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Figure 1: Example images from sequences used in the experiments. A 2Dscene (containing just one plane; top row) and a 3D scene
(containing objects of different shapes; bottom row) were captured using four different image formats. These are, from left to right: HDR
image tone mapped using a global tone mapper: GTM format (a, e). HDR image tone mapped using a local tone mapper: LTM format (b, f).
Ordinary low dynamic range image: LDR format (c, g). LDR image filtered using Wallis filter: WAL format (d, h).

Abstract

This paper evaluates the suitability of High Dynamic Range (HDR)
imaging techniques for feature point detection under extreme light-
ing conditions. The conditions are extreme in respect to the dy-
namic range of the lighting within the test scenes used. This dy-
namic range cannot be captured using standard low dynamic range
imagery techniques without loss of detail. Four widely used feature
point detectors are used in the experiments: Harris corner detec-
tor, Shi-Tomasi, FAST and Fast Hessian. Their repeatability rate
is studied under changes of camera viewpoint, camera distance and
scene lighting with respect to the image formats used. The results
of the experiments show that HDR imaging techniques improve the
repeatability rate of feature point detectors significantly.
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1 Introduction

Many computer vision tasks, such as image analysis, registration
and indexing, object tracking, 3D reconstruction, visual navigation
(SLAM), etc. rely on the presence of low-level features in the im-
age [Schmid et al. 2000]. These features mainly consist of blobs,
edges or points. In the case of points, these are referred to as cor-
ner points, interest points or most often the “Feature Points” (FPs).
These image points usually correspond to some real points in the
scene, although some of them might correspond to deceiving phe-
nomena such as reflections or shadow edges.

The detection of FPs is strongly dependent on the il-
lumination of the scene at the moment of image cap-
ture [Mikolajczyk et al. 2005]. Demanding lighting conditions or
wrong camera settings can cause FP detectors to fail to detect any
points. When capturing images under such conditions, one has to
carefully set the camera and arrange the scene (which is a limit-
ing factor and sometimes cannot be done at all). An alternative
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approach is to use High Dynamic Range (HDR) imagery.

HDR imagery captures and stores information about the full amount
of light in a scene rather than the perceived colour in an image,
which is stored in traditional Low Dynamic Range (LDR) imagery.
This difference between HDR and traditional LDR technology is
the use, by HDR, of floating point numbers capable of representing
a theoretically infinite light intensity range, rather than 8-bit integer
values of LDR that limit the intensity range to 0-255. The HDR
representation provides more detailed information about a scene
and thus has the potential to improve the performance of computer
vision tasks. This is particularly true if dealing with images of the
natural world where the average luminance levels may vary approx-
imately between 10−3cd/m2 for a starlit night and 106cd/m2 on
a sunny day [Banterle et al. 2011]. This difference between the lu-
minance levels demonstrates the necessity of using HDR imagery
to capture the full range of light in the real world.

There have been many comparisons and evaluations of feature point
detectors, both general and application specific ones. To the best of
our knowledge, all these evaluations have been carried out using
classical LDR images only. There are a few recent papers that con-
sider HDR imagery in FP detection (e.g. [Cui et al. 2011]), but no
comparison with LDR has been done. This paper investigates the
impact of HDR imagery, compared to LDR, to significantly im-
prove the performance of FP detectors.

The rest of this paper is organized as follows: In section 2, we
briefly describe the selected four FP detectors for our experiments,
and discuss the literature on previous comparisons of FP detectors.
Possible image pre-processing steps are also discussed. Section 3
details the setup for subsequent evaluation. The results are pre-
sented and analysed in section 4. Finally, we conclude our work
and make suggestions for future work in section 5.

2 Related Work

2.1 Feature Point Detectors

Although a number of feature point detectors have been proposed
in prior literature, the following four have been shown to out-
perform other detectors [Jazayeri and Fraser 2008; Gil et al. 2010;
Gauglitz et al. 2011]. They are thus widely used in many applica-
tions.

Harris Corner Detector: This method is based on the local auto-
correlation function reflecting local intensity changes in the
image [Harris and Stephens 1988]. For each pointx, the sec-
ond moment matrix

M(x) =
[

I2
x (x) IxIy(x)

IxIy(x) I2
y (x)

]

(1)

is computed, whereIx andIy are the derivatives of pixel inten-
sity in thex andy directions at pointx . Then the point score
R(x) is computed as

R(x) = det(M(x))−k · tr(M(x))2 , (2)

where the determinant det(M) corresponds to the product of
the two eigenvalues ofM and the trace tr(M) to their sum, re-
spectively. Associated eigenvectors represent two perpendic-
ular directions of the greatest intensity change in the image.
The constantk is a sensitivity factor.

Shi-Tomasi: The minimum eigenvalue detection method proposed
by Shi and Tomasi [1994] relies on the same second moment
matrix M as the Harris detector does, but explicitly computes
its eigenvalues contrary to Harris. This results in higher com-
putational demands but also in feature points which are more
stable for tracking.

FAST: The Features from Accelerated Segment Test method
(or local intensity comparison) works on another princi-
ple [Rosten and Drummond 2005]. This method considers
a pixel to be a possible corner point if it hasN contiguous
surrounding pixels on a circle, which are either brighter or
darker than the central pixel. The value ofN effectively con-
trols a threshold angle which describes what features will be
detected (both corners and edges or just corners). The cir-
cle considered has usually a radius of 3 pixels in practical
applications. This yields 16 surrounding pixels to be tested.
False candidate corner points can be eliminated quickly by
testing the intensity criterion for surrounding pixels in a non-
sequential manner, accelerating the whole procedure signifi-
cantly.

Fast Hessian: This is the detector part of the so called SURF
(Speeded up Robust Features [Bay et al. 2006]) combined
feature detector and descriptor. In this paper, we only use the
detection part. This detector approximates the Hessian matrix

H (x,σ) =

[

Lxx(x,σ) Lxy(x,σ)
Lxy(x,σ) Lyy(x,σ)

]

(3)

at each image pointx at scaleσ . Lxx(x,σ) is the convolution

of the Gaussian second order partial derivative∂ 2

∂x2 g(σ) with
image at pointx and similarly forLxy(x,σ) andLyy(x,σ). The
computational speed-up is achieved by usage of simple box
filters instead of Gaussian second order partial derivatives fil-
ters and, subsequently, by use of precomputed integral images
which allow the convolution of arbitrary size to be substituted
by just 3 additions or subtractions.

2.2 Comparison of FP Detectors

There has been a number of previous papers on the comparison and
evaluation of feature point detectors in the last decade. The first
extensive study was published by Schmid et al. [2000]. The au-
thors compared FP detectors on two planar scenes under changes
in rotation, viewpoint and illumination, as well as with artificially
added image noise. They were the first to introduce and evaluate
the repeatability rate. The Harris corner detector was found to out-
perform the others, but since that time, many new FP detectors have
been proposed. Mikolajczyk et al. [2005] compared affine-invariant
detectors. They didn’t focus just on point detectors but generally on
region detectors. The scenes used for their experiments were also
planar or near-planar. Fraundorfer and Bischof [2005] continued
the work of Mikolajczyk et al. and extended it by introducing a new
tracking method. By using this method, they were the first to be able
to evaluate the detectors on non-planar scenes as well. Rodehorst
and Koschan [2006] compared performance of detectors on a set of
artificial planar scenes as well as natural planar and 3D scenes. The
authors addressed the problem of non-uniform distribution of FPs
in the image and proposed a solution by using an adaptive detector
threshold. Moreels and Perona [2007] explored the performance
of combinations of detectors and descriptors with a testbed of 3D
objects. They exploited geometric constraints between triplets of
views.



More recently, many application-specific studies of FP detectors
have been published. Such studies naturally focus on certain pa-
rameters of the detectors. For example, Gil et al. [2010] eval-
uated behaviour of the detectors and descriptors on 2D and 3D
scenes with respect to their use in visual navigation. They thus
studied the stability of detected features throughout the whole im-
age sequences, rather than just in couples of images. Jazayeri and
Fraser [2010] concentrated on feature-based matching and close
range photogrammetry. This paper thus focused on the detection
rate of the detectors. They were also one of the first who evaluated
the speed of the detectors. Gauglitz et al. [2011] compared the de-
tectors and descriptors with regard to real-time visual tracking, thus
concentrating on execution time and precision.

2.3 Image Pre-Processing

Some studies suggest a pre-processing step should be used to en-
hance local contrast when detecting features in an image, as low
contrast can limit performance of the detectors. This is particu-
larly important if variable imaging conditions occur. Jazayeri and
Fraser [2010] and Zhang et al. [2009] proposed to use e.g. his-
togram equalization or Wallis filtering.

Wallis filter [Wallis 1974]:
Local contrast of an image is enhanced by adjusting
pixel intensity in small regions to match predefined val-
ues of mean and standard deviation. The resulting im-
age contains more detail even in areas with low and
high brightness. It has been found that the detec-
tors typically find more suitable FPs in images pre-
processed with a Wallis filter [Ohdake and Chikatsu 2005;
Remondino and Zhang 2006].

Local contrast enhancement is not needed when working directly
with HDR imagery because it contains information about the true
contrast of captured scene. However, when converting an HDR
image to an 8-bit image (able to represent much lesser contrast)
by a tone mapping operator, it is desirable to preserve the con-
trast as much as possible. Many tone mapping operators ex-
ist [Ledda et al. 2005] but it is beyond the scope of this work to
evaluate them all. Therefore, just the basic ones are mentioned –
one global and one local.

Global tone mapping: The operator consists of a log2 transforma-
tion of pixel intensities followed by a linear scaling and quan-
tization into the integer interval〈0,255〉.

Local tone mapping: The operator is based on con-
trast limited adaptive equalization of luminance his-
togram [Zuiderveld 1994]. The input image is divided into
8× 8 tiles and the contrast of each tile is enhanced so
its histogram is uniform. The neighbouring tiles are then
combined using bi-linear interpolation to avoid artificial
boundaries.

3 Experimental Setup

Two test scenes shown in Figure 1, have been created to evaluate the
selected feature point detectors under extreme lighting conditions:

• A planar (2D) scene containing three different posters in A4
format next to each other, attached to a box.

• A 3D scene containing several non-planar rigid objects.

These scenes were placed into a totally dark room and illuminated
by two 2 kW reflectors to create the extreme lighting conditions.
The 2D scene was made of a dark poster placed into a shadow,
another poster lit by one reflector and a bright poster lit by both
reflectors. The 3D scene was made analogously to the 2D scene:
A coarse, dark statuette of a rhino placed into a shadow, a puppet
lit by one reflector and a ball of creased paper lit by both reflec-
tors. Both scenes have been designed to generate as much dynamic
range of light as possible while containing textured areas feasible
for detection of FPs. The 2D scene has an average dynamic range
of 12.1 stops and the 3D scene, 13.7 stops. Both scenes also contain
a sheet of paper with a dot pattern used for automatic calibration of
internal and external parameters of the camera.

The scenes have been captured in three different image sequences
by changing the camera viewpoint, distance and scene lighting. Ex-
ample images from the sequences can be seen in Figure 2.

Viewpoint changing sequence:The camera was moved following
a circular trajectory with its centre in the scene with a step
of 2.5◦. Since the scenes were captured 21 times the total
viewpoint range was 50◦.

Distance changing sequence:The scene was captured 7 times
and the distance between the camera and the scene increased
exponentially, yielding the distance sequence of 100, 103,
109, 122, 147, 197 and 297 cm. The distance was chosen
to increase exponentially rather than linearly because the FP
detectors are much more sensitive to scene distance changes
at close range than at far range.

Lighting changing sequence:The scenes were also captured 7
times, each time with different combination of 3 light sources
being on or off, with at least one of them on. The light sources
used were the strip lights in the room and the two reflectors
mentioned before. When referencing lighting conditions in
the experiments a three-digit binary code is used to represent
it where each digit represents the state of one light source in
the order: (1) strip lights, (2) reflector 1, (3) reflector 2. For
example, the code “101” means that only the strip lights and
the reflector 2 were on.

To capture all the dynamic range in the scenes, several images
were captured at different exposure levels at each camera posi-
tion. A Canon EOS-1Ds Mark II camera mounted on a tripod was
used for this purpose. All the images have a resolution of approx.
16 Mpx taken at one position. The multiple exposures were then
combined into a single HDR image. The HDR image was subse-
quently tone mapped using the simple global and local tone mapper
described in section 2.3. From the HDR image containing all the
dynamic range, a “single exposure” LDR image has been made by
clipping the dynamic range to 8 stops. Bounds of the clipping inter-
val were chosen so that the number of over and underexposed pixels
was minimised. This corresponds to an LDR image taken with ideal
camera settings. As the Wallis filter is recognized as an image pre-
processing operator feasible for FP detection, we also filtered the
LDR images with the Wallis filter. The aim was to investigate if the
Wallis filter improves FP detection under extreme lighting condi-
tions more than tone mapping operators. All this resulted in scenes
captured in four different image formats at each camera position.
These are the following:

GTM: HDR image tone mapped with the global tone mapper.

LTM: HDR image tone mapped with the local tone mapper.

LDR: Low dynamic range image.

WAL: LDR image filtered with Wallis filter.



Figure 2: Example images from sequences used in the experiments. Viewpoint changing sequence: leftmost image (−25◦, a), middle image
(0◦, b) and rightmost image (+25◦, c). Lighting changing sequence: lighting conditions “100” (d), “111” (e) and “010” (f). Distance
changing sequence: nearest image (100 cm,g), further image (122 cm,h) and furthest image (297 cm,i). Magnified view of the puppet from
the 3D scene (j ). Feature points detected using the Fast Hessian detector are marked withgreen dots. The feature points were detected only
inside of the Regions Of Interest (ROI) which are marked as green polygons in the reference images for each sequence (b, e, g). All displayed
images are in LTM format.

The FP detectors have been tested on these four image formats,
which examples can be seen in Figure 1. The detectors have not
been tested directly on HDR images because their current imple-
mentations cannot cope with HDR imagery. This could be solved
with new implementations capable of processing HDR images, but
the risk of skewed results of the experiments would emerge. It was
thus decided to run current implementations on 8-bit images only.
As the four FP detectors were carried out on four image formats,
they yielded 16 sets of feature points for each camera position.
Since we wanted the FPs to be detected only in “meaningful” areas,
a continuous Region Of Interest (ROI) was defined in each image
(see green polygons in Figure 2). In the case of the 2D scene, the
ROI covered the three posters but not the dot pattern. In the 3D

scene, the ROI covered all the items placed on the desk, except-
ing the dot pattern again. The detectors were then executed in each
ROI.

Since every detector has a metric for feature points describing their
response/strength, there are two ways in which to carry out the de-
tectors: The first way is to specify a response threshold and let the
detector find all the points stronger than the threshold. This way is
suitable when working with single image format and allows the de-
tection rate (i.e. how many feature points a given detector is able to
generate in given image) to be evaluated. However, since there are
four different image formats this approach was not suitable. Each
image format yields a significantly different detector response for
the same image regions as is illustrated in Figure 3, so the thresh-



olds would not match. Therefore a different approach is needed. It
was thus chosen to specify the number of strongest feature points
to be detected, which was set to 95-100 points in each image.

Finally, we performed automatic camera calibration in each image
sequence using the Camera Calibration Toolbox for Matlab1 and
pattern-based camera pose estimation2. These provided the inter-
nal and external camera parameters at each camera position. Based
on these parameters, we computed the geometric relations between
individual views [Hartley and Zisserman 2004]. In the case of a 2D
scene, the relation is a planar homography and can be described by
a 3× 3 homography matrixH. This matrix allows image coordi-
nates to be mapped between two images so that

x2 = H12x1 , (4)

where x1 and x2 are homogeneous image coordinates of corre-
sponding point in first and second view andH12 is a homography
matrix describing planar homography between these two views. In
the case of a general 3D scene, the views are related by the more
complicated concept of epipolar geometry. A direct map between
two image points is no longer possible since an image pointx1 in
one view defines an epipolar linelx1 in the other view; Such a rela-
tion can be described by a 3×3 fundamental matrixF:

lx1 = F12x1 . (5)

Since the dot pattern was not placed in the middle of the scenes,
the geometric relations based on the automatic camera calibration
further away from the pattern were not precise enough. The error of
image-point positions was approximately tens of pixels. It was thus
decided to manually mark 4 corresponding image points in each
view of the 2D scene (e.g. the corners of the posters) and compute
more precise homography matrices based on these markings. In ad-
dition, in the case of 3D scene, 7 corresponding image points were
manually marked in each view (e.g. corners of the boxes or hair
of the puppet) and more precise fundamental matrices were com-
puted. These quantities allowed us to exploit geometric constraints
between the views in the subsequent evaluation.

4 Evaluation

We evaluated the 2D and 3D scenes independently, as the behaviour
of the FP detectors differs significantly between these cases (see
Figure 4). The results presented in this paper are highly dependent
on the sets of scenes and images used.

The first aspect evaluated was the distribution of FPs in the image.
This was achieved by visual inspection which is the usual, but inher-
ently subjective method. In general, all detectors tended to detect
FPs on real (i.e. meaningful) features. The only detector slightly
deviating from this was the FAST detector which also produced
some clusters of random FPs on edges. This behaviour was caused
by the default value 157.5◦ of the threshold angle (see section 2.1)
and can be eliminated by setting a more acute angle value. In gen-
eral, the distributions of FPs across the regions of interest were not
uniform. There were some areas with lower contrast, mainly darker
ones, where only a few FPs were detected. This issue was partially
eliminated in image formats produced by local contrast enhancing

1Camera Calibration Toolbox for Matlab by Jean-Yves Bouguet:
http://www.vision.caltech.edu/bouguetj/calib_doc/

2Automatic Camera Pose Estimation from Dot Pattern by George Vo-
giatzis and Carlo Herńandez:http://george-vogiatzis.org/calib/

operators, i.e. the local tone mapper and Wallis filter. Over and
underexposed areas will exist in LDR images when using them to
capture scenes under extreme lighting conditions. These areas do
not contain any detail and therefore no FPs can be detected. This
problem does not arise when using HDR imagery.

The other and main criterion we evaluated was the Repeatability
Rate (RR). This is currently considered to be standard metric of
FP detectors. RR describes how FP detection is independent of
imaging conditions [Schmid et al. 2000] and is defined as the ratio
between the number of FPs detected in the image and the number
of FPs detected in the reference image. It is desirable to achieve
a repeatability rate as high as possible.

When deciding whether a feature point was detected or not in an
image, the geometric constraints between the image and the refer-
ence image only were exploited. No FP descriptors were used. In
the case of the 2D scene, the positions of the detected FPs were
matched automatically. A FP was considered found in an image
if there was a point detected in the radius of 35 px (which is less
than 1 % of the image size) from predicted position, computed ac-
cording to Equation 4. In the case of the 3D scene, candidate FPs
were chosen as those lying closer than 35 px to the epipolar line
computed according to Equation 5. Since there might be several
candidate points next to each epipolar line, we also checked them
manually to avoid false correspondences. The repeatability rate of
tested detectors is shown in Figure 4 and Table 1.

Sequence Scene GTM LTM LDR WAL

Viewpoint 2D 70 % 90 % 71 % 71 %
3D 57 % 51 % 57 % 57 %

Lighting 2D 67 % 61 % 64 % 68 %
3D 55 % 39 % 40 % 39 %

Distance 2D 85 % 92 % 85 % 85 %
3D 59 % 50 % 52 % 49 %

Table 1: Average repeatability rate for each image sequence, scene
and image format used. The RR is averaged over all frames in a se-
quence and over all four FP detectors tested. Significantly improved
performances are typeset in bold.

When evaluating the viewpoint changing sequences, the middle im-
ages of the sequences were chosen as reference images, so RR de-
creases as the camera rotates both clockwise and counter-clockwise
around the scene. In the case of the 3D scene, the RR is very simi-
lar regardless of image format used. But in the 2D scene, the LTM
format provides very much higher RR (avg. 90 %) compared to the
other formats (avg. 70 % – 71 %). This advantage applies to all
four detectors tested, as can be seen in Figure 4(1b) and Table 1.
The reason is that all features of the planar scene are visible from
any direction. They gradually change their appearance because the
brightness of the scene is changing with the rotation. When the
camera reaches the position where it meets the reflected light of ma-
jor light sources the brightness is maximal, but contrast decreases.
The local tone mapper enhances local contrast and therefore makes
the features look the same throughout the whole sequence. This
is not the case with the other formats. This phenomenon does not
occur in the case of the general (3D) scene since the light is re-
flected in many directions and, moreover, some features naturally
disappear with the camera rotation. Closer examination of the dia-
grams in Figure 4(2c,2d) reveals that the FAST detector performed
worse because it also detected random FPs on edges rather than just
corners, as previously discussed.

When evaluating the lighting changing sequences, the images cap-
tured with all three light sources switched on were chosen as refer-
ence images. The experiments showed that the GTM format is most

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://george-vogiatzis.org/calib/


Figure 3: Different responses of the FAST detector for the same imageregion in the four image formats used. Setting the same response
threshold for all image formats would result in significantly different numbers of detected FPs. Top row from left to right: Corners of 2 boxes
from the 3D scene shown in GTM, LTM, LDR and WAL formats. Bottom row:The detector response in false colours for those image areas
- from dark blue (no response) to red (highest response in this image area).

useful in cases of changing lighting conditions because it represents
the scene and the lighting conditions most accurately. These condi-
tions cause different parts of the scene to be under- or over-exposed
in different images when using LDR imagery. Features in those
parts disappear completely and cannot be detected, of course. This
is not an issue when using HDR. The improvement of RR when
using GTM instead of the LDR image format is from 64 % to 67 %
in the case of 2D scene and from 40 % to 55 % in the case of 3D
scene, respectively, as can be seen in Figure 4(3a,4a) and Table 1.
Surprisingly, the LTM format can be disadvantageous if there are
strong lighting gradients in the image, altering appearance of fea-
tures under those gradients. This is the case of the image with light
configuration 110 in Figure 4(3b). All image formats performed
similarly in the 3D scene when the strip lights were on – see Fig-
ure 4(4a-4d), light configurations 100 – 111. Since the illumination
generated by the strip lights has the character of an ambient light,
it reduces the influence of the strong directional light generated by
the reflectors used. The lighting conditions are therefore not so ex-
treme and the scenes can be represented by all four image formats
without any significant loss of detail.

When evaluating the distance changing sequences, the closest shots
were chosen as reference images, so RR decreases as the camera
moves away from the scene. If the distance between the camera
and scene changes, the amount of light coming into the camera lens
might change as well, causing the scene appearance to be altered
(e.g. if the scene background is dark, moving the camera away
from the scene will cause the scene to be over-exposed and features
to be lost). The findings from the lighting changing scenarios are
therefore generally valid for distance changing sequences as well.
The scene over-exposure issue arose when capturing the 2D scene
from distances 197 and 297 cm so we decided not to use these im-
ages in our evaluations since they would bias the results towards

the GTM format. After this correction, all image formats provided
an average RR of 85 % with exception of LTM (92 %). In the case
of the 3D scene, the GTM format proved to provide highest aver-
age RR 59 %, contrary to other formats which provided an average
RR of just around 49-52 %, as shown in Table 1. The FAST detec-
tor performed distinctively worse again on nearly all formats, see
Figure 4(6a,6c,6d). The only exception was the LTM format, see
Figure 4(6b), where even fine details were distinct enough to be
detected by FAST.

Any of the four detectors tested in this paper didn’t outperform the
others significantly on a single image format. We have shown that
the Fast Hessian outperforms the other detectors slightly in most
cases, while FAST usually performs slightly worse than others.
Similar findings were published by Gauglitz et al. [2011]. In addi-
tion, Gil et al claimed that the Harris corner detector showed best re-
sults being closely followed by Fast Hessian detector and that these
two behave in a similar way [Gil et al. 2010]. On the other hand,
studies claiming that the FAST detector is the best one can also be
found (e.g. [Jazayeri and Fraser 2010]), but these do not compare
FAST with detectors which have been shown to outperform it, such
as Harris corner detector, Shi-Tomasi or Fast Hessian, used in this
paper.

5 Conclusions

In this paper we carried out a comparison of four different feature
point detectors on four different image formats under extreme light-
ing conditions. These conditions were achieved by illuminating
a planar and a 3D scene with reflectors in a totally dark room. The
scenes were captured in three image sequences with varying cam-



Figure 4: Repeatability rate of detectors under various conditions on various image formats. Rows 1 and 2 show results forviewpoint
changing sequences, rows 3 and 4 forlighting changing sequences and rows 5 and 6 fordistancechanging sequences. Odd rows are for2D
scenes, even rows for3D scenes. Each row consists of 4 diagrams showing results for different image formats - from left to right:GTM ,
LTM , LDR andWAL . Each diagram shows repeatability rate for each of the four tested FP detectors in each frame of the sequence. The
horizontal dashed line in each diagram depicts theaverage repeatability rateof all detectors and frames for given image format.

era viewpoints, camera distances and scene lighting. The images
of the scenes were stored into various image formats including tone
mapped HDR images and ordinary LDR images. In particular, we
investigated the repeatability rate of the detectors with respect to
the image formats used.

Our results show that the locally tone mapped HDR format (LTM)
enhanced the repeatability rate (RR) of the detectors from 71 % to
90 % in the case of the 2D scene, but only if there were no strong
lighting gradients in the scene. The globally tone mapped HDR
format (GTM) enhanced the RR when the lighting was changing,

especially in the case of the 3D scene (from 40 % to 55 %). HDR
imaging techniques thus have an importnant role to play in improv-
ing the performance of FP detectors.

The improvement in performance of the detectors on Wallis-filtered
images was quite marginal, so the Wallis filter is probably more
suitable for pre-processing of remotely sensed images, where it has
previously been shown to be successful [Gruen and Li 1995]. Such
images typically have very low contrast and near-constant bright-
ness, contrary to images we used in this work.



We observed that the Fast Hessian detector performed slightly bet-
ter than others while the FAST detector performed slightly worse.
This complies with previously published studies.

Future work will evaluate the influence of various tone mappers and
their parameters on the performance of FP detectors. The simple
global and local tone mapper used in this work showed to be bene-
ficial in terms of the repeatability of the FP detectors, but there are
many other tone mappers to be evaluated, both physically-based
and perceptual-based [Ledda et al. 2005]. Future work will also
implement the state-of-the-art detectors so they can work directly
with the floating-point representation of HDR images. After this,
an evaluation will be carried out into the evaluation of localisation
accuracy of the detectors directly on HDR imagery, compared to
the results obtained with HDR data after it has been tone mapped.
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