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Abstract

With the growing speed of computer networks, many algorithms and hardware architectures are

proposed to increase processing speed of time-critical operations especially in the field of longest

prefix matching, packet classification and regular expression matching. Despite many proposed algo-

rithms and hardware architectures, there is still no free and easily extensible platform for evaluation

and comparison with existing approaches.

We propose new framework for easy evaluation and experiments with packet processing algo-

rithms. The aim of the framework is to serve as an independent platform for researchers seeking the

easiest way to implement their algorithms, as well as a comparison of their algorithms with reference

implementations of other approaches. The framework is provided as an open source and can be

easily extended to support new algorithms or new comparison methodology. Netbench is publicly

available at

http://www.fit.vutbr.cz/netbench.

1 Introduction

With the rapid increase of number of Internet users, improvements of the Internet infrastructure are
constantly required. As the speed of network lines increases, there is a need for new algorithms and
architectures for acceleration of time-critical operations used in network devices. In current networks,
the IP lookup, packet classification and regular expression matching are highly important and ubiquitous
operations.
The IP lookup or more generally the longest prefix match (LPM) operation is typically performed

by routers, but it is also used by firewalls and other devices. It is used to select the most specific table
entry (prefix) which matches a given input value. Usually the table is a routing table and the input value
is a destination IP address, but the operation can be performed on any packet header field. In recent
years, many hardware architectures were introduced to increase the processing speed [15,21] or to reduce
memory requirements [12, 30].
Packet classification is the task mainly used in firewalls. It matches packets to a set of rules, which

are usually defined by values, ranges or prefixes of packet header fields. Generally, packet classification
is a mathematical problem of multidimensional range search. Due to the rule set size and complexity
of rules, it is very difficult to check all rules in constant time with low memory requirements which is
needed to achieve throughput of nowadays networks. Many hardware approaches have been presented
to cope with the trade off between memory and time requirements [11, 25, 33].
Regular expression (RE) matching is used mainly in IDS and IPS systems to detect malicious network

traffic by a set of patterns, which are often described by strings or regular expressions. The presence of
patterns is checked in a packet payload or TCP streams. As every byte in the packet payload has to
be inspected, high computational power is required and many hardware architectures were introduced to
increase the processing speed [7, 16, 27, 31].
All three listed operations (IP lookup, packet classification, RE matching) are often required to work

at wire-speed. Therefore they may become the bottleneck, or may incur high costs of high-performance
devices. Complexity of the IP lookup and packet classification rises with an adoption of IPv6 addressing
scheme. All three operations are from the same domain and share many common ideas. Some existing
packet classification approaches even use IP lookup as the first step.
There are many approaches to IP lookup, packet classification and RE matching. They vary in the

technology used. The list of common technologies includes software implementation for general-purpose
processors, network processors, implementations for graphics processing units (GPUs), FPGA and ASIC
designs, TCAMs. While all of these technologies are rapidly innovated, algorithms for IP lookup, packet
classification and RE matching are often independent on the technology, and may only benefit from
technology improvements.
We argue that research of algorithms is highly needed to keep pace with the industry requirements.

New algorithms from the discussed fields are often published in renowned proceedings and journals. In
this situation, it may be surprising that there exists no common platform for researchers to evaluate and
compare their algorithms. Moreover, access to real data sets (routing tables, firewall rule sets, patterns of
malicious data) is often limited due to security and confidentiality issues. Some researchers have gained
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access to data sets, but are not allowed to distribute those data. The lack of standard data sets makes
it hard to compare the properties of algorithms, especially their memory requirements. Implementations
of published algorithms are not often available, so running own tests includes also reimplementation of
previous approaches presented by other authors. Such reimplementation may be imperfect by having
some differences to the original implementation, so it can not be perfectly trusted.
These facts contribute to lower quality of published research results. The Netbench Framework aims

at addressing the stated issues by providing common platform for implementation and evaluation of
packet processing algorithms, specifically IP lookup, packet classification and RE matching algorithms.
The rest of the paper is organized as follows: We extend our motivation and provide criticism of the

current state of the field in section 2. The Netbench Framework is presented in detail in section 3. We
provide several use cases in section 4 to illustrate the value that Netbench can provide to researchers.
The paper is concluded in section 5.

2 Related Work

At the time of writing, there is no platform for early experiments with packet processing algorithms. The
most related work to Netbench is the Click modular router [23]. It is a software implementation of a
router with modular and configurable architecture. The Click router consists of a number of elements
connected in a packet processing pipeline. Each element is a C++ class and implements single router
function such as packet classification, queuing, and others.
Similarly to Click, NetFPGA [22] provides possibility to build a configurable router, but with hardware

processing pipeline. This pipeline is assembled as well from simple processing elements which are written
in Verilog. Each element performs a single packet processing task.
In the viewpoint of previous works, Netbench aims at experimenting with inner function of these

elements – leaving aside issues related to performance and complexity of the whole pipeline. This
renders it very simple to prototype and investigate new packet processing algorithms.
The lack of framework for early experiments is also related to the absence of common data sets

used by all (or most of) researchers. Data sets for the IP lookup operation are most commonly the
routing tables. There are some large public tables available, for example [1]. However, these data are
not designed for experiments, and are changing over the time.
For packet classification, excellent work was done by Taylor and Turner in the ClassBench tool-set [34].

It contains the Filter Set Generator tool that generates pseudo-random rule sets with some predefined
statistical properties. These properties may be gathered from real-life firewalls, so that generated rule
sets have the similar structure and do not contain any confidential data. The random character of
generated rule sets can become a disadvantage, because ClassBench does not provide exactly same data
to all researchers. The second ClassBench tool is the Trace Generator that produces a sequence of packet
headers to exercise packet classification algorithms with respect to a given rule set.
For RE matching, Snort [29] database is de facto standard for most researchers. Snort uses PCRE [14]

to describe regular expressions. PCRE contain rich set of features that makes the task of writing new
patterns easier. However, some of these features have more descriptive power than regular languages [9].
Due to these features, commonly used matching tools do not transform PCRE into the simple Finite
Automata, but build more complex structures in the ad hoc manner even if given expression is regular.
According to our knowledge, there is no publicly available parser supporting conversion of all regular

expressions described in PCRE into the Finite Automata. Therefore, researchers are forced to implement
their own parsers which often support only a subset of the PCRE. Every parser implements different
subset, which affect comparison of the methods. Even the smallest difference in the used parser can
lead to the large difference between generated automata. For example, parser which ignores the case
sensitivity switch may produce automata with only about half of necessary transitions. One of the
commonly used parsers was implemented by Michela Becchi [4], but even this parser does not support
all used regular features of the PCRE.
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Figure 1: The Netbench Framework overall structure.

3 Netbench Framework

We present goals of the framework, together with explanation of how these goals are fulfilled. The
Netbench Framework is designed with several objectives in mind:

• Serve as a uniform independent platform for researchers, without being tightly associated to one
research group or algorithm.

• Enable rapid prototyping of algorithms and their software models.

• Simplify tasks which are done frequently in many experiments (e.g. loading classification rules
from the input file etc.).

• Provide comprehensive data sets for IP lookup, packet classification and RE matching.

• Serve for education purposes.

We make the framework independent by making it publicly available under open-source license and
by inviting researchers to submit their contributions.
We choose the Python 2.6 programming language to implement the algorithms, because of its pop-

ularity, sharp learning curve, and its feasibility for rapid prototyping of complex systems. Python is also
considered to be the language with clear and easily readable syntax. If the performance of the Python
interpreter is too slow for some particular computation, it is still possible to implement time-critical part
of the algorithm in the C language. However, Netbench is intended to be used for rapid prototyping and
experimental work, not for real deployment in the network.
To simplify common tasks such as loading data sets from files, Netbench provides set of classes in the

form of library together with the documentation generated by the Sphinx [3] tool. There are also classes
representing basic data structures, such as prefix, classification rule, regular expression, automaton,
packet header etc.
Overall structure of the Netbench Framework is in Figure 1. Comprehensive selection of algorithms

for IP lookup, packet classification and RE matching is already available in the Netbench Framework
(see Sections 3.2, 3.3 and 3.4).

3.1 Data sets

We gather and add to Netbench several data sets. For IP lookup, we focus on three target data sets –
IPv4 routing tables, IPv4 firewall tables and IPv6 routing tables. After further deployment of IPv6 to
end user networks the IPv6 firewall tables will be added.
In case of LPM algorithms, most of the authors use BGP tables from Potaroo [1], but unfortunately

the AS numbers, table release dates and numbers of currently available prefixes change in time. Therefore
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Rule set name Rules Unique fields
(Source IP/Destination IP
/Protocol/Source Port
/Destination Port)

fw1 05 05 822 138/123/1/22/52
fw1 m05 05 827 133/146/1/22/52
fw1 05 m05 882 156/171/1/22/52
fw1 m05 m05 852 121/143/1/22/50
fw2 05 05 956 735/274/1/13/1
fw2 m05 05 984 802/412/1/13/1
fw2 05 m05 100 100 75/37/1/12/1
fw2 05 m05 250 240 55/53/1/13/1
fw2 05 m05 500 455 65/57/1/13/1
fw2 05 m05 962 746/307/1/13/1
fw2 m05 m05 992 826/425/1/13/1
fw3 05 05 500 427 103/52/1/18/48
fw4 05 05 500 482 54/82/1/47/61
fw5 05 05 500 481 105/84/1/20/46

simple1 3 2/3/1/1/1
simple2 6 4/4/1/1/1

Table 1: Packet classification rule sets in Netbench

we download available IPv4 and IPv6 BGP tables and store them on regular time basis. As a result, any
author can use the same data sets for comparison of introduced approach to other algorithms. Some
more BGP table sources like [2] are also included.
As IP lookup is an important step of decomposition based classification methods, we use the same

data sets for firewall tables as in the packet classification section. Both source and destination IP
addresses are extracted from the rules and obtained sets form a benchmark for firewall IPv4 tables.
For packet classification, 14 rule sets generated by ClassBench with different settings are used. There

are also two very simple rule sets (only 3 and 6 rules) for early experiments and debugging. Table 1
shows sizes and numbers of distinct conditions in each dimension of the rule sets.
Data sets for the pattern matching can be freely downloaded from the Internet [29] [6] [19]. Every tool

has different format of the pattern language and supports different features. Sometimes, it is not clear
from the documentation which features are supported. Snort’s [29] pattern sets are used as a standard for
evaluation of regular expression matching algorithms for IDS. However, Snort supports complete PCRE,
which is extremely complex and has more descriptive power than regular expressions [9]. Due to the large
complexity of the PCRE it is almost impossible to write a parser supporting all features of the PCRE
that can be successfully transformed into regular expressions. However, every feature has its effect on
the resulting automaton. Therefore, processing the same patterns with two different parsers may lead to
different automata and ultimately to unfair comparison of algorithms.
To deal with this problem, Netbench contains its own parser which can be used with all implemented

algorithms. The generated automaton is used as an input for all pattern matching algorithms in Netbench.
If a new parser is implemented, it is possible to exchange it without disrupting the functionality.
Netbench also contains several sets of rules originating from Snort [29], Bro [6] and Netfilter [19]

project. Table 2 shows the number of rule set modules, total number of regular expressions and the total
number of states and transitions for Nondeterministic Finite Automata(NFA) with char classes for the 3
main rule sets groups.

3.2 Algorithms for IP Lookup

Algorithms for IP lookup are usually tree-based, because prefix directly corresponds to the descent path
in binary tree. However, Netbench implements also approaches based on range searching or hashing.
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Rule set Modules Reg NFA NFA
name Exps states transitions

L7 30 30 791 949
Snort IDS 42 4 374 170 077 188 390
Bro IDS 1 1 400 64 493 77 110

Table 2: Data sets in Netbench for pattern matching

Unibit Trie [13] is a basic memory structure which includes all prefixes directly in its construction.
Each node may contain prefix and up to two pointers to the child nodes. One input value bit is processed
in each cycle during the Trie algorithm run. According to this bit the next node is the left (with bit =
0) or right (with bit = 1) successor until there is no continuation possible. The longest prefix is the last
matched node in the Trie. The main disadvantage of this algorithm is low matching speed given by the
high number of processing steps. Therefore many following algorithms focus on speed (and memory)
optimizations.
Controlled Prefix Expansion (CPE) [32] algorithm introduces multiple bits processing per clock cycle

and therefore higher algorithm speed. Processing of more input bits is enabled by prefixes expansion to
requested processing width, which leads to higher memory requirements. The leaf pushing optimization
decreases the memory requirements typically to one half of the original memory structure.
Lulea [10] starts with a conceptual leaf pushed expanded trie and replaces all consecutive elements in

a trie node that have the same value with a single value. This can greatly reduce the number of elements
in a trie node. To allow trie indexing to take place even with the compressed nodes, a bitmap with 0’s
corresponding to the removed positions is associated with each compressed node.
LC-Tries (LCT) [24] are another form of compressed multibit tries. The main idea behind LC-Tries

is to recursively pick strides (and therefore multibit tries) that result in having real prefixes at all of the
leaves. Having fully populated leaves means that none of the internal prefixes need to be pushed to the
leaves of the multibit tree or to lower trees (no leaf pushing). In addition to this strategy, LC-Tries use
path compression to save space on non-branching paths.
Tree Bitmap (TBM) structure [12] is focused on hardware suitable implementation. Therefore it

doesn’t use LC-Tries scheme with variable processing steps, but it further optimizes memory usage of
Lulea structure. Each compressed node of the structure represents 2n unibit trie elements and stores
only pointers to the first successor node and the first prefix. Next successors and prefixes follow in the
memory, so their positions are given by the bitmaps.
Hash-Tree Bitmap algorithm (HTBM) [35] is focused on longer IPv6 addresses processing and reduc-

tion of number of Tree Bitmap steps. This is done by hash functions which serve as shortcuts in the trie
memory structure. The resulting algorithm run consists of three stages: parallel multiple hash functions,
longest matched prefix selection and consequent matching using the Tree Bitmap algorithm.
Shape Shifting Trie (SST) [30] starts with the Tree Bitmap structure and introduces memory opti-

mization for long non-branched segments. Each node can represent the standard balanced tree or any
other “shape” which is more suitable for given prefix set and allows to move faster and with better
memory utilization through the prefix space.
Binary Search on Ranges (BSR) [20] treats a database of prefix addresses as a set of intervals. It

expands all prefixes to full length and builds a sorted table of intervals limits where more specific intervals
have higher priority then less specific ones. Binary search or B-Tree search is subsequently used to find
the match for specific input IP address.
Binary Search on Prefix Lengths (BSP) [36] is based on the idea of modifying a prefix table to make it

possible to use hashing. The hashing is used to search among all entries of a given prefix length. Instead
of searching every possible prefix length and picking the longest prefix length with a match, binary search
is used to reduce the number of searches.
MultiMatch (MM) [28] is trivial hardware algorithm which splits input prefixes to n subsets with the

same length. Shorter prefixes are expanded to get requested length. After that, parallel hash searches
are used to find the LPM in the group and the longest positive search is the operation result.
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3.3 Packet Classification Algorithms

From the wide choice of packet classification algorithms, Netbench currently focuses on the family of
decomposition methods. These algorithms divide the problem of classification into several independent
parts. The first part is usually the longest prefix match operation, performed on all examined packet
header fields. The advantage of such division is the strong potential for parallel computation.
Distributed Crossproducing of Field Labels (DCFL) [33] by Taylor and Turner modifies the LPM

to return all valid prefixes (not only the longest one) for the given field value. What follows is the
hierarchical structure of small crossproduct engines. Inputs of each engine are two sets of prefixes (or
Labels, in general). Engine then performs set membership query for each possible pair of Labels. Result
of the engine is another set of Labels. The result of the last engine is in fact a set of rules, from which
the one with the highest priority is selected.
Multi Subset Crossproduct Algorithm (MSCA) [11] by Dharmapurikar et al. provides heuristics on

how to break rule set into several subsets, eliminating the memory requirements significantly. The paper
also identifies rules that generate excessive amount of memory. These rules are called spoilers and are
treated in a separate algorithm branch to further reduce the memory.
Perfect Hashing Crossproduct Algorithm (PHCA) [25] improves MSCA by using specifically con-

structed hash function to map all possible results of the LPM stage directly onto the correct rule.
Considerable amount of memory is saved this way. Perfect (collision-free) hash construction algorithm
is used, but in this case, many collisions are intentionally introduced to create many-to-one mapping of
LPM results to rules.
Prefix Coloring Classification Algorithm (PCCA) [26] further improves PHCA. The LPM stage is

extended by adding abstract color property to prefixes. Prefixes now contain bitmaps of allowed and
suppressed colors of prefixes from other dimensions. Simple logic is then used to filter out most of
unwanted combinations of LPM results. This lowers the perfect hash table size significantly, while the
throughput is not affected.

3.4 Regular Expression Matching Algorithms

Regular expressions are excellent tools for describing patterns. However, high succinctness of regular
expression makes the matching process complicated operation. Therefore, finite automata are used to
match input data against the pattern set. This section describes several finite automata based approaches
implemented in Netbench.
Sindhu et al. in [27] were the first to map NFA into FPGA. Every state of finite automaton is

implemented as one Flip Flop (FF) in FPGA. Transitions are realized by logic functions connecting
registers.
Previous architecture has to implement character comparison for every transition in the automaton.

However, many transitions in the automaton are labeled by the same character. Clark et al. [7] has
improved Sidhu’s architecture by adding shared decoder to reduce the amount of comparators and
routing resources. Shared decoder transforms every character into one-bit signal and this signal is then
used instead of the 8-bit character information.
In [8], Clark proposed usage of automaton which accepts multiple characters per transition by im-

proving the shared decoder. Authors were able to achieve up to 100Gb/s throughput on Virtex2 Pro
FPGA for the strings. Main disadvantage of the solution was high amount of required resources.
Sourdis et al in [31] introduced new elements into NFA to increase efficiency of RE mapping. Con-

strained repetitions are one of the most common extensions of the regular expression in PCRE. Con-
strained repetition may generate hundreds or thousands states in NFA. Authors propose to implement
constrained repetitions by combination of shift registers and counters to reduce resource utilization. Sec-
ond improvements described by Sourdis is extraction of static pattern, such as strings. DCAM algorithm
is used for string matching and transition in the automata can be described by one string.
Every described NFA based method requires direct implementation to the FPGA, which can take long

time and requires special synthesis tool. Another disadvantage of NFA based method is the large state
information.
Deterministic Finite Automata can store all transition table in the memory and achieve constant time

complexity in processing of every character. The main disadvantage of DFA is the exponentially larger
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transition table in the worst case. Many algorithms were introduced to solve this problem. We describe
only methods currently implemented in Netbench.
Kumar [18] noticed that many states in the DFA have very similar sets of outgoing transitions.

Kumar reduces number of transitions to reduce memory requirements of the automaton by introducing
transitions, that do not accept any character and connect states with similar outgoing transitions. This
approach is called Delay DFA (DDFA) and is able to reduce size of the transition table by more than
90%. Since the default transition does not accept any symbol, the throughput of the DDFA may be
slower than DFA but the time complexity of accepting one symbol remains constant.
The DDFA [18] reduces the number of transitions, but the number of states does not change. In [17]

Kumar identifies one of the problems of DFA based methods as forgetting history of the matching.
Indeed, DFA remembers only the active state and not the path it took. To solve this problem, Kumar
introduces additional memory to store history of the matching. Content of this memory can be used as
a condition on the transition of the automaton.
Many other improvements of the DFA were introduced in the literature to reduce memory require-

ments, however, DFA still have exponentially larger memory requirements than NFA. To solve this problem
Becchi introduced Hybrid Finite Automaton [5]. Construction algorithm stops as soon as state blow-up
is recognized. The remaining parts of the automaton are left as NFA or transformed into new DFAs.
This method provides speed and memory consumption trade-off.
NFA Split algorithm [16] exploits the fact that only small number of states are concurrently active.

It can compute which states can be concurrently active and use it for reduction. The states which can
not be concurrently active are called states without collision. More than one set of collision free states
can exist. The states without collision are implemented as DFA and the remaining states with collisions
are implemented as NFA. This splitting operation results in decrease of ASIC/FPGA logic utilization to
one half.

3.5 Modular pattern matching design

Regular expression matching is highly active area of research with many new approaches being presented.
These new approaches often differ only in one part of the algorithm, while remaining parts are imple-
mented according to previous papers. Netbench simplifies implementation of new approaches by allowing
reusability of the already implemented algorithms.
Rapid prototyping in Netbench allow user to quickly evaluate new approaches and their combination

with the previously implemented algorithms. For example, let’s look at the splitting algorithms [5] or [16].
The contribution of these approaches is the algorithm for dividing one large NFA into several smaller
NFA or DFA. The Netbench library allows user to experiment with different implementations of smaller
automata to select the best one for the splitting algorithm.
Figure 2 shows the principle described in previous paragraph. The splitting algorithm is used to create

several smaller automata in common format and to call another approaches to implement these small
automata. Every of these approaches reports its results (such as resources consumption) through stan-
dardized interface back to the main splitting algorithm. Splitting algorithm sums the required resources
and implements the same interface as all other methods. Therefore it is possible that even this splitting
algorithm is a part of another, more complex regular expression matching approach. Algorithms can be
set at runtime.
Many algorithms achieve high throughput by accepting several character in one step. Automata

supporting this feature is called multistrided or multichar automata. Every algorithm implemented in the
Netbench can be easily converted into multistrided form due to Netbench modular structure.

4 Use Cases

Netbench is an excellent tool for comparing various aspects of algorithms. It is designed to help re-
searchers answer questions like:

• How much memory does the algorithm need?

• How (and why) does the memory size change for different input data set?
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Figure 2: Modular structure of pattern match

• How should the algorithm parameters be set for the best performance on the given data set?

We provide examples how Netbench can be used in IP lookup, packet classification and RE matching
experiments in following three sections.

4.1 IP Lookup

Each new LPM algorithm is typically evaluated by its author in terms of speed, scalability (IPv4, IPv6),
update complexity and memory usage. While speed, scalability and update complexity can be measured
independently (speed for example in clock cycles and number of memory accesses), the memory usage
evaluation is always dependent on an input prefix set structure.
Therefore, Netbench constructs the complete algorithm’s memory structure and follows the algorithm

flow during the lookup operation. Using the unified input data sets, results are the precise number of
nodes or table rows and the memory usage for the given algorithm. The user gets full insight in the
algorithm memory structure and the lookup operation.
This allows the user to easily compare different algorithms and their suitability for a given task. The

following tables and graph evaluate memory usages of selected algorithms for classification (firewalling)
and routing. Table 3 compares memory usages for small classification rule sets, Table 4 compares memory
usages for large IPv4 routing tables and Figure 3 gives comparison of memory usages for current IPv6
routing table.

Rule set Trie TBM3 SST32 MM8

fw1 05 m05 6 406 2 244 1 704 905
fw1 m05 m05 5 280 1 788 1 476 508
fw2 05 05 59 119 18 907 10 822 2 145
fw2 05 m05 100 1 538 615 657 427
fw2 m05 05 86 838 26 998 14 907 2 734
fw3 05 05 500 1 073 402 1 170 672
fw4 05 05 500 998 387 929 656
fw5 05 05 500 1 437 547 1 350 672

Table 3: Comparison of memory usage for small IPv4 classification rule sets (bytes)

Ruleset CPE4 Lulea4 BSI BSP

router 1009 23 630 17 130 14 630 16 070
router 10084 290 330 143 060 156 310 188 570
router 53781 1 719 490 632 620 860 490 814 940

Table 4: Comparison of memory usage for IPv4 routing tables (bytes)
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Figure 3: Comparison of memory usage for IPv6 routing table (bytes)

The Netbench is further suitable for algorithm’s parameter settings evaluation. Many algorithms have
parameters like number of bits processed in one step. These parameters have essential influence on both
speed and memory usage. The rising processing speed typically causes memory requirements expansion.
Detailed study of parameters is therefore important if the user looks for optimal settings of IPv4 or IPv6
match, or for the suitable hardware architecture with the given constraints. The example is given in
Table 5 which presents memory expansion of Tree Bitmap algorithm with number of processed bits per
clock cycle.

Ruleset n = 3 n = 4 n = 5 n = 8

fw1 05 m05 2 244 2 487 3 524 13 728
fw1 m05 m05 1 788 2 184 2 860 12 451
fw2 05 05 18 907 21 094 26 159 109 858
fw2 05 m05 100 615 675 905 4 061
fw2 m05 05 26998 30 271 36 325 153 125
fw3 05 05 500 402 489 683 2 560
fw4 05 05 500 387 449 597 2 297
fw5 05 05 500 547 662 907 3 544

Table 5: Comparison of memory required by Tree Bitmap algorithm with different strides (bytes)

4.2 Packet Classification

The most important properties of packet classification algorithms are (similarly to IP lookup) throughput
and memory. The throughput is measured by number of packets classified per second, while the measure
for memory consumption is often number of bytes per rule.
This is however somewhat vague because of different memory technologies. For example, it is of

great importance whether the data structure can be stored in inexpensive and slow DRAM, or if more
expensive SRAM is required. Special types of memories like TCAM or on-chip FPGA memory are also
often utilized in packet classification algorithms. Netbench exposes all algorithm data structures to user,
so that the memory requirements may be examined in detail.
The throughput highly depends on the utilized technology, working frequency, etc. Therefore, it is in-

sufficient to provide a single measure describing number of processed packets per second. It rather makes
more sense to count the number of memory accesses and computational steps. With this information,
the algorithm can be better scheduled and partitioned to the particular technology.
We provide a table comparing memory requirements of all four algorithms in Table 6. Memory for

the LPM operation is not acounted for in these experiments, because the LPM is common to all four
algorithms. Instead, Tables 3 and 5 can be used to select the suitable LPM algorithm. For MSCA, PHCA
and PCCA, eight spoilers are removed from the rule set. For PCCA, eight colors are used, and the extra
memory that is required for LPM extension is included in the results.
The second use case for the packet classification is the measurement of advanced rule set properties.

In [11], Dharmapurikar et al. introduced the idea of pseudorules. Pseudorules can be obtained by creating
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Ruleset DCFL MSCA PHCA PCCA

fw2 05 m05 100 15 200 62 23
fw2 05 m05 250 15 1 026 265 169
fw2 05 m05 500 25 1 928 480 332
fw2 05 m05 85 44 846 63 108 14 590

Table 6: Comparison of memory required by packet classification algorithms (kbits)
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Figure 4: Distribution of pseudorules in the rule set.

a Cartesian product of all values found in the rule set. Each member of this Cartesian product is either a
special case of some rule, or it does not match any rule. Only special cases of some rule are pseudorules.
This concept is fundamental for MSCA, PHCA and PCCA algorithms. Figure 4 shows the example of

how many pseudorules are associated to each rule for one particular rule set (sorted by priority). Note the
logarithmic scale of Y axis. The information about pseudorules distribution is crucial in understanding
the difficulties of packet classification, and is also used to select spoilers to be removed from the rule set.

4.3 RE Matching

Evaluation of the pattern matching algorithms can be very tedious work. Often, it is next to impossible to
obtain implementation of all approaches needed for the comparison. The straightforward solution would
be to use results published together with the algorithm. However, the new algorithm is often implemented
on new hardware and tested on new data sets which makes the comparison unfair. Netbench may help
with the fair and correct comparison, since it contains data sets together with implementations. Therefore
it is possible to generate results of the previous approaches on the current data sets and for up-to-date
hardware.
Regular expression matching algorithms are often evaluated by the resource utilization and the

throughput. To demonstrate ability of Netbench to compare implemented approaches, we compare
several NFA based methods described in section 3.4. Table 7 contains Netbench estimation of the
resource utilization of algorithms without using multistriding capability. The results are generated for
thirteen data sets distributed with Netbench.
Table 8 presents resource utilization for multistriding implementation of Sidhu’s and Clark’s work. It

is important to note that Clark presented multistriding approach without support of character classes.
According to our experiments, automata without character classes cannot be built for modern data sets
due to their prohibitive sizes. Therefore, we switch the alphabet decoder to support character classes.
The Sidhu’s approach did not use multistriding. To produce comparative results we used the same
alphabet transformation as in Clark but without shared decoder. This experiment also demonstrates
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Sindhu Clark Clark with char-

acter classes

Ruleset LUT FF LUT FF LUT FF

L7 86 308 821 15 126 789 1 491 789
backdoor 169 328 3 955 28 977 3 680 4 317 3 680
exploit 11 286 017 19 453 1 865 660 19 326 21 408 19 326
ex.web-rules 1 108 910 4 186 185 912 4 186 4 574 4 186
imap 2 075800 5 810 346 954 5 810 6 530 5 810
smtp 3 724 403 9 884 619 653 9 782 10 826 9 782
spyware-put 756 950 12 964 125 835 10 582 11 050 10 582
voip 745 015 1 890 123 494 1 787 3 044 1 787
web-client 8 121 216 14 717 1 346 964 14 670 16 305 14 670
web-misc 5 231 762 9 602 845 226 9 239 10 979 9 239
web-iis 1 156 224 2 394 192 080 2 394 3 234 2 394
snort-default 9 966 132 26 139 1 664 896 26 139 26 143 26 139
web-activex 1 461 133 44 768 257 843 44 768 46 816 44 768

Sourdis without

repetition

Sourdis without

strings

Sourdis

L7 1 424 320 1 491 788 1 424 320
backdoor 4 309 3 496 4 273 3 635 4 273 3 462
exploit 21 418 19 261 2 760 1 198 2 168 802
ex.web-rules 4 345 3 216 4 188 3 787 3 949 2 724
imap 21 582 3 763 1 291 558 1 291 558
smtp 10 829 9 772 2 508 1 524 2 224 1 295
spyware-put 11 039 10 392 11 054 10 519 10 976 10 318
voip 3 045 1 684 1 804 604 1 728 455
web-client 16 298 14 521 2 738 1 405 2 286 1 027
web-misc 10 982 9 232 2 343 1 163 2 123 967
web-iis 3 238 2 378 1 209 411 1 214 391
snort-default 39 021 19 299 14 881 13 889 11 029 7 815
web-activex 36 823 32 784 46 816 44 767 36 823 32 784

Table 7: Estimation of utilization of FPGA resources for Virtex-5 FPGA for NFA approaches

ability of Netbench to combine several approaches into new one. It can be seen from the table 8 that
advantage of the shared decoder rises with the size of the input alphabet.
We use Netbench to evaluate Sourdis [31] work in more detail. This approach presents two new ideas.

The first is to use the exact string matching algorithm (DCAM) to simplify the resulting automaton,
and the second is to implement constrained repetition by the special block in FPGA fabric. The fourth
column in Table 8 contains resource utilization of Sourdis’s algorithm without the constrained repetition
block, while the fifth column is without the string matching improvement. It can be seen that effects of
these improvements depend on the used data sets. For example the imap data set has the same results
for complete approach and for constrained repetition only, while web-activex data set does not contain
any constrained repetition and therefore has the same results for complete algorithm and the algorithm
only with string extension. However, most of the data sets utilize both extensions presented by [31].

5 Conclusion

We present new framework for evaluation and rapid prototyping of packet processing algorithms. While
previous works in this field focused more on the feasibility for deployment, Netbench targets the early
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Sindhu Clark Sindhu Clark

2 – stride 2 – stride 4 – stride 4 – stride

Ruleset LUT FF LUT FF LUT FF LUT FF

L7 223 886 680 2 695 670 741 728 669 4 613 666
backdoor 571 326 3 610 6 411 3 504 2 447 400 3 720 11 732 3 677
exploit 17 347 330 16 189 21 260 16 135 32 922 927 14 655 25 360 14 629
ex.web-rules.reg 2 630 614 4 449 7 011 4 449 7 628 936 4 972 10 184 4 972
imap 3 868 025 5 806 7 507 5 806 8 192 129 5 900 9 454 5 900
smtp 6 538 509 8 856 12 447 8 808 20 748 056 8 452 19 070 8 431
spyware-put 2 063 781 11 937 14 600 10 915 8 378 857 12 269 25 293 11 805
voip 1 282 586 1 676 4 592 1 631 2 882 458 1 686 7 409 1 665
web-client 14 886 004 14 470 18 619 14 448 31 001 497 14 445 23 858 14 433
web-misc 9 206 847 8 637 13 205 8 457 32 137 808 8 386 27 878 8 301
web-iis 2 154 012 2 397 4 446 2 397 4 462 920 2 414 6 450 2 414
snort-default 20 219 020 26 969 31 334 26 969 48 107 080 28 633 38 537 28 633
web-activex 4 508 950 45 242 53 134 45 242 19 826 264 46 190 86 637 46 190

Table 8: Estimation of Utilization of FPGA resources for Virtex-5 FPGA for Multicharacter NFA
approaches

stages of algorithm development when the ease of use and rapid prototyping are highly appreciated.
Comprehensive set of algorithms was implemented to the framework in order to provide reference imple-
mentations and allow comparison of new approaches to existing algorithms. Moreover, the framework
is designed to easily combine features from different algorithms. For example multistriding can be sup-
ported by regular expression matching algorithm even if this feature was not mentioned in the original
paper.
Netbench also aims at defining a baseline standard in data sets for evaluating new and existing

algorithms, while the possibility to use own data sets is not limited. This should contribute to better
quality of the published results in the field.
We already found Netbench very useful in our own research [16, 25, 26, 35]. It is our ambition that

every newly published algorithm for IP lookup, packet classification, and regular expression matching is
included to Netbench.
Researchers are invited to submit new algorithms, patches, data sets, suggestions etc. to email

address
netbench@fit.vutbr.cz. After review, these patches will be added to the framework.
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