
Evolution of Cellular Automata
Using Instruction-Based Approach

Michal Bidlo
Brno University of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Božetěchova 2, 61266 Brno
Czech republic

Email: bidlom@fit.vutbr.cz

Zdenek Vasicek
Brno University of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Božetěchova 2, 61266 Brno
Czech republic

Email: vasicek@fit.vutbr.cz

Abstract—This paper introduces a method of encoding cellular
automata local transition function using an instruction-based
approach and their design by means of genetic algorithms. The
proposed method represents an indirect mapping between the
input combinations of states in the cellular neighborhood and
the next states of the cells during the development steps. In
this case the local transition function is described by a program
(algorithm) whose execution calculates the next cell states. The
objective of the program-based representation is to reduce the
length of the chromosome in case of the evolutionary design of
cellular automata. It will be shown that the instruction-based
development allows us to design complex cellular automata with
higher success rate than the conventional table-based method
especially for complex cellular automata with more than two cell
states. The case studies include the replication problem and the
problem of development of a given pattern from an initial seed.

Index Terms—Cellular automaton, development, replication,
evolutionary design.

I. INTRODUCTION

In the recent years cellular automata (CA) have been suc-
cessfully applied in many scientific areas. The development
of a cellular automaton usually represents a complex process
during which a non-trivial global behavior based only on local
cell interactions using simple rules may emerge [1]. However,
the design of a transition function according to which the CA
should develop to solve a given problem is a challenging task.
The problem is that the number of possible solutions grows
exponentially with the increasing number of cell states and
the size of the cellular neighborhood. Moreover, the process
of creating the transition function is less intuitive than the
traditional algorithm design because of local cell interactions
and parallel matter of the CA development. Therefore, non-
traditional approaches have often been applied, including
evolutionary algorithms.

The goal of this paper is to introduce an instruction-based
approach for the development of cellular automata. The main
idea is to represent the transition function by a program
(a sequence of instructions performing simple elementary
operations) rather than by a table specifying a new state of
a cell for all the possible combinations of states in the cellular
neighborhood. It will be shown that by using the instruction-
based approach the transition function for a given problem

may be designed in substantially shorter time and with higher
success rate in comparison with the conventional (table-based)
approach. The experiments performed to demonstrate the abil-
ity of the proposed approach consider the replication problem
and the development of a specified pattern in the cellular
automaton. The simple genetic algorithm will be utilized to
design the cellular automata.

The paper is organized as follows. The rest of this section
briefly introduces the basic principles of cellular automata
and summarizes the related work. In Section II the concept
of instruction-based development for cellular automata is
described. The setup of the evolutionary system utilized for
the experiments is stated in Section III. Overview of the
experimental results and discussion is proposed in Section IV.
Finally, Section V provides concluding remarks and possible
direction of future research.

A. Cellular Automata

Cellular automata, originally invented by Ulam and von
Neumann in 1966 [2], represent a mathematical model in-
tended to study the behavior of complex systems, especially
the questions of whether computers can self-replicate. Cellular
automata may also be considered as a biologically inspired
technique to model and simulate the cellular development.
A two-dimensional (2D) cellular automaton consists of a
regular grid of cells, each of which can occur in one state from
a finite set of states. The states are updated synchronously
in parallel according to a local transition function. The
synchronous update of all the cells of the CA is called a
developmental step. The next state of a cell depends on the
combination of states in the cellular neighborhood. In this
paper the cellular neighborhood will be considered as a 5-tuple
comprising the investigated cell and its immediate neighbor in
the north, south, east and west direction. The standard form
of the transition function defines next state of a given cell for
every possible combination of states in its neighborhood. Let
us denote sNsSsEsW sC → sCnew a rule of the transition
function, where sN , sS , sE , sW and sC represents the actual
state of the north, south, east, west and the central cell in the
cellular neighborhood respectively and sCnew denotes the next

state of the investigated (central) cell. This concept is referred
to as von Neumann’s cellular neighborhood consisting of 5
cells. Boundary conditions have been considered for a finite
size of the cellular grid. Typically zero boundary conditions
have been applied which means that the non-existing neighbors
of the cells at the grid boundary are considered as cells in state
0. Another case may involve cyclic boundary conditions, i.e.
the opposite cells at the grid boundary are considered to be
neighbors and then the 2D CA can be viewed as a toroid.
In case of uniform cellular automata the transition function
is identical for all the cells. In general, non-uniform CA may
have each cell driven by different transition function.

In this paper 2D uniform cellular automata with von Neu-
manns neighborhood and cyclic boundary conditions will be
considered.

B. Related Work

Cellular automata have been applied to solve many complex
problems in different areas. A detailed survey of the principles
and analysis of various types of cellular automata and their
applications is summarized in [1]. Sipper [3] investigated the
computational properties of cellular automata and proposed an
original evolution-based method called cellular programming
for the design of non-uniform cellular automata. He demon-
strated the success of this approach in solving some typical
problems related to the cellular automata, e.g. synchronization
task, ordering task or the random number generation. In the
recent years, scientists have been interested in the design
of cellular automata for solving different tasks using the
evolutionary algorithms.

Several works dealt with the replication problem in the
past as well as in the recent years. Many works have dealt
with the design and development of cellular automata or more
general cell-based systems (e.g. Random Boolean Networks
[4]). For example, Miller investigated the problem of evolving
a developmental program inside a cell to create multicellular
organisms of arbitrary sizes and characteristics. He presented
a system in which the organism organizes itself into a well
defined patterns of differentiated cell types (e.g. the French
flag) [5]. Kowaliw et al. proposed a simplified model of
biological embryogenesis instantiating a subset of 2D cellular
automata and a methodology for “growing” the cells into
agents utilizing only local interactions. His approach was
called Bluenome Developmental Model [6]. Tufte and Haddow
utilized a FPGA-based platform of Sblocks [7] for the online
evolution of digital circuits. The system actually implements
a cellular automaton whose development determines the func-
tions and interconnection of the Sblock cells in order to realize
a specified behavior [8]. The rules for the development of
the cellular automaton has been designed by evolutionary
algorithm. Considering the popular replication problem, prob-
ably the most known approach represents the Langton’s self-
replicating loops [9] that utilize special instructions encoded
in the cell states to determine the development steps of the
cellular automaton. In particular, the loop starts its replication
by creating a “construction arm” by means of which the new

copy of itself emerges. The instruction specified by the com-
binations of states in this arm determines the next step of the
replication process (including turns, loops closing and starting
the next replication process). Pan and Regia also studied the
replication in cellular automata [10]. However, they adopted a
uniform tree-based approach based on Genetic Programming
for representing both arbitrary cellular automata structures and
the rules that control the cell’s transitions. As the authors state
“There is no identifiable instruction sequence or construction
arm, the replicating structures generally translate and rotate
as they reproduce, and they divide via a fissionlike process
that involves highly parallel operations.” [10]. We found their
approach very inspirative because it actually introduces new
way of determining the states during the CA development.
However, we also felt that the method utilized to calculate
the transition function might be simplified substantially by
introducing elementary operations and suitable encoding with
respect to the form of the cellular neighborhood. As we
demonstrate, our approach is applicable on different problems
in two-dimensional cellular automata.

II. INSTRUCTION-BASED DEVELOPMENT FOR CELLULAR
AUTOMATA

The instruction-based development (IBD) was originally
introduced in [11] as an advanced generative genotype–
phenotype mapping in the evolutionary design. The main
goal was to provide an evolutionary system for the automatic
development of generic solutions for different problems. The
instruction-based approach demonstrated its ability to reduce
the search space allowing to develop (arbitrarily) large struc-
tures (instances) of digital circuits.

However, the concept of instructions also may be utilized
for effective representation of functions (similarly to Genetic
Programming for the evolution of computer programs [12]).
Cellular automata belong to the systems in which an effective
calculation of the local transition function (determining the
process of their development) is essential to solve a given
problem. Conventionally the local transition function is rep-
resented by a table that specifies the next state of a cell for
all the possible combinations of states in its neighborhood. In
case of increasing the number of cell states the number of such
combinations grows exponentially and thus the representation
and design of the transition function becomes difficult. It may
me possible to specify implicit rules of the transition function
(e.g. for some combinations of states the new state of the cell
does not change) but the problem is how to determine the set of
implicit rules for a given task. Therefore, we will represent the
transition function by a program whose instructions perform
elementary or more complex operations over the cell states
of the cellular neighborhood and the next state is chosen
deterministically from this modified neigborhood. Whilst in
[11] the instructions were intended to manipulate the circuit
building blocks (i.e. to perform a construction process), in this
paper another instruction set has to be chosen. In particular,
the instructions will be devoted to the calculation over cell
states and other operations related to the cellular neighbor-

hood. The main idea is to demonstrate that the instruction-
based approach combined with evolutionary algorithms may
be widely applicable. In this paper the case studies include
some problems of cellular automata development, specifically
the replication problem and the development of a given pattern
from an initial seed. The objective is to show that if a suitable
set of instructions is utilized for the evolution of a program-
based transition function of a cellular automaton, then a given
behavior of the CA can be achieved with higher success rate in
comparison with the conventional table-based representation.

A. Operations on the cellular neighborhood

The goal of the IBD approach to cellular automata evolution
is to provide a technique for efficient updating the cell states
during the CA development with respect to the states of the
neighboring cells. The operations of the instructions have been
chosen with respect to the form of the cellular neighborhood.
The execution of the program allows to modify the states in
the cellular neighborhood and subsequently to determine the
next state of the investigated cell. The following development
algorithm will be considered for each cell of the CA:

1) Copy the cell states of the cellular neighborhood into a
temporary data structure whose form corresponds to the
cellular neighborhood.

2) Execute the program representing the transition function
whose instructions will modify the states in the tempo-
rary data structure.

3) Return the state of the central cell in the temporary data
structure as the next state – the result of the transition
function.

The set of instructions that may be utilized in the program
calculating the transition function is summarized in Table I.
As evident the instructions include operations that can modify
one or more cells in the neighborhood copy and the empty
operation allowing to alter the efficient length of the program
during the evolutionary process. Since the instructions operate
over the copy of the cellular neighborhood in a temporary
data structure, the process of calculation of the next state
of a cell does not influence the states of other cells during
a development step and therefore the next states of all the
cells can be determined in parallel which is a characteristic
feature of cellular automata. The instructions were chosen
with respect to general operations that are possible to perform
over cell states (i.e. logic and arithmetic operations over the
state values, transfer a cell state to a different cell in the
neighborhood, swapping the states of two neighbors etc.).
However, no advanced optimization of the instruction set has
been performed in this stage of research because the selection
of proper instructions for a given CA behavior represents a
difficult task and in many cases is a subject of experimental
work.

B. Properties of the Instruction-Based Transition Function

If an evolutionary algorithm is applied to design a CA, the
instruction-based approach is able to shorten the chromosome
substantially and therefore to reduce the search space. In fact,

TABLE I
THE SET OF INSTRUCTIONS UTILIZED FOR THE DEVELOPMENT OF

CELLULAR AUTOMATA. N [i1], N [i2] DENOTE THE CELL STATES FROM THE
NEIGHBORHOOD POSITIONS DETERMINED BY THE INSTRUCTION

ARGUMENTS i1, i2 , S REPRESENTS THE NUMBER OF CELL STATES AND
N, S, E, W AND C SPECIFIES THE CELL STATE IN THE NORTH, SOUTH,

EAST, WEST AND CENTRAL POSITION IN THE NEIGHBORHOOD
RESPECTIVELY.

Instruction Operation Description
AND N [i1] = N [i1] ∧N [i2] logic AND
OR N [i1] = N [i1] ∨N [i2] logic OR

XOR N [i1] = N [i1]⊕N [i2] logic XOR
NOT N [i1] = notN [i1] bitwise NOT
INV N [i1] = S −N [i1] inverse state
MIN N [i1] = min(N [i1], N [i2]) minimum
MAX N [i1] = max(N [i1], N [i2]) maximum
SET N [i1] = N [i2] replace
INC N [i1] = N [i1] + 1 increment
DEC N [i1] = N [i1]− 1 decrement
SWP N [i1]↔ N [i2] swap
ROR WCE → EWC rotate right
ROL WCE → CEW rotate left
ROU UCS → CSU rotate up
ROD UCS → SUC rotate down
NOP no operation

the design of a CA consists of the evolution of its local
transition function.

For example, if a transition function ought to be evolved for
a CA working with 4 cell states (that is used in some of the
experiments presented in Section IV), then the fully defined
table-based transition function consists of 45 = 1024 integers
(it is the length of a chromosome representing the complete
table of the transition function). Therefore, there are in total
41024 = 3.2317 × 10616 different transition functions for this
CA which represents the search space of the evolutionary
algorithm. Consider that the IBD approach is utilized and
the goal is to evolve a program consisting of 10 instructions.
Moreover, assume that a single instruction consists of 3 inte-
gers (operation code and two arguments), there are 16 different
instructions (i.e. 16 different operation codes) and each of the
arguments can posses one of 5 different values. Then the length
of a chromosome is 10× 3 = 30 integers and the size of the
search space consists of (16 × 5 × 5)10 = 1.048576 × 1026

different programs which is substantially less in comparison
with the table-based representation.

As stated in the previous section, the program is executed
over a copy of the cellular neighborhood. Therefore, the next
states of all the cells can be calculated independently (in
parallel) as usual in common (synchronous) cellular automata.
Another important aspect of the IBD approach is that the
process of calculating the next state for a given cell is
deterministic (there is a specific combination of states in
the neighborhood copy which the program operates on, each
instruction of the program performs a deterministic operation
(function) modifying the states in the neighborhood and the
resulting value — next state — is always considered in a
specific cell of the neighborhood after executing the program).
Considering this feature, the instruction-based transition func-
tion can be deterministically transformed to a corresponding

table-based transition function without changing the nature of
cellular automata.

III. EVOLUTIONARY SYSTEM SETUP

The simple genetic algorithm (GA) was utilized for the
evolutionary design of the cellular automaton that exhibits the
specified behavior. For the comparison purposes we consider
the evolution of common table-based local transition function
as well as the program-based transition function as described
in the previous section. The table-based approach considers the
evolution of a complete transition function (i.e. to determine
a next state for all the possible combinations of states in
the cellular neighborhood). In case of the IBD approach a
program to be evolved consists of 10 instructions. This value
was determined experimentally in order to provide a sufficient
resources to calculate the next states. Of course, some of the
resulting solutions use NOP instructions so the effective length
of the program can be reduced. However, if shorter programs
ough to be evolved, then the number of correct solutions in the
search space may be reduced and the success rate decreases.

In all the experiments, the population consists of 16 chro-
mosomes which are initialized randomly (with respect to the
correct range of each gene) at the beginning of evolution.
The chromosomes are selected by means of the tournament
operator with the base 4. The experiments showed that the
crossover operator is not suitable for this problem, thus only
the mutation operator is applied as follows. Two integers of
the chromosome are chosen randomly and their values are
mutated by generating new random values in the appropriate
range.

Each candidate CA is evaluated during 30 development
steps according to the transition function encoded in the
chromosome. The following subsections describe the specific
features of the evolutionary system with respect to the two
different approaches.

The initial state of the CA, the way of calculating the
fitness function and the number of generations of the evolution
depends on the problem to be solved and therefore their
description will be covered in Section IV.

The way of encoding the transition function in the genome
for the table-based and program-based representation and its
properties is described in the following subsections.

A. Table-Based Transition Function

In case of the table-based transition function the chromo-
some encodes the next states of a cell for all the possible
combinations of states in the cellular neighborhood. The index
of a given next state in the chromosome is specified implicitly
by means of the value expressed by the number representing
the combination of states in the cellular neighborhood. The
base of this number equals the number of possible cell
states. Therefore, if we consider the general form of the rule
sN sS sE sW sC → sCnew, only the part on the right of the
arrow are encoded in the chromosome. For example, if a cellu-
lar automaton ought to be evolved working with 2 different cell
states and von Neumann’s neighborhood consisting of 5 cells,

there are 25 rules of the local transition function. Consider the
rule 1 0 0 0 1→ 0. Since the combination of states 1 0 0 0 1
corresponds to the binary representation of value 17, the output
value (0) will be placed in the chromosome at the position 17.

B. Program-Based Transition Function

The program-based representation of the transition func-
tion is encoded in the chromosome as a finite sequence of
instructions from Table I. Each instruction is encoded as three
integers (operation code and two arguments) whose value
ranges depend on the number of instructions and the meaning
of their arguments. The main advantage of this approach is that
the length of the genome is independent on the number of cell
states and the size of the cellular neighborhood. Therefore the
search space can be reduced substantially.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The abilities of the proposed instruction-based develop-
ment approach introduced in the previous sections will be
demonstrated on two problems: (1) the replication problem
and (2) the problem of development of a given pattern from
a seed. The experimentsl results and discussion are given in
this section.

A. Replication Problem

The goal of the replication problem is to obtain a copy of
a given structure in a finite number of development steps. The
structure is represented by the initial state of the CA. The
genetic algorithm is applied to design a transition function
by means of which the CA develops so that there is a given
number of copies of the initial structure after a finite number
of development steps. The set of experiments performed in this
section considers searching for the transition function (in the
form of table and program) for the replication of structures of
different complexity and size. As noted in Section I-B there
are several approaches to the replication problem. Probably
the simplest technique able to replicate an arbitrary structure
is based on aditive cellular automata rules [1]. This problem
can be viewed as a basis for investigating the abilities of the
proposed method (having a known solution, we may search for
the same or similar transition functions using the conventional
and proposed approach).

Fig. 1. Patterns considered in the experiments.

Five sets of experiments were performed, each of which
contained 100 independent runs of the GA. The first set
considered the replication of a simple grid structure (Figure
1a), the second was devoted to the replication of French flag
pattern (Figure 1b), the third set is the replication of Czech flag

best_fitness = 0 # fitness out of all development steps
const REPLICS = the num. of required copies of the given pattern

initialize the CA by the pattern to be replicated
FOR int step = 1 TO DEVEL_STEPS DO
{

fitness = 0 # fitness in one development step
replics_cnt = 0 # num. of replics found in a devel. step
ca_step(ca1, genome->prog);

FOR row = 0 TO CA_HEIGHT - PATTERN_HEIGHT DO
{

FOR col = 0 TO CA_WIDTH - PATTERN_WIDTH DO
{

partial_fitness = 0 # fitness in specific part of CA
FOR pr = 0 TO PATTERN_HEIGHT - 1 DO

FOR pc = 0 TO PATTERN_WIDTH - 1 DO
IF ca[row+pr][col+pc] == pattern[pr][pc] THEN

partial_fitness = partial_fitness + 1
save the partial_fitness value
IF found perfect pattern at position (row, col) THEN

replics_cnt = replics_cnt + 1
}

}
fit = sum of the REPLICS best saved partial fits
add a bonus if the solution produces more replics
fit = fit + replics_cnt * PATTERN_HEIGHT * PATTERN_WIDTH

save the best fitness out of all development steps
IF fitness > best_fitness THEN

best_fitness = fitness
}

RETURN best_fitness

Fig. 2. Calculating the fitness function for the replication problem. The
pattern dimensions PATTERN WIDTH and PATTERN HEIGHT
also include a border consisting of a single line of inactive cells (cells in state
0) because we require the replicated structures to be separated each other.

(Figure 1c), the fourth and fifth replicate WCCI abbreviation
(Figure 1d), where at least 3 and 4 copies are required
respectively. The evolution was executed independently for the
design of the conventional table-based transition function and
the program-based representation. The algorithm calculating
the fitness function is shown in Figure 2 and its principle can
be described as follows. After each development step, every
part of the CA is explored by comparing the states of the given
pattern with the appropriate cell states at a the corresponding
positions in the CA. If a state match is detected, then a partial
fitness value associated with the specific part of the CA is
increased by one. After exploring the part of the CA the
resulting partial fitness is saved into a temporary array. If the
partial fitness equals the number of cells the replicating pattern
is composed of, then the value of a replics counter variable
is increased by one. After exploring all the parts of the CA,
the replics counter contains the number of perfectly matched
patterns (i.e. the number of replics that emerged after a given
development step). The fitness value of the given development
step is calculated as the sum of the REPLICS best partial
fitness values, where REPLICS represents the number of
required copies of the (initial) pattern to be replicated. If the
replics counter detected at least one replicated pattern, then
the fitness value is increased appropriately to prefer solutions
that are able to create perfect replics. As a final fitness value of
the CA (i.e. the fitness of the candidate transition function) is
considered the highest fitness from all the development steps
during which the CA was evaluated.

The results of the replication experiments are summarized
in Table II. For each pattern the success rate and the average
number of generations needed to find a perfect solution were
measured. The proposed program-based transition function
overcomes the conventional approach in all presented cases,

TABLE II
STATISTICAL RESULTS FOR THE REPLICATION PROBLEM CONSIDERING

THE INSTRUCTION-BASED AND TABLE-BASED DEVELOPMENT. THE GRID
STRUCTURES (FIG. 1A) WERE DEVELOPED IN CA WITH 2 CELL STATES,
THE OTHER PATTERNS CONSIDERED 4 CELL STATES. IF NOT EXPLICITLY

SPECIFIED, 3 REPLICS WERE REQUIRED.

Instruction-based development
Number of generations

Pattern Succ avg. std. dev. min. median max.
[%]

Fig. 1a 100.0 23 19.4 1 18 80
Fig. 1b 100.0 22 16.4 1 19 80
Fig. 1c 100.0 22 21.4 1 18 112
Fig. 1d 100.0 23 18.1 1 18 81
Fig. 1d (4 repl.) 100.0 55 43.6 2 47 256

Table-based development
Fig. 1a 9.0 5634 2490.2 1500 5250 9052

especially for more complex patterns. In case of the grid
structure replication a perfect program was evolved in all
runs, whilst the table-based approach succeeded only in 9%
of evolutionary runs. It is important to note that the table-
based approach did not provide any solution to the remaining
patterns considered in the experiments. We assume that this
result is caused by the cardinality of the search space that
is substantially higher for the table-based representation and
the evolution is not able to explore it effectively. Another
aspect of this issue is probably based on the operations needed
to express the local transition function. In case of the table-
based representation, the transition function actually needs to
be created at a low level (i.e. for every combination of states
in the cellular neighborhood a new state has to be specified).
However, if the instruction-based approach is considered, the
new state is calculated using higher-level operations (like in a
common programming language), the corresponding program
can be shorter in comparison with the complete table which
leeds to a reduction of the search space and the evolution
is able to explore it more effectively. We determined that
several different programs were evolved that produces at least
3 perfect replics of the given pattern. Although we required 3
replics, the evolution found in some case a solution providing
4 replics of the structure.

An example of evolved solution is shown in Figure 3.
In addition, the table-based transition function produced two
solutions for 3 replics that exhibit a couple of extra active
cells between the replicated patterns (Figure 4). This behavior
was not observed in the program-based approach (only pure
replicated structures were generated). It is probably caused
by the fact that the evolution of the table-based representation
directly allows to alter each single output state of the transition
function whilst the program-based approach actually repre-
sents an indirect mapping between the input combinations of
states in the cellular neighborhood and the output states. This
feature may be considered as both advantage and disadvantage
of the program-based approach. The benefit lies in the fact that
the program-based solutions produce perfect outputs without

Fig. 3. Development of evolved cellular automaton for the replication of a grid structure.

Fig. 4. Example of replication of a simple grid structures with additional active cells.

undesirable active cells. On the other hand the drawback is that
more complex transition functions require (as expected) more
instructions in the program. Neverthless the evolution is able
to tackle that very efficiently because the proposed approach
solved all the considered problems with substantially higher
success rate and lower computational effort in comparison with
the table-based transition function.

Another examples illustrating the replication of more com-
plex irregular patterns (the Czech flag and a WCCI pattern) are
illustrated in Figure 5 and 6. Both of these automata operate
with 4 cell states.

The evolved transition functions exhibit the features of
aditive rules described in [1]. Several different variants were
obtained differing in the number and direction of replics with
respect to the position of the initial structure. In addition to
the pattern used during the evolution, the resulting programs
are in many cases able to replicate different structures which
confirms the properties of the replicators mentioned in [1].

B. Pattern Development Problem

Another issue that was investigated in our experiments is the
problem of the development of a given pattern in a cellular
automaton from a seed. It means that the initial state of the
CA is represented only by the central cell in non-zero state,
all the other cells possess the state 0. During the evolutionary
process the CA is examined if it matches with the specified
pattern after each development step. In these experiments
the dimensions of the cellular automaton correcpond to the
dimensions of the pattern that ought to be developed. The
goal is to design a transition function (again, in the form of
table and program) according to which the CA develops from
the seed into the given pattern.

Four sets of experiments were performed. The first pair of
experiments considered the development of a grid structure
consisting of 5x5 cells (Figure 1a)) and 9x9 cells (Figure 1e).
In the second pair of experiments French flag ought to be
developed (Figure 1b) with the dimensions 6x6 and 9x9 cells.
The candidate solutions are evaluated as follows. A partial
fitness value is calculated after each development step as the

number of cells of the CA whose state equals the state of the
corresponding cell of the target pattern. The fitness function
of a candidate transition function is evaluated as the maximum
of the partial fitness values from all the development steps.

TABLE III
STATISTICAL RESULTS FOR THE PATTERN DEVELOPMENT PROBLEM

CONSIDERING THE INSTRUCTION-BASED AND TABLE-BASED APPROACH.
THE GRID STRUCTURES (FIG. 1E) WERE DEVELOPED IN CA WITH 2 CELL

STATES, THE OTHER PATTERNS CONSIDERED 4 CELL STATES.

Instruction-based development
Number of generations

Pattern Succ. avg. std. dev. min. median max.
[%]

Fig. 1a 100.0 14358 16711.5 143 7543 86445
Fig. 1e 60.0 32504 23387.7 2888 24828 89228
Fig. 1b 79.0 37925 27117.1 1211 31991 97717
French9x9 23.0 62095 21979.8 18784 62143 90233

Table-based development
Fig. 1a 100.0 402 757.3 19 118 4075
Fig. 1e 76.0 24331 26200.6 118 16353 96980
Fig. 1b 54.0 28896 26264.1 475 22028 92948
French9x9 1.0 30614 0.0 30614 30614 30614

Table III summarizes the statistical results from the exper-
iments mentioned in the previous paragraph. The evolution
succeeded in all cases and provided solutions that perfectly
fullfil the objectives specified in the fitness function. There
are some interesting facts that were observed in both rep-
resentations of the transition function. The first is that the
instruction-based approach exhibits higher success rate in
most sets of experiments. The only case in which the table-
based representation is more successful is the development of
a 9x9 grid structure (the program-based approach succeeded
in 60% whilst the conventional method in 76%). This issue
can be explained as follows. The problem considers a binary
CA whose 5-neighborhood implies 232 possible transition
functions specified by the table (the chromosome consists of
32 bits). However, the search space of the program-based
approach is in this case substantially bigger. For example, if
10 instructions in the programs are considered, each consisting
of 3 integers, there are 30 integers in the chromosome, each
of which can possess at least 5 different values so the search

Fig. 5. Development of evolved cellular automaton for the replication of the Czech flag.

Fig. 6. Development of evolved cellular automaton for the replication of WCCI structure.

space contains at least 530 candidate solutions. Therefore it
is harder to find a working solution for the 9x9-cell structure
in so big search space. The second interesting issue is that
although the program-base approach mostly exhibits higher
success rate, the computational effort (expressed by the num-
ber of generations needed to evolve a working solution) is
higher than in case of the conventional approach. This fact
was observed in all the experiments performed in the pattern
development problem. We assume that this feature is caused
by more complex (indirect) mapping between a program and
the corresponding output states of the transition function of
the cellular automata.

Figure 7 shows an example of evolved solution for the
development of French flag in a cellular automaton. In this
case we obtained several solutions that differ in the behavior
of the developed structure if the CA continues to develop. In
most cases the French flag pattern represents an intermediate
state of the CA that is totally destroyed if the development
continues. The second group of solution is able to periodically
recreate the given pattern and the last case includes several
solutions that produce the French flag that is stable during the
subsequent development of the CA. These classes of solutions
are expectable. Since the CA possesses finite dimensions and
the number of cell states is also finite, it can not exhibit infinite
development through infinite different states. Therefore, if the
CA does not exhibit a stable pattern after a finite number of
development steps, then it generates a finite number of differ-
ent patterns in a loop (e.g. see Figure 7)). The corresponding
program that was found by evolution is shown in Table IV.
It is very difficult to identify the principle of this program
(similarly as to identify the individual rules of a transition
function) because the CA behavior is an emergent property
of interaction of all the cells. It can be observed that all the
(temporary) neighborhood cells are affected by the program so

that the development of French flag is probably not a trivial
task. Note that the exact French flag pattern was reached only
in CA whose dimensions correspond to the pattern size. In
larger CA, although, it is possible to develop the pattern in
a subpart of the CA but some of the other cells are affected
too that surrounds the target pattern immediately (confirmed
by the experiments).

TABLE IV
EVOLVED 6X6 CELLULAR AUTOMATON PROGRAM FOR THE

DEVELOPMENT OF FRENCH FLAG PATTERN. THE EVOLUTION WORKED
WITH 10-INSTRUCTION PROGRAM, THE RESULTING SOLUTION
CONTAINED 2 NOPS THAT WERE SUBSEQUENTLY REMOVED.

Line num. Instruction
1: MAX W C
2: XOR C N
3: MIN S E
4: ROD
5: AND E S
6: DEC E
7: OR C E
8: XOR C W

V. CONCLUSIONS

In this paper we presented an instruction-based approach
to the develpoment of 2D cellular automata and their design
using genetic algorithm. The idea was to shorten the genotype
and reduce the serach space especially for the CAs with more
than 2 cell states. Two problems were considered in order to
demonstrate the abilities of the proposed approach: (1) the
replication problem and (2) the problem of development of a
given pattern from a seed.

In case of the replication problem, the instruction-based
approach overcomed the conventional table-based transition
function in all the performed experiments. We determined that
in addition to the perfect success rate this method also reduces

Fig. 7. Development of French falg pattern in a cellular automaton. This solution shows the development process in which the french flag emerges for the
first time in step 26. Then the pattern is destroyed and emerges again with the period of 12 development steps (the next instance can be observed in step 38).

the computational effort needed to evolve a working solution
of the replication problem.

The pattern development from a seed proposed interesting
results in both of the instruction-based method and the con-
ventional approach. Whilst the instruction-based development
exhibits substantially higher success rate in most of the experi-
ments, the conventional approach provides lover computational
effort for obtaining a working solution.

In summary the proposed method works very well for more
complex cellular automata, even for those in which no working
solution was found by means of the conventional approach.
We assume that the instruction-based approach is applicable
to many other problems whose solution can be realized using
cellular automata. The experiments that were performed in
this paper represent problems for which successful solutions
are known. However, we are going to experiment with more
applications in order to determine the cellular automata be-
havior in different conditions. For example, the optimization
of instruction set for a specific CA behavior seems to be an
interesting area. Experiments in other application domains are
in progress (e.g. development of computational structures or
image operators may represent suitable candidates).

ACKNOWLEDGMENT

This work was supported by the Czech science founda-
tion projects P103/10/1517 and GD102/09/H042, the research
programme MSM 0021630528, the BUT projects FIT-S-11-
1, FIT-S-12-1 and the IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] S. Wolfram, A New Kind of Science. Champaign IL: Wolfram Media,
2002.

[2] J. von Neumann, The Theory of Self-Reproducing Automata. A. W.
Burks (ed.), University of Illinois Press, 1966.

[3] M. Sipper, Evolution of Parallel Cellular Machines – The Cellular
Programming Approach, Lecture Notes in Computer Science, volume
1194. Berlin: Springer-Verlag, 1997.

[4] S. A. Kauffman, “Metabolic stability and epigenesis in randomly con-
structed genetic nets,” Journal of Theoretical Biology, vol. 22, pp. 437–
467, 1969.

[5] J. F. Miller, “Evolving developmental programs for adaptation, morpho-
genesis and self-repair,” in Advances in Artificial Life. 7th European
Conference on Artificial Life, Lecture Notes in Artificial Intelligence,
volume 2801. Dortmund DE: Springer, 2003, pp. 256–265.

[6] T. Kowaliw, P. Grogono, and N. Kharma, “Bluenome: A novel develop-
mental model of artificial morphogenesis,” in Proc. of the Genetic and
Evolutionary Computation Conference, GECCO 2004, Lecture Notes in
Computer Science, part I., volume 3102. Springer-Verlag, 2004, pp.
93–104.

[7] P. C. Haddow and G. Tufte, “Bridging the genotype–phenotype mapping
for digital FPGAs,” in Proc. of the 3rd NASA/DoD Workshop on
Evolvable Hardware. Los Alamitos, CA, US: IEEE Computer Society,
2001, pp. 109–115.

[8] G. Tufte and P. C. Haddow, “Towards development on a silicon-based
cellular computing machine,” Natural Computing, vol. 4, no. 4, pp. 387–
416, 2005.

[9] C. G. Langton, “Self-reproduction in cellular automata,” Physica D:
Nonlinear Phenomena, vol. 10, no. 1–2, pp. 135–144, 1984.

[10] Z. Pan and J. A. Reggia, “Computational discovery of instructionless
self-replicating structures in cellular automata,” Artificial Life, vol. 16,
no. 1, pp. 39–63, 2010.

[11] M. Bidlo and J. Škarvada, “Instruction-based development: From evo-
lution to generic structures of digital circuits,” International Journal of
Knowledge-Based and Intelligent Engineering Systems, vol. 12, no. 3,
pp. 221–236, 2008.

[12] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

