is
to integrate a truly multiobjective optimization engine to the
proposed methods.
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TABLE V
METHOD A: THE BEST AND AVERAGE FITNESS (BSTF, AVGF), THE BEST AND AVERAGE DELAY (BSTD, AVGDLY), DELAY FOR BSTF (BSTFD ), AREA

FOR BSTD (BSTDF ) . THE NDM GIVES % OF NON-DESTRUCTIVE MUTATIONS.

circuit BstF BstFD BstD BstDF AvgF AvgDly NDM(%)
alu4 106.7 17 13 113.7 173.1 ± 32.4 17.12 ± 1.76 68.22 ± 4.80

apex1 1410.7 19 18 1415.0 1441.5 ± 14.8 19.22 ± 0.64 9.89 ± 0.34

apex2 132.0 15 13 139.0 140.6 ± 4.3 14.30 ± 0.75 24.15 ± 1.43

apex3 1350.0 18 17 1356.3 1369.8 ± 11.6 18.40 ± 0.87 9.10 ± 0.28

apex5 712.7 13 12 715.0 721.9 ± 3.7 13.14 ± 0.77 6.78 ± 0.21

b12 51.7 8 6 53.7 53.7 ± 1.2 7.88 ± 1.19 10.58 ± 0.77

cordic 49.0 8 8 49.0 50.1 ± 0.4 8.38 ± 0.56 10.80 ± 0.53

cps 787.3 17 15 790.0 807.2 ± 9.3 16.60 ± 1.18 12.73 ± 0.38

duke2 282.7 13 12 287.0 292.5 ± 4.4 13.16 ± 0.70 10.46 ± 0.69

e64 262.7 14 11 274.3 278.4 ± 6.8 12.78 ± 1.10 18.75 ± 0.97

ex1010 2382.7 18 17 2390.7 2404.5 ± 7.7 17.64 ± 0.71 4.50 ± 0.09

misex2 85.3 10 8 92.7 95.1 ± 2.7 9.52 ± 0.88 10.68 ± 0.91

misex3 398.0 20 17 428.7 440.8 ± 16.5 19.14 ± 1.48 31.60 ± 1.44

misex3c 400.7 16 14 412.0 416.5 ± 7.0 16.46 ± 1.17 11.33 ± 0.65

pdc 282.7 14 13 295.3 293.4 ± 6.1 14.68 ± 0.84 29.82 ± 0.94

sao2 95.0 12 11 102.3 107.0 ± 3.9 12.72 ± 1.00 14.05 ± 1.46

spla 280.7 18 14 295.0 296.9 ± 7.1 16.12 ± 1.07 34.07 ± 1.03

t481 24.3 5 5 24.3 24.3 ± 0.0 5.00 ± 0.00 10.36 ± 0.00

table3 1055.3 20 18 1066.0 1081.0 ± 15.2 20.04 ± 1.04 11.76 ± 0.49

table5 756.3 18 17 799.0 789.6 ± 11.6 19.00 ± 1.02 15.17 ± 0.49

vg2 83.3 9 9 83.3 85.6 ± 1.0 10.18 ± 0.93 8.30 ± 0.37

TABLE VI
METHOD B: THE BEST AND AVERAGE FITNESS (BSTF, AVGF), THE BEST AND AVERAGE DELAY (BSTD, AVGDLY), DELAY FOR BSTF (BSTFD ), AREA

FOR BSTD (BSTDF ) . THE NDM GIVES % OF NON-DESTRUCTIVE MUTATIONS.

circuit BstF BstFD BstD BstDF AvgF AvgDly NDM(%)
alu4 78.0 14 12 83.0 83.0 ± 4.1 14.52 ± 1.32 83.41 ± 1.06

apex1 1657.0 21 19 1683.3 1693.7 ± 16.5 20.64 ± 0.95 9.18 ± 0.31

apex2 86.7 16 14 89.3 89.6 ± 1.5 16.40 ± 1.04 46.36 ± 0.61

apex3 1589.7 20 13 1603.3 1605.9 ± 3.0 13.88 ± 2.39 8.28 ± 0.22

apex5 763.7 14 11 772.7 771.8 ± 1.9 12.02 ± 1.79 9.00 ± 0.27

b12 49.0 7 6 51.3 51.4 ± 0.8 7.80 ± 1.08 13.54 ± 0.40

cordic 41.3 8 7 41.7 42.6 ± 0.6 8.72 ± 0.83 24.85 ± 0.51

cps 928.3 19 17 928.7 947.3 ± 11.2 19.78 ± 1.79 11.74 ± 0.36

duke2 264.0 18 15 292.3 285.8 ± 9.1 17.86 ± 1.70 16.72 ± 1.06

e64 237.3 41 26 240.7 245.6 ± 4.0 34.06 ± 4.05 27.82 ± 0.49

ex1010 2486.0 14 14 2486.0 2487.3 ± 0.2 14.00 ± 0.00 4.72 ± 0.08

misex2 78.3 9 8 80.7 81.5 ± 1.4 10.48 ± 1.42 21.80 ± 0.38

misex3 369.3 24 19 407.0 433.9 ± 32.6 22.58 ± 1.67 35.79 ± 2.55

misex3c 353.7 17 16 363.0 380.1 ± 11.7 19.68 ± 2.20 20.32 ± 1.40

pdc 292.3 22 17 309.0 311.5 ± 10.2 19.96 ± 1.87 32.52 ± 0.94

sao2 54.3 9 9 54.3 60.5 ± 3.4 11.60 ± 1.33 43.44 ± 2.81

spla 305.0 17 17 305.0 321.9 ± 7.3 20.62 ± 1.82 35.46 ± 0.83

t481 23.7 5 5 23.7 24.0 ± 0.2 5.00 ± 0.00 7.65 ± 0.08

table3 1290.0 21 20 1309.0 1331.3 ± 17.7 22.10 ± 1.17 10.77 ± 0.37

table5 900.3 21 19 917.0 937.2 ± 17.8 22.54 ± 1.42 14.57 ± 0.61

vg2 75.0 11 10 77.7 78.1 ± 1.7 12.52 ± 1.04 16.13 ± 1.36


