
Accepted Manuscript

Fault Tolerant System Design and SEU Injection based Testing

Martin Straka, Jan Kastil, Zdenek Kotasek, Lukas Miculka

PII: S0141-9331(12)00168-8

DOI: http://dx.doi.org/10.1016/j.micpro.2012.09.006

Reference: MICPRO 2005

To appear in: Microprocessors and Microsystems

Please cite this article as: M. Straka, J. Kastil, Z. Kotasek, L. Miculka, Fault Tolerant System Design and SEU

Injection based Testing, Microprocessors and Microsystems (2012), doi: http://dx.doi.org/10.1016/j.micpro.

2012.09.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.micpro.2012.09.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.micpro.2012.09.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.micpro.2012.09.006

Fault Tolerant System Design and SEU Injection based Testing

Martin Straka, Jan Kastil, Zdenek Kotasek, Lukas Miculka

Brno University of Technology, Faculty of Information Technology, Bozetechova 2, 612 66 Brno, Czech Republic

Abstract

The methodology for the design and testing of fault tolerantsystems implemented into an FPGA platform with different types of
diagnostic techniques is presented in this paper. Basic principles of partial dynamic reconfiguration are described together with their
impact on the fault tolerance features of the digital designimplemented into the SRAM-based FPGA. The methodology includes
detection and localization of a faulty module in the system and its repair and bringing the system back to the state in which it
operates correctly. The automatic repair process of a faulty module is implemented by a partial dynamic reconfigurationdriven by a
generic controller inside the FPGA. The presented methodology was verified on the ML506 development board with Virtex5 FPGA
for different types of RTL components. Fault tolerant systems developed by the presented methodology were tested by means of
the newly developed SEU simulation framework. The framework is based on the SEU simulation through the JTAG interface and
allows us to select the region of the FPGA where the SEU is placed. The simulator does not require any changes in the tested design
and is fully independent of the functions in the FPGA. The external SEU generator into FPGA is implemented and its function is
verified on an evaluation board ML506 for several types of fault tolerant architectures. The experimental results show the fault
coverage and SEU occurrence causing faulty behavior of verified architectures.

Keywords: fault tolerant system, FPGA, partial reconfiguration, reconfiguration controller, on-line checker, duplex architecture,
TMR architecture, SEU simulation framework, fault injection

1. Introduction

As digital systems become increasingly large and complex,
their reliability and availability qualities play a critical role in
supporting next-generation science, engineering and commer-
cial applications. Reliability is defined as the ability of asys-
tem or component to perform its required functions under stated
conditions for a specified period of time. In digital system de-
sign, different approaches such as fault avoidance, fault mask-
ing and fault tolerance can be used to increase system reliability.
Real-time systems are often used in hazardous or remote appli-
cations, such as aircraft and spacecraft, where the systemsare
highly susceptible to errors due to radiation.

1.1. On-line Testing and Fault Tolerance of Systems
Fault tolerance (FT) is an important feature for many operat-

ing environments, from earth applications to space exploration.
FT is the ability of a system to operate normally in the presence
of faults. This type of reliability is usually attained through
replication of hardware such as architectures based on a du-
plex system, n-modular redundancy or the application of self-
correcting codes [1]. Triple Modular Redundancy (TMR) uses
hardware redundancy to mask any single design failure by vot-
ing on the result of three identical copies of the Function Unit
(FU). TMR is a popular technique used in many FT schemes.
The architecture of a TMR system can be seen in Figure 1A.

Email address:strakam@fit.vutbr.cz, ikastil@fit.vutbr.cz,

kotasek@fit.vutbr.cz, imiculka@fit.vutbr.cz (Martin Straka, Jan
Kastil, Zdenek Kotasek, Lukas Miculka)

FU1

FU2

FU3

Voter
in

out

FU1

FU2

=in

A) B)

out

err

Figure 1: FT architectures: A) TMR system, B) duplex system.

Duplication of a system ensures online fault security and is
used in many FT techniques. It requires duplication of FUs, a
comparator and a multiplexor of output data. The basic archi-
tecture of the duplex system is shown in Figure 1B. Unfortu-
nately, TMR and duplication of FUs are generally not a very
cost effective solution.

FU

checker
in

out

err

A) B)

FU

FU
in XOR

err

out

out

FU

parity
predictor

in

out

err

C)

chck

Figure 2: CED techniques: A) on-line checker, B) 2-rail logic C) self-checking.

The main problems combined with the modern FT systems
include error detection during system operation, fast fault local-
ization, quick recovery or repair and bringing the system back
to the state in which it operates correctly. One approach on
how to construct FT systems with fault detection and fault lo-
calization is through the use of on-line checkers [2]. Otherap-

Preprint submitted to Microprocessors and Microsystems April 13, 2012

http://ees.elsevier.com/micpro/viewRCResults.aspx?pdf=1&docID=1182&rev=1&fileID=50450&msid={E0F40C43-3BC4-4E42-9FB1-C31775D37533}

proaches combine the principles of 2-rail logic, parity check-
ers, time redundancy and self-checking (see Figure 2). These
approaches are denoted as Concurrent Error Detection (CED)
techniques [3],[4].

1.2. Field Programmable Gate Arrays

A digital system can be implemented on various platforms.
From among those which are widely used in many applications,
the reconfigurable hardware should be mentioned. Nowadays,
for digital system design, Field Programmable Gate Arrays
(FPGA) can be used [5]. In particular, FPGA-based systems
are very valuable for remote and long-time missions because
of the possibility of being reprogrammed by the user as many
times as necessary in a very short period. These properties of
FPGA circuits and concurrent online testing become a strong
feature in the design of FT systems [6].

In an SRAM-based FPGA, the combinational and sequen-
tial logic are implemented in programmable Complex Logic
Blocks (CLBs) which are customized by loading configuration
data (bitstream) in the SRAM cells of the configuration mem-
ory. However, when a charged particle strikes a memory cell
in the configuration memory, the effect can produce an inver-
sion in the stored value and this can modify the function of
the design. This event is denoted as the Single Event Upset
(SEU) [7]. An efficient set of SRAM-based FPGA mitigation
techniques should cope with the Single Event Transient (SET)
occurring in combinational logic and SEUs in storage cells.In
this way, transient faults in the combinational logic will never
be stored in the storage cells, and bit flips in the storage cells
will never occur or be immediately corrected. Each technique
has some advantages and drawbacks, usually it must be an ac-
cepted compromise between area overhead, performance and
fault tolerance efficiency.

In order to recover or repair a system quickly when SEU or
SET is detected in the FPGA by a CED or bitstream scrubbing
techniques, the reconfiguration or Partial Dynamic Reconfigu-
ration (PDR) of an FPGA circuit can be used [8]. The main
reason why a PDR has become an available feature in FPGA
based implementations is seen in the possibility of modifying
or reloading configuration memory while the application is cor-
rectly working. This situation is shown in Figure 3. On the
Figure, the TMR architecture can be seen. If one of three func-
tion units of TMR is faulty, TMR still provides correct values at
the output and the faulty module (FU3) can be repaired by PDR
without stopping FPGA. Otherwise, if another module (FU1)
is faulty then TMR produces incorrect results at the output and
both modules (FU1,FU3) must be repaired by PDR as well.

FU1

FU2 Voterin
out

FU1

FU2

FU3

Voter
in

out

partial reconfiguration

FU1

FU2

FU3

Voter
in out

?

SEU

SEU

partial reconfiguration

failed

FPGA

Figure 3: TMR vs. reconfiguration of FPGA.

This property can be used for the design of a highly depend-
able system based on FPGA. The next problem with an FT sys-
tem design into FPGA is the occurrence of a permanent fault in
the device. For this type of fault, the process of design rerouting
and reconfiguration into other parts of the FPGA can be used.
The FPGA-based FT methodologies which aim at increasing re-
liability parameters are based on an FU replication and the use
of CED techniques. The FT system implemented into FPGA
can be realized at various design levels.

1.3. Granularity of System Replication in FPGA

The design of FT systems into FPGA with high reliability
and availability parameters can be implemented with different
levels of replication (see Figure 4):

FPGA1

FPGA2

FPGA3

Voter
out in

FPGA

system

system

system

Voter
out

in

FPGA

Voter

out

FU1

FU1

FU1

VoterFU2

FU2

FU2

VoterFU3

FU3

FU3

in FU4 FU5

FU5

FU5

Voter

out in

FPGA

Votercnt

cnt

cnt

Votercnt2

cnt2

cnt2

Voterdec

dec

dec

in
mux reg

reg

reg

Voter

A) B)

C) D)

in

in

in

out

Figure 4: Replication granularity of FT system based on FPGA.

• The replication on the level of separate FPGA units, the
component is tripled as a TMR of three separate FPGAs,
their outputs are compared by one majority element out-
side the FPGA. This technique is often implemented in
despite of higher prices, power consumption and the size
of the implementation (Figure 4A).

• The replication on the level of one FPGA unit where the
system is replicated in the same FPGA (Figure 4B).

• The replication on the level of functional units imple-
mented into one FPGA (Figure 4C).

• The replication on the level of basic elements in one FPGA
(the components like counters, decoders, multiplexers,
adders, etc.) (Figure 4D).

In the last three configurations, PDR of the FPGA can be
used. This option is supported by some vendors, for example,
Xilinx [9]. In recent years, several methodologies of an FT
system design in an SRAM-based FPGA were widely discussed
in numerous papers [10],[11],[12],[13],[14].

2

1.4. FT Methodologies for FPGA-based Designs

A methodology to design FT devices implemented to
SRAM-based FPGAs that are able to recover from SEU faults
based on the use of a duplication with a comparison technique
and a PDR is presented in [8] and [15]. The first approach ap-
plies CED techniques to monitor the health of the system and
to trigger the reconfiguration of the portion of the device that
has been hit by the SEU, while the rest of the system need not
be stopped or entirely reconfigured. The second approach uses
PDR combined with TMR in SRAM-based FPGAs FT designs.
The approach uses a large grain TMR with special voters ca-
pable of signalizing the faulty module and check point states
that allow for the sequential synchronization of the recovered
module. The synchronization of the recovered module is per-
formed while the others are kept running. The architecture of
the approach is shown in Figure 5.

Voter

out1

Combinational
logic clk1

reg
Combinational

logic

in1

Voter

out2

Combinational
logic clk2

reg
Combinational

logic

in2

Voter

out3

Combinational
logic clk3

reg
Combinational

logic

in3

err1

err2

err3

redundant module

redundant module

redundant module

Figure 5: The large grain TMR proposed scheme.

A hardware scheme allowing for the diagnosis of transient
and permanent faults affecting a TMR system implemented by
means of FPGA is proposed in [16]. The presented FT scheme
allows one to easily identify whether a fault affects one of the
replicated modules, the voter or the scheme itself and whether
such a fault is permanent or transient. The global structureof
the proposed scheme is shown in Figure 6. The scheme can be
used to drive the selection of the best proper recovery technique
for each kind of diagnosed fault (e.g. by the partial reconfigu-
ration of FPGA).

FU1

FU2

FU3

Voter
out

=

=

=

err

[1..4]

Figure 6: Global structure of the proposed scheme for TMR.

A methodology for SEU detection and voting that combines
a duplex system with a CED based on full time redundancy for
the users combinational logic in SRAM-based FPGAs is de-
scribed in [17]. This methodology reduces the number of input
and output pins of the user combinational logic. In addition, it
can also reduce the area when large combinational blocks are
used (see Figure 7).

The [18] deals with the possibility of permanent fault in CLB.
The paper describes a new type of CLB called CLBm. This type

Voter
in

outCombinational
logic

Q

Q

Q

D

D

D

clk

clk+d

clk+2d

MAJ.

Figure 7: Full time redundancy scheme to correct SET in combinational logic.

of CLB consists of several classical CLB. CLBm is surrounded
by classical CLBs. If the fault occurs, the CLBm is reconfig-
ured to perform the function of the faulty CLB. Since there is
several CLB inside one CLBm, multiple faults can be corrected.
The disadvantage of this approach is that it works only for CLB
and therefore it is not able to repair faults in routing resources
or in hardblocks in FPGA (such as blockRAM).

Other FT techniques for SRAM-based FPGAs are discussed
in [19],[20]. These techniques are based on circuit level mod-
ifications with obvious modifications in the programmable ar-
chitecture or techniques that can be implemented at a high-level
description without modification in the FPGA architecture.The
high-level method based on a TMR and a combination of a du-
plex with CED techniques which are able to cope with upsets
in combinational and sequential logic is presented in [21].

In [22], the adoption of the TMR coupled with the PDR of
SRAM-based FPGAs to mitigate the effects of SEU and SET
in such classes of device platforms is shown. The authors pro-
pose an exploration of the design space with respect to several
parameters (e.g. area and recovery time) in order to select the
most convenient way to apply this technique to the device under
consideration.

The dynamic scheme for Xilinx FPGA FT systems design is
presented in [23]. The scheme consists of two parts: the Par-
tially Reconfigurable Functional Region (PRFR) with several
Partial Reconfigurable Modules (PRM) and a reconfiguration
controller that is based on a built-in Xilinx PowerPC-405 pro-
cessor (see Figure 8).

Figure 8: FPGA V4 FT systems design scheme with PowerPC [23].

Attempts to categorize and compare the various FT tech-
niques and discuss how they can work together to provide a
synergetic approach for a fault tolerant FPGA design are pre-

3

sented in [24], but unfortunately no experimental comparisons
were presented.

1.5. Principles of Partial Dynamic Reconfiguration in FPGA

PDR is a technique that allows us to change only a part of
the design in FPGA without disturbing the operation of other
parts of the design. It can be used to increase the security [25]
of the design, to reduce resource consumptions through time
multiplexing or to increase reliability of the system. But there
still exists a disadvantage in complex methodology needed to
prepare the bitstreams for PDR.

In Xilinx FPGA, the bitstream contains commands for the
configuration engine followed by the actual configuration in-
formation. The main difference between dynamic and static
reconfiguration is in the commands in the bitstream. During
partial static reconfiguration, a command to stop all computa-
tion in FPGA is sent at the beginning of the reconfiguration
process. In PDR bitstream, the stop command is missing and,
therefore, all parts of the FPGA are active during the reconfig-
uration. This may lead to unexpected changes of output signals
of the unit under reconfiguration.

1.6. Partially Reconfigurable Modules

The Partial Reconfigurable Region (PRR) is the part of the
FPGA that can be modified during PDR. The size and the po-
sition of the region are determined by area constrains. Partially
Reconfigurable Module (PRM) is the part of the design that can
be implemented into PRR. The reconfigurable region can con-
tain only the logic that is associated with some reconfigurable
module. This limitation does not apply to the routing resources
and it is up to the routing program to determine which route
should be used for a particular signal. Therefore, routing may
pass directly through the reconfigurable region. The connec-
tions between PRM and the rest of the design have to be real-
ized through a special interface. In older versions of ISE this
interface was built from BusMacros which were not supported
by tools for timing analysis and automatic placement. There-
fore, a user was forced to place every BusMacro in the design
manually which was error prone work. However, since version
11, ISE uses ProxyLogic which can be placed automatically.
ProxyLogic is supported by the timing analysis and it is possi-
ble to have a time critical path between PRM and the static part
of the design.

Figure 9: Frame vs. CLB.

The frame is the smallest part of the FPGA that can be re-
configured and it has a size of 1312 bits in the Virtex5 [9]. The
minimal size of the reconfigurable module is theoretically one
CLB, but due to the structure of the configuration memory, CLB
configuration is contained in several frames and one frame con-
tains a configuration of twenty CLBs (see Figure 9). Since the
configuration engine has to reconfigure the whole frame, every
reconfiguration changes at least twenty CLBs.

1.7. Reconfigurable Interfaces

Performing PDR is a simple process of downloading a partial
bitstream into the device. The reconfiguration of the FPGA can
be performed through various interfaces, but only some of them
remain accessible after the first configuration is done.

• JTAG interface has the highest priority from among other
configuration interfaces, it can even interrupt a running
reconfiguration process. A relatively slow configuration
can be seen as the disadvantage of JTAG because data are
transferred in the serial mode at a maximum speed of 24
Mbps.

• SelectMap is a faster configuration interface than JTAG
because it supports a parallel reconfiguration and higher
clock frequencies. The parallel nature of the interface
can be a disadvantage in applications which require high
pinout utilization.

• ICAP - Internal Configuration Access Port is an internal
interface for FPGA reconfiguration. ICAP can operate on
up to 100 MHz and accepts 32 bits of the configuration bit-
stream per clock cycle. ICAP is often used together with a
high speed serial connection to the bitstream storage unit.
Reconfiguration by the ICAP interface can load the bit-
stream into the device with a speed of 3.2 Gbps, but it is
often a problem to construct a bitstream storage capable of
delivering a bitstream at such a speed. Since the smallest
PRM block contains about 20 CLBs and its size is about
6 kB, the time required for the partial reconfiguration is
about 28µs.

1.8. FPGA Bitstream Readback vs. Bitstream Scrubbing

For some types of FPGAs (Xilinx), techniques exist which
allow us to detect soft faults in bitstream or by means of scrub-
bing in designs implemented into the FPGA. The main idea is to
read the configuration of the FPGA and compare it to the image
stored in the nonvolatile memory. It is possible to compute the
hash value of different parts of the bitstream and then compare
them. This will result in a smaller memory requirement for
bitstream scrubbing. Bitstream scrubbing was integrated into
modern Xilinx FPGA at the bitstream level. Every configura-
tion frame contains several bits that serve as an Error Checking
Code (ECC) for the frame value. Therefore, it is possible to
read back only one frame and detect an SEU in it.

Bitstream scrubbing is not able to guarantee the correct op-
eration of the design when an SEU is detected. Therefore, bit-
stream scrubbing is only an auxiliary method used in the design

4

of FT systems. Moreover, it is not possible to detect SEUs in
the memory and the registers since their values change in time
and cannot be tested by the ECC. It is the responsibility of user
designs to detect errors in these parts of the FPGA. Also, any
error that is not caused by a memory failure, such as a faulty
unit in the FPGA, cannot be detected by scrubbing. Therefore,
for FT design in the FPGA, the bitstream scrubbing has to be
combined with an error mitigation technique such as TMR [26].

2. Motivation for the Research and Problem Definition

With the progress of modern technologies, reconfigurable ar-
chitectures have penetrated into new fields of industry. FPGAs
are used in real world products due to the combination of their
computational power and the ability to reconfigure. Reconfig-
uration can be used to allow for fast and simple updates or up-
grades after the deployment of the product; or to implement a
new advanced feature such as a software defined radio in the
hardware. With the increasing use of FPGAs there is also the
need to increase the reliability of the solutions based on these
platforms.

For the correct function, the FPGA has to be configured by
loading configuration data into its configuration memory. Usu-
ally, FPGAs are equipped with an SRAM configuration mem-
ory which allows for fast and frequent reconfiguration, but
which also makes them very susceptible to SEU errors. The
high energy particle can change the function of the application
by changing the internal configuration memory. Since FPGAs
are starting to be used in devices where high reliability is re-
quired, such as car control systems or avionic systems, suchan
error can have serious consequences and has to be mitigated
before it causes an incorrect function in the system. The proba-
bility of an SEU attack is relatively small due to a low radiation
background on the Earth. However, if the FPGA is used outside
the Earth’s atmosphere or produces massive numbers, the prob-
ability of an SEU attack will rapidly increase. The FPGA ven-
dors work on developing methods for preventing SEUs, such as
using radiation hardened FPGAs, but these methods increase
the cost of resulting products and introduce additional over-
head. Another approach is to mitigate an SEU after it appears.
The issue of SEU mitigation is an actively researched problem.

Fortunately, FPGA reconfiguration principles allow for sim-
ple SEU mitigation by reconfiguring the faulty part of the sys-
tem. Modern FPGA supports PDR, which permits repair of the
faulty unit without disturbing the operation of other partsof the
chip. The system has to satisfy two main conditions in order
to be able to use PDR for SEU mitigation. Firstly, it has to be
able to detect an occurrence of the SEUs and hard errors; and
secondly, it has to be able to produce correct results beforethe
SEUs or hard errors are detected and repaired. The methodol-
ogy for construction designs which satisfy both of these criteria
is the main contribution of this work together with the system
for driving the PDR process.

At the moment, many techniques on how to develop SRAM-
based FPGA systems exist. Many of them are based on repli-
cation of functional units (e.g. TMR and duplex architectures)
combined with CED techniques. They are not usually tested

on how vulnerable they are against SEU effects. It is also not
described which technique was used to verify FT features of
the architectures developed. It is important to say that some
tools based on the use of ICAP to insert SEUs into the FPGA
bitstream exist [27],[28]. These techniques can achieve a high
speed bz their injection, but their main disadvantage is that the
injector is implemented into the same FPGA as the application
and thus can damage itself by injecting SEU. Moreover, the
presence of testing circuitry affects place and route phases of
the design and, therefore, produces different designs with dif-
ferent fault tolerant properties. Our approach is based on the
external SEU generator which allows us to test the behaviour
of our FT architectures and their reaction to SEU inserted into
particular positions of the bitstream.

The problem we are solving can be summarized in the fol-
lowing way:

• How to implement an FT system into an SRAM-based
FPGA when the principles of PDR as correction and re-
covery mechanisms are used (reconfiguration of faulty
modules)?

• How to detect multiple soft errors and hard errors in
FPGA-based systems?

• How to mitigate soft errors and hard errors in FPGA-based
systems?

• How to drive a partial reconfiguration process inside the
FPGA as a recovery mechanism after errors are detected
in the system?

• How to inject SEUs into the FPGA and how to test the
behavior of FT architectures after SEUs are injected?

To summarize, in this paper we present a methodology of
FT systems design based on the use of PDR (supported by the
Virtex FPGA family) as an alternative to SEU mitigation tech-
niques based on bitstream scrubbing with TMR. As described
in the following sections, our approach allows to detect andre-
cover from multiple transient faults in multiple modules ofFT
system, as e.g. SEU occurrence in FPGA configuration mem-
ory, registers or functional blocks of the design, permanent fault
detection and localization in FPGA interconnections (the recov-
ery from these faults is not solved), suppression of SET type
faults by implementing multiple clock signals in FT architec-
tures. The methodology satisfies basic conditions requiredfor
fault tolerant systems under assumptions voters and multiplex-
ors in FT architectures and GPDRC are not affected by faults.

• The operation of the system was not interrupted or stopped
after a fault occurred.

• The system can produce correct outputs even when a fault
exists in the system.

We also present an SEU simulation framework for the testing
of FPGA-based fault tolerant systems. The framework is based
on SEU generation in a Personal Computer (PC) and the trans-
port of the bitstream through the JTAG interface and dynamic

5

reconfiguration into the FPGA which allows us to select region
of the FPGA for SEU placing.

The paper is organized as follows. In Section 3, detection
techniques based on the use of on-line checkers and functional
module duplication with a comparison are described. These
techniques are used in the proposed FT methodology. The ba-
sic principles of the proposed methodology and FT architec-
tures based on checkers are presented in Section 4 together with
the description on how these FT architectures are implemented
when reconfiguration modules are used. The correction scheme
and recovery principles of the FT structure after detectionof an
error in the system together with architecture of partial recon-
figuration controller are described in Section 5. An SEU simu-
lation framework for testing fault tolerant system design in the
FPGA and requirements on the external SEU generator together
with its basic features and implementation are demonstrated in
Section 6. Then, the results of our experiments (Section 7) to-
gether with the comparison of the proposed methodology with
other FT techniques (Section 8) are described.

3. Detection of Errors in FPGA-based Designs

Our previous research was oriented towards creating a
methodology which allows us to construct on-line checkers
for components at different levels, for example, module or
Register-Transfer Level (RTL) components. An on-line checker
can be used for error detection in the component or for the iden-
tification of faulty units in FT architecture. Checkers can be
used in on-line testing methodologies or in FTS design.

From among languages which can be used to describe func-
tions checked by checkers, Property Specification Language
(PSL) can be used [29]. Unfortunately, the tools which use PSL
generate a checker VHDL code which is primarily supposed to
be used for hardware simulation of conditions during design
verification, not for the synthesis into a target platform and the
use as a checker. Therefore, we do not see PSL and its soft-
ware support as a proper alternative to satisfy our objectives.
Other tools exist for the description of conditions required to be
satisfied by the design (e.g. System Verilog Assertions (SVA)
languages). The software packages which exist to support them
are also intended to be used primarily for design verification
purposes [30].

CNT

checker
in

out

err

CNT

checker
in

out

err

DEC

Figure 10: Example of RTL component with a checker and their combinations.

Therefore, we need another methodology which allows us to
construct on-line checkers for components at different levels of
RTL components and their combinations (see Figure 10). For
this purpose, the specialized formal model based on Finite State
Machines (FSM) was developed which allows us to describe the
properties to be checked. Different levels of properties can be

described and transformed into the conditions for correct be-
haviour of the circuit. The conditions are then compiled into a
checker VHDL code which can be then integrated into the re-
sulting design together with the FU which will be checked by
the checker. The principles of methodology for generating an
on-line checker for simple circuits can be seen in Figure 11.
The properties and description of the methodology were pre-
sented in [2] together with the definition of the formal model.
The basic principles of checkers application into FT architec-
tures were described in [6]. This methodology allows us to de-
velop on-line checkers for a communication protocol as well.

Figure 11: Demonstration of methodology principles for a counter. For the
counter and its checker synthesis, the XILINX ISE 11.3 tool was used.

Finally, we use on-line checkers and the Duplication with
Comparator (DwC) technique for error detection in the TMR
and duplex systems. These concepts are then used in FT archi-
tectures design based on a PDR.

4. Highly Dependable Systems Design into FPGA based on
Partial Dynamic Reconfiguration

FPGA based designs offer new possibilities for the activities
which aim at designing an FT system with high reliability and
availability of the system. In FPGA, a faulty module can be
repaired by reconfiguring the chip. In this situation, the func-
tion mode of the system is interrupted and the reconfiguration
process of an FPGA chip is initiated. For this purpose, the prin-
ciples of the PDR can be used where the reconfiguration process
is applied on the faulty module without interrupting the system.
This type of fault repair during the system runtime is supported
by hardware redundancy architectures, such as the TMR or the
duplex system. The proposed methodology implements these
principles:

• Detection of multiple soft and hard errors in the FPGA-
based system (on-line checkers, DwC).

6

• Mitigation of all errors for FT architectures based on repli-
cation of FUs.

• Localization of soft errors in FT architectures and recovery
from these errors (reconfiguration controller).

• Localization of hard errors in FT architectures (the recov-
ery from these errors is not solved).

• Synchronization of the design after the reconfiguration
process.

• Testing of correct behavior of FT architectures on SEUs
(SEU simulation framework).

The FT design based on PDR for the recovery of faulty mod-
ules must be divided into its dynamic and static part. In the
dynamic part, the components which will be designed as FT
architectures are included, where they will be reconfiguredby
means of PDR in the case of an incorrect operation. These FT
architectures must be equipped with the necessary diagnostic
background (i.e. fault detection techniques). In the static part
such components will be included which are not designed as FT
and are not supposed to be reconfigured (as they are not criti-
cal for overall functionality). The methodology supports the
detection and correction of all faults caused by SEUs and the
detection of hard errors. The methodology satisfies basic con-
ditions required for fault tolerant systems as the operation of
the system was not interrupted or stopped after a fault occurred
and the system can produce correct outputs even when a fault
exists in the system. The requirements on the robustness of the
system and its power consumption must also be taken into ac-
count. The main structure of the proposed methodology for the
FPGA-based FT system design with a Partial Reconfiguration
Controller (PRC) inside the FPGA can be seen in Figure 12.

FU1

FU2

FU3

Voter

=

=

=

PRM1

PRM2

PRM3

PRM4

in

out

err1

err2

err3

FU1

FU2

PRM1

PRM2

CHCK1

Chck2

Mux

out

in

err1

err2

err

err

PRM

PRM

outin

DYNAMIC PART

STATIC PART

FPGAOther
non-FT units

in

Bitstreams storage (FLASH)
partial bitstreams for PRC, PRM1, PRM2, PRMn-1, PRMn

FT architecture 1 FT architecture 2 FT architecture n

. . .

bus errors

PRM1 PRM2 PRM5 PRM6 PRM7 PRM PRMn

PRM4 PRM8

PRMPRM3

FT architecture 3

PRM PRM PRM

PRM PRM

FT architecture 4

PRM.. PRM.. PRM...

PRM... PRMn-1 outin

ICAP

Partial
Reconfiguration
Controller (PRC)

Figure 12: The structure of FT designs in FPGA based on PDR.

FT architectures in the dynamic part of FPGA can be mutu-
ally interconnected sequentially, through a bus, they can form
any type of graph structure, the number of interconnected ar-
chitectures is not limited, the only limitation factor being the
size of FPGA. In our methodology, PRC was developed to be
used for PDR recovery and the synchronization of PRM in case
a fault was identified in it. To store partial bitstreams reflecting
PRC and FT architectures, external flash memory was used.

As most of components of PRC are implemented as fault tol-
erant units (through TMR and duplex architectures) and they
can be reconfigured by PDR, they are included into the dy-
namic part of FPGA. The PRC contains also other components
as FIFO and ICAP wrapper which must be included into the
static part of the design.

4.1. Detection of Faulty Modules in FT Architectures

In this section we present FT architectures designed in a way
which allows us to detect their internal failures. We use on-line
checkers and the DwC technique for error detection in FT ar-
chitectures. The basic idea is based on the assumption that each
FU and its checker are configured into one PRM. Therefore, it
is possible to recover its function (through reconfiguration of
the PRM) while the rest of the implementation is still working.
An on-line checker can be used for error detection and fault lo-
calization of PRM in the FT architecture. The methodology for
generating an on-line checker for the digital system and sim-
ple circuit based on RTL was presented in Section 3. The FT
architectures based on PRMs can be seen in Figure 13.

FU1

FU2

FU3

Voter

=

=

=

PRM1

PRM2

PRM3

PRM4

in

out

err1

err2

err3

FU1

FU2

PRM1

PRM2

CHCK1

Mux

out

in

CHCK2

err1

err2

FU1

FU2

PRM1

PRM2

CHCK1

Chck2

Mux

out

in

err1

err2

TMRcmp

DUPLchck

DUPLchckcmp

err

err

err

PRM

PRM

PRM

Figure 13: Fault tolerant architectures based on PRMs for a design implemented
in the FPGA.

The first FT architecture (TMRcmp) uses a classical TMR
scheme with comparators in which the outputs of all units are
checked by the voter. Other FT architectures use duplex archi-
tecture with checkers (DUPLchck) or duplex architecture with
a checker and comparators (DUPLchckcmp).

4.2. Main Structure of FT Design Based on PRMs

As a result of our research, we can make suggestions on how
a PDR can be used to increase fault tolerance parameters (e.g.

7

availability and dependability). In this section we describe the
structure of FT architecture which is designed in a way that
allows us to detect internal failures in PRMs. The concept of
checkers and comparators is used in our strategy. Each FU and
its checker are configured into one PRM. Therefore, it is possi-
ble to adjust its correct function (through reconfigurationof the
PRM) while the rest of the implementation is still working.

The methodology supports detection and correction of all
kinds of faults caused by SEUs. If the fault still exists in the
module after reconfiguration, it will be considered as a harder-
ror. In this case the hard error can be removed by loading the
latest bitstream after the new mapping of the system into FPGA.
Therefore, the static part reconfigures the module to perform
tests of its FPGA fabric and the results of these tests can be
used to resynthesize FU of the module without the use of the
faulty fabric (this circuitry must be excluded from the new im-
plementation). Unfortunately, the structure of the FPGA fabric
is confidential and, therefore, cooperation with the FPGA ven-
dor company would be required in order to implement the ex-
tension. Hard error simulation is not seen as a simple problem
and, therefore, in our research we focused on soft errors only.
The function of the FT structure and control flow of the repair
process is shown in Figure 14.

Operational
mode

PRC
error?

PRM
(voter, mux)

error?

Architecture
stop

PRC reconfiguration

PRM-x
 reconfiguration

PRM-x
reconfiguration

Architecture
inicialization

yes

no

yes

no

Any fault?

yes

no
PRMs

synchronization

Is still
fault in

module?

no

yes

Hard
error

Fault localization

init

Figure 14: Control flow of repair process.

If more than one SEU occurs, a round robin algorithm will
select one of the PRMs for reconfiguration. After successful
reconfiguration, the system continues with the next fault until
all of them are removed. As long as every module operation
is attacked by one SEU, it is guaranteed that the whole system
operates correctly. If some of the errors cannot be repairedby
PDR, a round robin guarantees that such errors will not termi-
nate the recovery process of remaining PRMs.

PRMs modules contain voters or multiplexors are critical
parts of the design and they are responsible for evaluating the
outputs of FUs. These PRM modules are designed as self
checking units (for example, by using 2-wire logic). Therefore,
it is possible to detect error in these module, but it is not pos-
sible to correct it without destroying the function of the device.

The presented structure solves this problem by suspending the
design for the time needed to perform voter or multiplexor PRM
reconfiguration. PRMs are stopped by disabling the clock sig-
nal which can be implemented in the Virtex5 FPGA by a clock
buffer(BUFGCE). A static part of the FPGA can also contain
non-critical logic, its failure will not cause any problemswith
covering the function, such as identification registers, etc.

5. Error Correction and Recovery of Faulty Modules

The proposed methodology relies on the possibility of a mod-
ule implemented into the FPGA to be repaired. The repair pro-
cess has to be performed without disturbing any other part of
the design, except for the faulty unit. Partial dynamic reconfig-
uration is one of the options that can be used for the implemen-
tation of the repair process.

5.1. Partial Reconfiguration Controller
Partial reconfiguration is a process during which the bit-

stream is loaded into the configuration memory. The complex-
ity of this process may vary from a simple memory copy into
an extremely complex problem with bitstream modifications.
However, even the simplest partial reconfiguration has to be
initiated. The initiation of the reconfiguration process and its
driving is the responsibility of the Partial Reconfiguration Con-
troller (PRC). In order to limit the number of FPGA chips in
the system, we consider a partial reconfiguration controller to
be implemented into FPGA. With PRC in the FPGA, a higher
reconfiguration speed is gained.

There are several possibilities on how to implement PRC.
One way is to use a micro processor to drive partial reconfig-
uration. Micro processors are easy to use and offer many op-
erations on the bitstream such as decompression or even mod-
ifications of the configuration bits [31]. It is important to note
that a malfunction in the reconfiguration process can break the
whole system. Proper behavior of a processor depends on the
software running on it, therefore, software of the PRC should
be formally verified. Moreover, it is possible that an SEU will
affect the values in the processor registers. It is hard to design
software which is FT to such types of errors.

Some FPGAs contain hard blocks implementing processors.
The Xilinx Virtex family contained the PowerPC cores. How-
ever, newer versions of Virtex FPGA are not equipped with
PowerPC. If the FPGA does not contain a processor hard block,
it has to be implemented in the FPGA fabric as a soft core. Mi-
croBlaze is an example of a soft core processor. Soft core pro-
cessors are susceptible to SEU errors.

It is important to keep in mind that processors have often
more computational power than is necessary to perform partial
reconfiguration. If they are used only for the PRC, their perfor-
mance is wasted. The wasted performance causes higher power
consumption and higher complexity of the solution which in-
creases the probability of failure. The micro processor canper-
form another computation, however, an error in any software
module may delay or even stop the reconfiguration process.

We decided to implement PRC as a hardware unit instead of
using a processor to reduce resource utilization and thus reduce

8

the failure probability in the controller. The developed PRC
is called a Generic Partial Dynamic Reconfiguration Controller
(GPDRC).

5.2. Architecture and Features of GPDRC

The interface of a GPDRC is shown in Figure 15. The
GPDRC unit has three logical interfaces, one for reading
the error status from the architecture (Err-PRMs,rst,clk), the
second one is used to communicate with external memory
(Bitstream,valid,addr-bits) and the last one reports harderrors
(hard, PRM-index).

Generic
Partial

Dynamic
Reconfiguration

Controller
(GPDRC)

clk

rst

valid

#Err-PRMs

bitstream

n

32 log(n)

x

Hard

PRM index

addr_bitstr

sync

Figure 15: Interface of the GPDRC for FT system implemented in SRAM-
based FPGA as PRMs.

Error signals from all PRMs in an FT structure are brought
to a GPDRC and connected to busErr-PRMs . If the GPDRC
decides to start reconfiguration it usesaddr bitstr bus to write
a bitstream address into the external memory (Flash or ROM).
The memory returns the configuration data through abitstream
bus and uses avalid signal to confirm data correctness. In the
case of hard error detection, signalHard is set to high and the
PRM index bus contains the index of the PRM containing hard
error.

In Figure 16, the detailed architecture of a GPDRC devel-
oped by our team is shown. The architecture of a GPDRC con-
sists of five units, one FIFO memory and one FSM which drives
each unit.

If more than one SEU occurs (more error signals are active),
a round robin algorithm chooses one of the PRMs which will
be reconfigured. The Generic Error Encoder (GEE) decodes the
binary index of this PRM and forwards its identification number
together with an error identification signal to the Look Up Unit
(LUU) and Hard Error Unit (HEU). The HEU unit checks if the
fault still exists after the reconfiguration and synchronization of
the faulty unit. If the fault exists after the repair process, it is
considered to be a hard error.

The LUU returns the address to the bitstream storage where
the PRM is located. The index of the PRM which should be
reconfigured is the input to LUU. After LUU translates the in-
dex of the PRM into the bitstream storage address, the FSM
unit starts the reconfiguration process. The LUU also returns
the last address of the partial bitstream. The Address Counter
is used to read the complete partial bitstream. When the value
in the address counter is equal to the end address returned from
the LUU, the FSM finishes the reconfiguration process.

Before entering the ICAP, data are stored in the FIFO. The
size of FIFO is exactly one frame. When the whole frame is in
the FIFO, the ECC unit is able to verify that the actual frame

#Err-PRMs

bitstream

Hard

 PRM
index

PRMs Error Register File

Generic Hard
Error Detection

Unit

. . .

Round Robin
Generic Error
Encoder Unit

Address
Look Up

Unit

Addr
Counter

FSM

ECC
Unit

ICAP
interface
wrapper

Safety Window
Unit

FIFO

Partial Bitstreams Strorage for PRMs - (FLASH,ROM)

=

addr_bitstr

GPDRC

sync

. . .

valid

Figure 16: Architecture of the GPDRC for an FT system implemented in
SRAM-based FPGA as PRMs.

is without errors. The FIFO also performs the transformation
from the memory bus to the ICAP interface by widening bus
width.

The Safety Window Unit (SWU) checks that every unit has
enough time for synchronization. Since the GPDRC contains
only one SWU, all functional units must be able to synchronize
in the same time window.

After successful reconfiguration, the system will continue
with processing the next fault until all of them are repaired. As
long as every module operation is attacked by at most one SEU,
it is guaranteed that the whole system will operate correctly.

5.3. GPDRC Implemented as TMR Architecture with PDR
As GPDRC is a very important component in our method-

ology (it controls the process of reconfiguration), it must be
implemented as FT. Most of GPDRC units are configured into
the dynamic part of FPGA, they can be implemented as inde-
pendent PRMs or FT architectures, their function can be recov-
ered by means of PDR. Therefore, GPDRC was designed as an
FT component, all GPDRC were implemented as TMR archi-
tectures with a voter. These TMR architectures form an inde-
pendent PRM which can be repaired for example by bitstream
scrubbing.

5.4. Synchronization Problem and Safety Window
The PDR is able to repair a fault that caused an error in a

PRM, but the state of the module after the reconfiguration pro-
cess is undefined. Two approaches exist to set the internal state
of the unit to a correct value. The first method copies the current
state from the other implementation of the unit in the system.
This method is relatively complex, but it can be used in any type
of system.

9

The second method can be used in systems which process
packets. Before a packet is received, the units are synchronized
by a local reset signal at the end of preceding packet. This
packet based method should be preferred whenever possible be-
cause its implementation is simple and cheap. Therefore, we
focused on the second synchronization method (see Figure 17).

In packet based processing, the synchronization of the unit
is done after the current packet is processed. If an error occurs
at the beginning of the packet, the recovery process can be fin-
ished a long time before the end of the current packet. Without
synchronization, the unit may still report an error and initiate a
new recovery process. In order to solve this problem, we intro-
duced the concept of the Safety Window.

Data

Error

Loc_reset

 Safety
window

Reconf

Sync

Figure 17: Synchronization of PRMs after reconfiguration.

The safety window is the minimal time interval between re-
configurations of the same unit which guarantees that there will
be at least one synchronization pulse. The length of the safety
window depends on the implemented system and the synchro-
nization method.

Every unit has its own safety window. However, every safety
window has to be implemented by its own SWU. It is possible
to group several units so as to have one common SWU. In this
case, the Safety Window length has to reflect the longest safety
window. The length of the safety window determines the max-
imum frequency of the repair process. The trade off between
implementation complexity and the frequency of the recovery
process should be considered with design specifics in mind.

The implementation of a GPDRC contains only one SWU to
limit resource utilization and thus increases system reliability.
The SWU counter is activated when the shift register imple-
menting the round robin algorithm shifts ”1” to its last position.
The SWU does not allow the next shift until the time limit is
reached. This implementation allows it to make several recon-
figurations of different units with a very simple implementation
of SWU. It is important to note that every complexity in the
GPDRC requires additional logic which may be affected by the
SEU. Therefore, a simple algorithm is always preferred.

6. SEU Simulation Framework for Testing Fault Tolerant
Systems Based on FPGA

In this section, the principles of an SEU simulation scenario
and experiments with an FT structure are described. The SEU
simulation framework is the last step of the proposed method-
ology and can be used for FT architectures testing.

6.1. SEU Simulation Techniques
SEU simulation is the process of changing one bit of infor-

mation in the configuration memory or in the memory of the

FPGA design such as registers or BlockRAM. SEUs do not
necessarily cause any errors since all parts of the configuration
memory are not used in the design. As described in [32], only
10% of the configuration memory is used to define the design
function on average. Unfortunately, it is not possible to make
a prediction if a given bit is required for the design function or
not, because the structure of the configuration memory is not
usually documented.

6.2. Requirements on Testing Platform and SEU Generator

Every SEU simulator should meet a few criteria in oreder to
be useful for the testing of the FTS. The proposed criteria was
selected according to the authors experience with developing a
fault tolerant methodology for FPGAs. The main requirements
for SEU generator are:

• Universality – the SEU generator should be able to place
an SEU at any place on the FPGA, not only to the con-
figuration memory, but also to the circuity in which the
function is implemented. The universality property is re-
quired for testing design level mitigation techniques, such
as TMR architecture or a duplex system with checkers and
a multiplexer.

• Locality – the SEU generator should be able to place the
SEU into a pre-determined area of the FPGA and guaran-
tee that other areas will remain unmodified. This property
allows for a different level of testing to be used in differ-
ent parts of FT architectures. Every reliable architecture
has its weak points. For example, NMR and TMR archi-
tectures have the voter unit as a very weak point of the
architecture. If this unit fails, then the entire architecture
fails as well. However, if implemented correctly, TMR
will mask any error in the function unit. The property of
locality ensures that the SEU generator is able to do ex-
haustive testing of the function unit without attacking the
voter.

• Separateness– the SEU generator should be separated
and independent on the function implemented into the
FPGA. The separateness property also means that the SEU
generator should be able to operate on any FPGA design
without the need to rebuild the design. There are several
reasons for this property to be satisfied. First, if the design
is rebuilt for testing purposes, then the unit under testingis
different from the unit used in production and, therefore,
the units can have different reactions to SEU injections.
The second reason for the separateness is to guarantee that
the generator will not damage itself. This reason is valid
only for some parts of the designs. The PDR is the legit-
imate function of the FPGA and it can be also used in an
FT system. The SEU generator has to be separated from
the design in order to ensure that it will not interfere with
the PDR done by the design itself.

• Atomicity – the SEU injection should be seen as an atomic
process from the design point of view so as to ensure, for
example, that the SEU in the register will not be replaced

10

by a new value during its injection. The atomic property
means that the SEU injection has to be performed faster
than the period between two pulses of maximal clock fre-
quency in the design or that the FPGA logic has to be shut
down during the SEU injection. On the other hand, shut-
ting down the logic can cause problems if the design is
interacting with its environment, such as DRAM, Ethernet
or other external function units. Since at least one frame
has to be written into the configuration memory, it is vir-
tually impossible to place the SEU in a one clock cycle
at any reasonable clock speed. For these reasons, the im-
plementation of the atomicity in the generator will present
problems and some users might wish to disable it for spe-
cific situations.

6.3. Xilinx’s Solution
Xilinx offers its own solution called Soft Error Mitigation

(SEM) [27]. However, this solution is designed primarily for
the SEU mitigation and the SEU generation is only an addi-
tional function. This presents a problem from a theoreticalpoint
of view since it be can argued that a unit that is tested should
not be used for test generation. SEM is an IPcore generated
only for Virtex6.

SEM has to be connected to the ICAP inside the FPGA in
order to be able to mitigate the SEU and, therefore, the SEM
does not meet the separateness property. Due to this fact, itis
not possible to use ICAP without the functional change in the
design itself.

The previous version of the SEM was called SEU Controller
Macro and had only a limited support for locality. The user was
able to address every bit in the bitstream by linear addressing,
but it was not clear on how the linear address was transferredto
the frame address to test a specified part of the FPGA only. The
SEM supports a physical frame addressing which allows easier
support for locality.

The atomicity issue is not solved by SEM. SEM operates in-
side the FPGA and, therefore, it is not possible to shut down
the FPGA for the injection of an SEU. According to [33] the
switching characteristics of SelectMAP and, therefore, also
ICAP for Virtex6 is 100MHz. The injection of an SEU at this
speed may take up to hundreds of clock cycles in the design.

The SEU generation may be used for a better understanding
of the design behaviour in the presence of an SEU and even
for simple tests. However, SEM is not sufficient for the full
evaluation of the fault tolerant designs. Another problem may
arise when the design itself uses an ICAP interface.

Other SEU injection techniques for SRAM-based FPGAs ex-
ist, e.g. [34].

6.4. Proposed Solution: External SEU Generator
This research proposes to implement SEU generation as a

distinct tool working outside FPGA. The SEU generator should
use a JTAG interface since this interface has the highest priority
and, therefore, it can interrupt any other configuration interface.

The basic principle of an SEU generator is to combine read-
back and dynamic reconfiguration. The process of the SEU
generation can be described in four steps.

1. Frame selecting– This step selects a frame where SEU
will be generated. The selected frame has to be described
by four variables (row index, column index and minor ad-
dress together with top or bottom bit). The generator then
constructs the frame address.

2. Readback of the frame– This step readbacks the whole
frame without interrupting the computation in the FPGA.

3. SEU generation– This step converts one bit of the read
data. The position of the changed data can be generated by
a random function or by the given SEU generation policy.

4. Write frame – This step writes the changed frame
back into the configuration memory of the FPGA. The
write frame is currently implemented without interrupting
FPGA.

6.5. SEU Generator Implementation

The proposed solution was implemented in the TCL lan-
guage with the use of the ChipScope libraries. The correct
function of a implementation was experimentally verified on
the number of designs. No changes in the design were needed.
The external PC SEU generator structure can be seen in Fig-
ure 18.

FPGA
Design under test

Bitstream Generation Layer

read/write frame

SEU Placing Layer
placing policy

JTAG interface

bitstream

Personal
Computer (PC)

Added Functions
 UART/USB

SEU generator

Figure 18: External PC SEU generator structure.

The TCL implementation is divided into two basic lay-
ers. The first layer is responsible for communication with the
FPGA. It is called a Bitstream Generation Layer. This layer
uses the ChipScope libraries to send and read data through the
JTAG interface. However, it is possible to change this layerto
use any other JTAG drivers. Our decision to use ChipScope was
based on the fact that ChipScope offers TCL functions for ma-
nipulation with JTAG. The Bitstream generation layer accepts
the frame address and frame data from the SEU placing layer
and generates bitstreams that will readback or write data for the
given frame. The frame address is specified by four values cor-
responding to the parts of the Frame Address Register (FAR)
in FPGA. The first variable isTOP. This variable can be 1 or 0
and specifies which half of the FPGA contains the frame. The

11

second variable specifies theROW of the FPGA in the given half
(top or bottom). The last two variables describe the column.
The first is calledCOLUMN and specifies which column of the
device is used for counting by the columns visible in the PlanA-
head software. Therefore, by setting these three values a user
is able to address any given column of the CLB. The configu-
ration of the CLB is contained in 36 frames, but this number
is different for other types of columns, such as BlockRAMs.
The fourth variable (MINOR) is used to specify which frame of
the given CLBs should be addressed. It is important to keep in
mind that the frame contains a configuration of 20 CLBs.

The SEU placing layer is responsible for the generation of
the read and write frame requests according to the given SEU
placing policy. The user will probably make its own modifi-
cations in this layer by adding a new functions for SEU plac-
ing. The typical functionality of the function in this layeris to
compute the position of the SEU according to the implemented
policy; readback the frame containing the affected part of the
memory; change the bit at the computed position and write the
frame back into the FPGA. Since the frame is the smallest ad-
dressable part of the configuration memory, the SEU has to be
placed into the given position by the function of this layer.Cur-
rently, several placing policies are implemented:

• change any bit in one frame of bitstream or change several
bits in the frame (multiple SEU),

• change the random bit in one frame of bitstream or change
randomly several bits in the frame,

• fill one frame with a zero value or several frames set on
zero values,

• fill one CLB with zero values.

The implemented solution was evaluated with four basic re-
quirements presented in this paper. The solution is universal,
since no requirements on the design in the FPGA exist. The lo-
cality is guaranteed by the addressing scheme which is the same
as the addressing scheme used by the FPGA itself. Therefore,
the SEU generator achieves the same locality as the FPGA re-
configuration process. Separateness property is sitisfied by the
implementation in the TCL on the PC. Atomicity is another fea-
ture available in the implementation. The extension of atomic-
ity is fairly simple by interrupting the FPGA. However, inter-
rupting the whole FPGA for SEU generation can present syn-
chronization problems between the FPGA and the other compo-
nents on the board. Therefore, we decided to have a shutdown
sequence as an additional feature that is not part of the SEU
generator.

The last block in the diagram of the SEU generator is called
Added Functions. This block contains functions for interfac-
ing the SEU generator within the environment. These functions
make it possible to drive SEU generation by external sources,
such as UART or external program. Currently, only serial com-
munication is implemented.

6.6. SEU Simulation Framework

The SEU simulation framework allows us to insert multiple
SEUs in one run and simulate the occurrence of a higher num-
ber of SEUs. The architecture of the framework is shown in
Figure 19. The framework consists of two components.

Design
Under
Test

PC
SEU generator

Evaluation
components

data in data out

data out

error

SEU

reports

UART/USB

placing

FPGA

UART/USB

clk rst

Figure 19: Proposed SEU Simulation Framework for the testing of FT archi-
tectures.

The first component is the Unit Under Test (UUT) developed
as a PRM or an architecture consisting of more PRMs. The
other component is used for the evaluation - it contains another
copy of UTT and a timing unit, a control unit, a comparator
and an UART controller. The timing unit allows us to set the
operation speed of the application related to the speed of SEU
generation, the evaluation of the SEU effect and the transport
of the result to a PC through an UART interface. The following
information can be transported to the PC through UART :

• SEU position and the number of SEUs which changed the
behaviour of the unit under testing;

• the number of incorrect values on outputs of sequential
logic caused by SEUs together with the reaction of check-
ers to SEUs;

• the number of SEUs generated in the same time slice.

We intend to do extensive experiments with various FT archi-
tectures and use the implemented SEU simulation framework
for these experiments. It will allow us to compare these ap-
proaches.

7. Experimental Results

The above described FT scheme for an SRAM-based FPGA
design and GPDRC (see Figure 12) were implemented in
VHDL language, and for the synthesis XILINX ISE 11.3 was
used. ISE 11.3 supports the implementation of the PDR into
FPGA Virtex5-XC5VSX50T on an ML506 development board.
An ML506 board and SEU simulation framework were used to

12

verify the proper function of different types of FT architectures
and GPDRC. The following experiments were considered: 1)
the comparison of FT architectures sizes (in slices) and thesize
of a GPDRC and an MicroBlaze solution in Virtex5; 2) the size
of PRMs covering various functions (i.e. the function and its
checker); 3) the size of a GPDRC which depends on the number
of PRMs in Virtex5; 4) the experiments with SEU framework
and FT architectures testing; and 5) the probability that the FT
system will be in an operable state and will produce correct re-
sults for several SEU occurrences in the FPGA.

7.1. Digital Circuit for Testing Purposes
To be able to verify the methodology, a digital circuit for

testing purposes was developed. For the first experiments, a
7 segment display controller was implemented which contains
several 3bits and 8-bits counters, 8-bits decoders, multiplex-
ors, shift-registers and other additional logic. The component
counts repeatedly from 0 to 9999. It has an output to 4 LED
displays on which the states of four counters are displayed,the
correct operation of the component can be checked also visu-
ally. A fault can cause an incorrect counting or incorrect dis-
playing of counter states, problems with clock signal, incorrect
values in registers, etc. The components of test circuit (couters
and decoders) were used in all experiments mentioned in all FT
architectures.

7.2. Properties and Experiments with FT architectures
In this part of experiments we compared properties of se-

lected FT architectures for the SRAM-based FPGA design. The
tested designs and FT architectures can be seen in Figure 20.

FU1

FU2

PRM1

PRM2

CHCK1

Mux
outin

CHCK2

err1

err2

FU1

FU2

PRM1

PRM2

CHCK1

Chck2

Mux
out

in

err1

err2

DUPLchck

DUPLchckcmp

FU

PRM3

PRM3

err
CHCK

out

PRM

FU+CHCK

in

FU1

Voter

=

=

=

PRM1

PRM2

PRM3 PRM4

out

err1

err2

err3

err

PRM

FU2

FU3

in

TMRcmp

Figure 20: Tested designs and FT architectures.

The sizes of the FT architectures in FPGA are seen in Table
1. The meaning of the columns is as follows: column 1 - the
type of FT architecture; column 2 - FT size in Virtex5 and the
utilization of FPGA resources; column 3 - the number of PRMs
and (PRMs with voter or multiplexor) in FT architecture; col-
umn 4 - the size of the static part and the utilization of FPGA
resources; column 5 - the same for the dynamic part.

ML506-Virtex5 Size of # Size of Size of
XC5VSX50T FT.arch PRMs Static Part Dynamic.Part

Counters+Decoders [slices] [-] [slices] [slices]

TMRcmp 145 (2%) 4 (1) 26 (18%) 119 (82%)
DUPLchck 86 (1%) 2 (1) 25 (29%) 61 (71%)

DUPLchckcmp 91 (1%) 2 (1) 28 (31%) 63 (69%)
FU+CHCK 44 (1%) 1 (0) 22 (42%) 35 (78%)

Table 1: Number of slices for FT architectures.

The size of PRMs for counters and decoders can be seen in
Table 2. From the last two columns, it is clear that PRMs were
not completely utilized. Based on these experiments it is rea-
sonable to develop a methodology which will organize PRMs
in such a way that will result in a more effective utilization of
PRMs. Then, the number of PRMs is expected to be reduced
together with the number of error signals entering the GPDRC.

ML506-Virtex5 Size of Size of Size of Usage of
XC5VSX50T cnt PRMs dec PRMs PRMs area PRMs

Counters+Decoders [slices] [slices] [slices] [%]

TMRcmp 42 77 400 36,2
DUPLchck 23 38 240 35,8

DUPLchckcmp 22 41 240 37,9
FU+CHCK 11 20 80 55,0

Table 2: Number of PRMs slices for FT architectures.

In Table 3 can be seen the information about the area over-
head of each FT architecture for 8-bit counter implementation.
The size of FU (contain the 8-bit counter) is 5 slices. The small-
est PRM block with one FU contains 20 CLBs and its size is 40
slices in Virtex5. The utilization of one PRMs with counter is
about 16,5%.

ML506-Virtex5 Size of Non-PRM # Size of PRM
XC5VSX50T FT.arch FT.arch PRMs FT PRMs FT.arch
Counter as FU [slices] overhead [-] [slices] overhead

FU+CHCK 12 2,2x 1 40 0x
DUPLchckcmp 18 3,3x 3 120 3x

DUPLchck 22 4,2x 3 120 3x
TMRcmp 28 5,5x 5 200 5x

Table 3: Overheads of FT architectures and PRMs.

The meaning of the columns in Table 3 is as follows: column
1 - the type of FT architecture; column 2 - size of FT architec-
ture in Virtex5 for 8-bits counter; column 3 - the overhead of
FT architecture without PRM implementation; column 4 - the
number of PRMs in FT architecture; column 5 - the size of FT
architecture implemented as PRMs; and column 6 - the over-
head between FT architecture implemented as PRMs and one
FU as PRM.

7.3. Experiments with GPDRC and MicroBlaze

During these experiments we were evaluating GPDRC ba-
sic parameters and features and tried to compare them with
the solution based on MicroBlaze. All GPDRC components
were described on VHDL, then they were simulated and synthe-
sized into FPGA. The same was done for GPDR implemented
as TMR architecture. MicroBlaze was developed in ISE EDK

13

environment. We gained the information about the size of GP-
DRC and MicroBlaze implementations and their comparison
including the probability of faulty operation of both implemen-
tations.

ML506-Virtex5 Size # LUTs # F/Fs TMR
100 PRMs [slices] [-] [-] [slices]

Round Robin Unit 71 (1,0%) 101 202 288 (4x)
Error Encoder 42 (0,7%) 107 0 160 (3,8x)

Hard Error Unit 74 (1,1%) 152 202 237 (3,2x)
Safety Window Unit 11 (0,2%) 30 25 32 (2,9x)

ECC Unit 18 (0,3%) 19 37 44 (2,4x)
Address Unit 21 (0,3%) 51 21 51 (2,4x)

FSM 26 (0,4%) 45 60 60 (2,4x)
FIFO 52 (0,8%) 52 124 52 (0,0x)

FLASH Control 3 (0,1%) 2 4 29 (9,6x)
GPDRC Error Input 140 (2,0%) 63 102 262 (2,0x)

GPDRC total 458 (5,3%) 626 777 1215(2,6x)
MicroBlaze IP core 613 (7,5%) 1333 1328 1531 (2,5x)

Table 4: Numbers of FPGA resources for the GPDRC.

The results of the GPDRC and MicroBlaze synthesis into a
Virtex5 XC5VSX50T and the number of resources can be seen
in Table 4. The meaning of the columns is as follows: column
1 - the name of the component in a GPDRC architecture; col-
umn 2 - the size of the component and the utilization of FPGA
resources; column 3 (4) - the numbers of LUTs (FlipFlops);
column 5 - the size of the FT GPDRC and overhead.

The probability that the GPDRC fails if the SEU occurs in
the design is 5.33%, and for the MicroBlaze IP core it is 7.52%.
In Virtex5-XC5VSX50T FPGA the total number of 204 PRMs
can be created. In the biggest type of Virtex5 up to 1460 PRMs
can be developed. But in practical applications, the numberof
PRMs appears to be an unreal number because certain space is
needed for the implementation of GPDRC and interconnections
needed for the implementation. Thus, the number of available
PRMs is significantly reduced. Besides, in many applications
the required size of PRMs is bigger than 36 frames which again
causes a reduced number of PRMs to be available.

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

N
um

be
r

of
 o

cc
up

ie
d

sl
ic

es

F
re

qu
en

cy
 a

fte
r

sy
nt

he
si

s
[M

H
z]

Number of PRMs

Measure resources
aproximated resources

Frequency after synthesis

Figure 21: Size and frequency of the GPDRC based on #PRMs.

Figure 21 shows how the number of slices increases with the

number of PRMs up to 250. The size of the GPDRC increases
almost linearly with the number of PRMs and the frequency of
the GPDRC is around 171 MHz for 100 PRMs. The frequency
of the GPDRC is sufficient because the frequency of ICAP in-
terface is 100 MHz.

7.4. Experiments with SEU Simulation Framework and FT Ar-
chitectures

For the following sets of experiments, the SEU simulation
framework was used which was proposed above.

Parameters of Tested FT Architectures
The basic parameters of tested designs and FT architectures

which contain 8-bit counters and 8-bit decoders are available in
Table 5. The meaning of the columns is as follows: column 1 -
the type of architecture; column 2 - the design size in Virtex5;
column 3 - the number of LUTs; 4 - the number of FlipFlop
registers; column 4 - the number of frames; and the last column
5 - the size of the bitstream in bits for the placing of the SEU.

Virtex5 XC5VSX50T Size # LUT # FF # Frame # bits
Counter8+Decoder8 [slices] [-] [-] [-] [-]

FU+CHCK 12 41 12 36 47232
DUPLchckcmp 18 64 16 72 94464

DUPLchck 22 88 24 72 94464
TMRcmp 28 102 32 144 188928

Table 5: Size of tested designs and FT architectures.

SEU Simulation Framework Settings
The parameters of the SEU framework were set in the follow-

ing way: the generation frequency of one SEU into a tested de-
sign, including evaluation time (time measured from SEU plac-
ing to receiving a response of the system), was set to 100µs.
The communication between the FPGA UART controller and a
PC was set to 115200 Baud per second, 8-bits data, even parity
and 2 stop bits.

First Experiment - How many SEUs will affect the correct func-
tion of the architecture

The goal of the first experiment was to verify on how many
SEUs will affect the correct function of the architecture under
testing and to discover what will be the consequences for thear-
chitecture if SEUs are injected into functional units only.One-
bit errors were injected into all positions of the bitstream. It
means that faults were injected bit by bit into the particular part
of bitstream related to PRM under test or architecture in FPGA.
In one simulation step, one bit of the bitstream is modified and
the reaction of PRM is checked. It was also tested on how many
errors will be detected by checkers. The results are provided in
Table 6.

The meaning of the columns is as follows: column 1 - the
type of architecture; column 2 - the size of a bitstream in bits;
column 3 - the number of incorrect data on the outputs of ar-
chitecture; column 4 - the number of detected SEUs in FUs of
the architecture; and finally column 5 - the number of detected
SEUs in FUs by checkers.

14

XC5VSX50T Bitsream # Output # Detected SEU detected
CNT8+DEC8 size [bits] data errs SEUs in FUs by checker

FU+CHCK 47232 1996 1996 100%
DUPLchckcmp 94464 2988 4040 99%

DUPLchck 94464 3064 4423 100%
TMRcmp 188928 1035 8633 100%

Table 6: Number of detected SEUs in FUs of the architectures.

Second Experiment - How many SEUs destroy the correct func-
tion of the architecture

Second experiment it was verified on how many SEUs de-
stroy the correct function of the architecture under testing in-
cluding checkers and output logic. It was done in the same way
as the above mentioned experiments (i.e. one bit errors were
injected into all bitstream positions). It was evaluated tofind
out how many SEUs will have an impact on the correct func-
tion and how many errors cause complete non-operation of the
system (see Table 7).

Virtex5 XC5VSX50T Bitsream # Detected # Total
Counter8+Decoder8 size [bits] SEU errors

FU+CHCK 47232 1996 1348
DUPLchckcmp 94464 5857 1262

DUPLchck 94464 6850 1606
TMRcmp 188928 10456 1698

Table 7: Number of detected SEUs in the FT architectures.

The meaning of the columns is as follows: column 1 - the
type of the architecture; column 2 - the size of the bitstreamin
bits for the placing of SEU; column 3 - the number of detected
SEUs in architecture; 4 - the number of errors, where all states
of sequential logic were incorrect.

Finally, it was verified that all checkers and other checking
units were able to detect the SEU injected into the architecture.
The digital component continued to cover its function during
the existence of the SEU and also during the reconfiguration
process where it provided correct outputs. It was proven that
a unit equipped with checkers is fault tolerant if correctlyde-
signed. However, routing tools route signals through the recon-
figuration region which allows for the static part of the design
to be damaged by an SEU occurence in the dynamic part.

Third Experiment - Experiments with Sequential Component

In these experiments we tried to check how often the state of
an 8-bit counter is modified during SEUs injection. After SEU
is placed into the bitstream (one simulation step during which
the counter counts between 0 and 255), we measured how many
faulty values were identified on the counter output (when com-
pared with a reference counter). During the experiments allthe
bits in the bitstream were modified.

The results for one FU in DUPLchckcmp architecture are
seen in the histogram in Figure 22. The histogram demonstrates
how many different values appeared on FU output (caused by
an SEU injection) in a 8-bit counter and on how often they oc-
curred.

In the histogram, X axis represents the values on counter out-
puts which were different from values on the output of reference

Figure 22: Histogram of error states of an FU.

counter while SEUs were injected to all bitstream positions. Y
axis reflects the frequency of fault occurrences, i. e. the number
of the fault occurrences during the test.

In Figure 23, the same situation is demonstrated for the DU-
PLchck FT architecture when SEUs were injected to all posi-
tions of bitstream of the whole FT architecture. X and Y axis
have the same meaning as they have in histogram 22.

Figure 23: Histogram of error states of the FT architecture.

7.5. Evaluation of Correct Working of FT Structure

Finally, during our experiments we demonstrated how the
availability of the system implemented with the use of the
methodology presented in this paper, has increased.

Graphs in Figure 24 and Figure 25 reflect how to increase
probability that the FT system will work correctly with the dif-
ferent number of PRMs for different number of SEUs occur-
rences at the same time in FPGA. The first graph shows the
results for FT system based on TMR architecture (TMRcmp)
and the second graph shows the results for duplex architectures
(DUPLchck and DUPLchckcmp).

8. The Comparison of Presented Methodology with Other
Techniques

In comparison with other methodologies [19],[16] which try
to implement fault tolerant systems into the FPGA, our method-
ology allows us to detect and locate all transient faults caused
by SEUs in the application, its registers and in the bitstream.

15

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 w

or
ki

ng

Number of PRMs

2 SEU
4 SEU
8 SEU

16 SEU

Figure 24: Probability of a correct working of design on a number of PRMs
based on TMR Architecture.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 w

or
ki

ng

Number of PRMs

2 SEU
4 SEU
8 SEU

16 SEU

Figure 25: Probability of a correct working of design on a number of PRMs
based on duplex architectures.

Besides, it allows one to localize permanent faults in the inter-
connection net which is not possible in the approaches basedon
bitstream scrubbing with TMR [26].

Our methodology allows to develop fault tolerant system be-
cause it is able to mask errors caused by multiple faults and the
system is able to produce correct results. This is not guaran-
teed in bitstream scrubbing methodologies where an incorrect
result can exist on the output until the bitstream is overwrit-
ten by a correct sequence. Bitstream based methodologies in
combination with TMR suppresses the incorrect results on the
FPGA output although the fault cannot be localized and a per-
manent fault in the FPGA cannot be identified. As far as we
are informed, no such methodology exists which has all of the
features mentioned above.

Many techniques use PowerPC or MicroBlaze processors in-
side FPGA to control the reconfiguration and represent a cru-
cial part of the system and they are unrecoverable after they
fail [15],[23]. Besides, their implementation requires more
space on the chip than our simple reconfiguration controllerand
they must be programmed.

9. Conclusions and Suggestions for Future Research

In this paper, the fault tolerant methodology for the SRAM-
based FPGA via the PDR with the GPDRC inside the FPGA
was presented. The main role of the GPDRC in an FT system
is seen in the identification of faulty PRM and the initiationof
the reconfiguration process of the faulty module in FT architec-
tures. The main structure and basic parameters of the GPDRC
were described together with the problems of PRMs synchro-
nization after one of them is reconfigured.

The results of our research can be summarized as follows:
1) three different FT architectures were developed and imple-
mented into Virtex 5; 2) internal GPDRC was developed to
avoid the necessity of controlling the reconfiguration process by
ICAP and achieve higher speeds of reconfiguration. The results
of synthesis demonstrate that the GPDRC has lower overhead
than the controller implemented as MicroBlaze; 3) the archi-
tecture of the GPDRC was described; 4) the basic parameters
of the FT structure for the SRAM-based FPGA applying PDR
were evaluated; 5) the SEU simulation framework for testing
fault tolerant system designs implemented into FPGA was used.
The experimental results demonstrate that all checkers of FT
architectures and other checking units are able to detect SEUs
injected into a design.

9.1. Future Research

In the future, the methodology will be verified on the latest
Virtex 6 installed to an ML605 development board. We shall
concentrate on a more effective implementation of PRMs syn-
chronization in FT architectures and the relationship between
GPDRC and its dependability parameters. We shall experiment
with larger designs where the following aspects will be consid-
ered: time needed for reconfiguration, effective communication
between the GPDRC and ICAP interface (speed optimization)
and the relationship between the FT structure and its depend-
ability parameters (availability, maintainability).

We intend to experiment with MicroBlaze as another way
how to control reconfiguration in our FT architecture as well.
Then, we shall be able to compare the features and behavior of
three reconfiguration tools: GPDRC, GPDRC implemented as
TMR and MicroBlaze.

Acknowledgements

This work was supported by the following projects: Na-
tional COST LD12036-”Methodologies for Fault Tolerant Sys-
tems Design Development, Implementation and Verification”;
MSMT RECOMP-”National Support for Project Reduced Cer-
tification Costs Using Trusted Multi-core Platforms”; re-
search Project No.MSM 0021630528-”Security-Oriented Re-
search in Information Technology”; GACR No.102/09/H042-
”Mathematical and Engineering Approaches to Developing Re-
liable and Secure Concurrent and Distributed Computer Sys-
tems” and grant ”FIT-S-11-1”.

16

References

[1] J. A. Cheatham, J. M. Emmert, S. Baumgart, A survey of fault tolerant
methodologies for fpgas, ACM Trans. Des. Autom. Electron. Syst. 11 (2)
(2006) 501–533.

[2] M. Straka, Z. Kotasek, J. Winter, Digital systems architectures based on
on-line checkers, in: 11th EUROMICRO Conference on DigitalSystem
Design DSD 2008, IEEE Computer Society, 2008, pp. 81–87.

[3] S.-Y. Yu, E. J. McCluskey, On-line testing and recovery in tmr systems
for real-time applications, in: ITC ’01: Proceedings of the2001 IEEE
International Test Conference, IEEE Computer Society, Washington, DC,
USA, 2001, pp. 240–250.

[4] C. Galke, M. Grabow, H. T. Vierhaus, Perspectives of combining on-line
and off-line test technology for dependable systems on a chip, in: IOLTS
’03: Proceedings of the 13th IEEE International On-Line Testing Sympo-
sium, Los Alamitos, CA, USA, 2003, pp. 183–189.

[5] B. Osterloh, H. Michalik, S. A. Habinc, B. Fiethe, Dynamic partial re-
configuration in space applications, Adaptive Hardware andSystems,
NASA/ESA Conference on 0 (2009) 336–343.

[6] M. Straka, Z. Kotasek, High availability fault tolerantarchitectures imple-
mented into fpgas, in: 12th EUROMICRO Conference on DigitalSystem
Design DSD 2009, IEEE Computer Society, 2009, pp. 108–116.

[7] R. Oliveira, A. Jagirdar, T. J. Chakraborty, A tmr schemefor seu miti-
gation in scan flip-flops, in: ISQED ’07: Proceedings of the 8th Interna-
tional Symposium on Quality Electronic Design, IEEE Computer Society,
Washington, DC, USA, 2007, pp. 905–910.

[8] C. Bolchini, D. Quarta, M. D. Santambrogio, Seu mitigation for sram-
based fpgas through dynamic partial reconfiguration, in: GLSVLSI ’07:
Proceedings of the 17th ACM Great Lakes symposium on VLSI, ACM,
New York, NY, USA, 2007, pp. 55–60.

[9] XILINX, Ug208: Early access partial reconfiguration user guide.
URL www.xilinx.com

[10] P. Kubalik, R. Dobias, H. Kubatova, Dependable design for fpga based on
duplex system and reconfiguration, in: DSD ’06: Proceedingsof the 9th
EUROMICRO Conference on Digital System Design, Dubrovnik,Croa-
tia, 2006, pp. 139–145.

[11] O. Heron, T. Arnaout, H.-J. Wunderlich, On the reliability evaluation of
sram-based fpga designs, in: FPL ’05: International Conference on Field
Programmable Logic and Applications, ACM, Tampere, Finland, 2005,
pp. 403–408.

[12] M. Straka, J. Kastil, Z. Kotasek, Modern fault tolerantarchitectures based
on partial dynamic reconfiguration in fpgas, in: 13th IEEE International
Symposium on Design and Diagnostics of Electronic Circuitsand Sys-
tems, IEEE Computer Society, New York, NY, USA, 2010, pp. 336–341.

[13] M. Niknahad, O. Sander, J. Becker, A study on fine granular fault toler-
ance methodologies for fpgas, in: Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2011 6th International Workshop on, 2011,
pp. 1 –5.

[14] M. Pereira, L. Braun, M. Hubner, J. Becker, L. Carro, Run-time resource
instantiation for fault tolerance in fpgas, in: Adaptive Hardware and Sys-
tems (AHS), 2011 NASA/ESA Conference on, 2011, pp. 88 –95.

[15] C. Pilotto, J. R. Azambuja, F. L. Kastensmidt, Synchronizing triple modu-
lar redundant designs in dynamic partial reconfiguration applications, in:
SBCCI ’08: Proceedings of the 21st annual symposium on Integrated cir-
cuits and system design, ACM, New York, NY, USA, 2008, pp. 199–204.

[16] S. D’Angelo, G. R. Sechi, C. Metra, Transient and permanent fault di-
agnosis for fpga-based tmr systems, in: Proceedings of the 14th Interna-
tional Symposium on Defect and Fault-Tolerance in VLSI Systems, IEEE
Computer Society, Washington, DC, USA, 1999, pp. 330–338.

[17] F. Lima, L. Carro, R. Reis, Designing fault tolerant systems into sram-
based fpgas, in: DAC ’03: Proceedings of the 40th annual Design Au-
tomation Conference, ACM, New York, NY, USA, 2003, pp. 650–655.

[18] F. Lahrach, A. Doumar, E. Chatelet, Fault tolerance of multiple logic
faults in sram-based fpga systems, in: Digital System Design (DSD),
2011 14th Euromicro Conference on, 2011, pp. 231 –238.

[19] F. L. Kastensmidt, G. Neuberger, L. Carro, R. Reis, Designing and testing
fault-tolerant techniques for sram-based fpgas, in: CF ’04: Proceedings of
the 1st conference on Computing frontiers, ACM, New York, NY, USA,
2004, pp. 419–432.

[20] L. Sterpone, M. Aguirre, J. Tombs, H. Guzmán-Miranda,On the design
of tunable fault tolerant circuits on sram-based fpgas for safety critical
applications, in: DATE ’08: Proceedings of the conference on Design,

automation and test in Europe, ACM, New York, NY, USA, 2008, pp.
336–341.

[21] M. G. Gericota, L. F. Lemos, G. R. Alves, J. M. Ferreira, On-line self-
healing of circuits implemented on reconfigurable fpgas, in: IOLTS ’07:
Proceedings of the 13th IEEE International On-Line TestingSymposium,
IEEE Computer Society, Washington, DC, USA, 2007, pp. 217–222.

[22] C. Bolchini, A. Miele, M. D. Santambrogio, Tmr and partial dynamic re-
configuration to mitigate seu faults in fpgas, in: DFT ’07: Proceedings of
the 22nd IEEE International Symposium on Defect and Fault-Tolerance
in VLSI Systems, IEEE Computer Society, Washington, DC, USA, 2007,
pp. 87–95.

[23] X. Iturbe, M. Azkarate, I. Martinez, J. Perez, A. Astarloa, A novel seu,
mbu and she handling strategy for xilinx virtex-4 fpgas, in:International
Conference on Field Programmable Logic and Applications, 2009. FPL
2009., IEEE Computer Society, Washington, DC, USA, 2009, pp. 569–
573.

[24] U. Sharma, Fault tolerant techniques for reconfigurable platforms, in:
A2CWiC ’10: Proceedings of the 1st Amrita ACM-W Celebrationon
Women in Computing in India, ACM, New York, NY, USA, 2010, pp.
1–4.

[25] C. T. Rathgeb, G. D. Peterson, Secure processing using dynamic partial
reconfiguration, in: CSIIRW ’09: Proceedings of the 5th Annual Work-
shop on Cyber Security and Information Intelligence Research, ACM,
New York, NY, USA, 2009, pp. 1–4.

[26] J. Heiner, B. Sellers, M. Wirthlin, J. Kalb, Fpga partial reconfiguration
via configuration scrubbing, in: FPL ’09: International Conference on
Field Programmable Logic and Applications, ACM, New York, NY, USA,
2009, pp. 99–104.

[27] XILINX, User guide: Logicoretm ip soft error mitigation controller v1.1.
[28] L. Sterpone, M. Violante, A new partial reconfiguration-based fault-

injection system to evaluate seu effects in sram-based fpgas, Vol. 54,
2007, pp. 965 –970.

[29] K. Morin-Allory, D. Borrione, Proven correct monitorsfrom psl specifica-
tions, in: DATE ’06: Proceedings of the conference on Design, automa-
tion and test in Europe, European Design and Automation Association,
3001 Leuven, Belgium, Belgium, 2006, pp. 1246–1251.

[30] M. Boule, Z. Zilic, Automata-based assertion-checkersynthesis of psl
properties, ACM Trans. Des. Autom. Electron. Syst. 13 (1) (2008) 1–21.

[31] J.-B. Note, E. Rannaud, From the bitstream to the netlist, in: FPGA ’08:
Proceedings of the 16th international ACM/SIGDA symposium on Field
programmable gate arrays, ACM, New York, NY, USA, 2008, pp. 264–
268.

[32] XILINX, Xapp864: Seu strategies for virtex-5 devices.
URL www.xilinx.com

[33] XILINX, Virtex-6 fpga data sheet:dc and switching characteristics.
[34] G. Foucard, P. Peronnard, R. Velazco, Reliability limits of tmr imple-

mented in a sram-based fpga: Heavy ion measures vs. fault injection pre-
dictions, in: Test Workshop (LATW), 2010 11th Latin American, 2010,
pp. 1 –5.

17

Martin Straka was born in 1981. In 2006 he graduated (MSc) at the

Department of Computers Systems of the Faculty of Information Technology,
Brno University of Technology. In 2006 he started his PhD studies at the
Department of Computers Systems. His scientific research is focused on fault
tolerant systems design and on-line testing of FPGA based systems. He is author
or co-author of more than 22 scientific papers.

Jan Kastil was born in 1983. He received his Bc and MSc degrees in 2006
respectively 2008 from Brno University of Technology. Currently he is working
towards his PhD at the same university. His research interests include FPGAs,
the application of the partial dynamic reconfiguration and the acceleration of
the high speed networks. He is author or co-author of more than 10 scientific
papers.

Zdenek Kotasek was born in 1947. He received his MSc. and PhD. degrees
(in 1969 and 1991) from Brno University of Technology (BUT), both in computer
science. Between 1969 and 2001, he worked at Department of Computer Science
of the the Faculty of Electrical Engineering and Computer Science, since 2002
at the Department of Computer Systems (DCSY) of the Faculty of Information
Technology, both at BUT. He is an Associate Professor at BUT since 2000
and the head of the DCSY (since 2005). His research interests include digital
circuit diagnostics and testing, testability analysis and design and synthesis for
testability and reliability, fault tolerant system design. He is an IEEE member
(since 2003).

1

http://ees.elsevier.com/micpro/download.aspx?id=50451&guid=6398e0e6-88c4-43f7-bd9f-63ed4f34a550&scheme=1

 Lukas Miculka was born in 1985. In 2010 he graduated (MSc) at the
Department of Computers Systems of the Faculty of Information Technology,
Brno University of Technology. In 2010 he started his PhD studies at the
Department of Computers Systems. His scientific research is focused on fault
tolerant systems design and partial dynamic reconfiguration based on FPGA
systems.

2

