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Abstract. In this paper, we propose an effective calibration method of
the cellular automaton based microscopic traffic simulation model. We
have shown that by utilizing a genetic algorithm it is possible to optimize
various model parameters much better than a human expert. Quality of
the new model has been shown in task of travel time estimation. We
increased precision by more than 25 % with regard to a manually tuned
model. Moreover, we were able to calibrate some model parameters such
as driver sensitivity that are extremely difficult to calibrate as relevant
data can not be measured using standard monitoring technologies.
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1 Introduction

A very important stage of development of any traffic model is its comparison with
reality, namely calibration and validation. In [I], authors proposed an effective
three-step process for the microscopic traffic model calibration. Another paper
[2] gives some basic guidelines for calibration of microscopic simulation models
in form of framework and applications. The developers usually calibrate and
validate the model on their own using some data sets that they have access
to and publish the results obtained. For example, in paper [3] authors tried
to perform a simple calibration of ten microscopic traffic simulation models in
a way that the models were calibrated and compared to each other with the
GPS based field data from year 2004 in Japan. But it should be noted, that in
almost all previous calibration approaches, some real data are desired in a form,
which is generally not available. It was shown that it is important to find a few
basic parameters for the model calibration [4]. Namely a driver sensitivity (e.g.
reaction time), a jam density headway and free-speed (maximum speed when
vehicle is not constrained) have to be determined. It was also stated that this
process is neither a straight-forward nor an easy task. For example, while the
free-speed is relatively easy to estimate in the field and generally lies between the
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speed limit and the design speed of the roadway, the jam density headway is more
difficult to calibrate but typically ranges between 110 to 150 vehicles/km/lane.
The driver sensitivity factor is extremely difficult to calibrate because it can not
be measured using standard monitoring technologies (e.g. detection loops that
work on magnetic-induction principle).

In this work we propose to utilize our cellular automaton (CA) based micro-
scopic traffic simulation model, which was shown not only to be extremely fast to
achieve multiple in real-time simulations (e.g. [6]), but also updated to eliminate
unwanted properties of ordinary CA based models. The quality of this updated
model has been previously evaluated by comparison with Van Aerde fundamen-
tal diagram [5]. Then we will also try to calibrate parameters of this model to
field data that can be obtained from standard monitoring technologies. We will
show, that it is possible to achieve a better precision on travel time estimation
for a given road segment. Moreover, except CA model parameters, we will also
optimize some parameters such as driver sensitivity which, as stated for exam-
ple in [], are extremely difficult to calibrate with other common techniques.
The optimization/calibration will be performed by genetic algorithm (GA).

The rest of the paper is organized as follows. Section 2 introduces an updated
cellular automaton based traffic simulation model. Then, in Section 3, the process
of optimization of the model with selected GA is described in detail with all
simulation model parameters. Experimental evaluations for our field data sets
are then presented in Section 4. Finally, conclusions and suggestions for future
work are given in the last Section 5.

2 Updated Local Transition Function

In our previous work [5], we updated the original local transition function [7]
to a new form, where some brand new parameters can be found. The traffic
simulation model is extended to eliminate unwanted properties of ordinary CA
based models, such as stopping from maximum vehicle speed to zero in one
time step. This is possible due to storing the previous (or the leading) vehicle
velocity v, (i + 1). When there is such vehicle, the following vehicle (i) is able
to determine its positive or negative acceleration with acc(i + 1). According to
Alg. 1, it is firstly determined, if investigated vehicle could accelerate (i.e. vehicle
velocity v, (7) is not greater than maximal vehicles speed p4 or given vehicle speed
limit vynqq(7)). If so, its speed-up is accomplished with probability p7, so not all
vehicles tend to always accelerate as in the original model [7]. Then, if there
is a plenty of room for vehicle to get in (i.e. gap(i) + acc(i + 1) > v,(i)) or
there is no previous vehicle in the same lane, collision avoidance mechanism
is not performed. Similarly to the original CA local transition function, only
deceleration based on probabilities could be applied in this situation. In case of
small vehicle speeds (v, (i) < pg), deceleration is performed with probability ps,
otherwise (v, (i) > pg) with probability ps.

Collision avoidance occurs only when there is no free room for vehicle i in the
same lane to get in (i.e. gap(i) + acc(i+1) <= v,(7)). Two basic situations may
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Algorithm 1. Updated local transition function

if vy (7) < pa and vy (2) < Vmaz (i) then
0y (7) 1= vy (i) + 1 with probability p7
end if
if (gap(i) + acc(i + 1)) > vy (i) then
if v, (i) < ps then
Uy (i) := vy (i) — 1 with probability ps
else
vy (2) 1= vy (i) — 1 with probability ps
end if
else
if acc(i + 1) > 0 then
vy (1) == 1/po x (gap(i) + acc(i + 1))
else
vy (1) 1= 1/p1o x (gap(i) + acc(i + 1))
end if
end if

Ensure: Each vehicle ¢ is advanced v, (i) times and vprev(2) := vy (1).

occur. If the leading vehicle tends to accelerate (acc(i+1) > 0), the actual vehicle
speed v, () is reduced to 1/pg X (gap(i) + acc(i+1). Otherwise, (v, (i+1) <= 0),
actual vehicle speed v, (i) is reduced more strictly to 1/p1o X (gap(i) + acc(i +1).
It can be seen that these two parameters are more driver-based parameters
than model oriented. We will try to find out if these ones could be determined
statistically for a given road segment. Finally, each vehicle is advanced v, (i) sites
and velocity updates must be also performed.

3 Optimization of the Model

Genetic algorithms (GA) are widely used in various areas of science and en-
gineering to find solutions to optimization and design problems [§]. The main
idea is to evolve a population (set) of candidate solutions to find better ones.
A candidate solution is encoded as a chromosome which is an abstract represen-
tation that can be modified with standard genetic operators such as mutation
and crossover. In this work, GA is used to find all parameters of the CA model
in order to maximize the precision of the traffic simulator.

3.1 Parameters Encoding

In order to simplify GA, all simulation model parameters, which will be opti-
mized, are encoded in binary form. In case of real numbers from a given interval
(e.g. [1,0]), the interval is divided into the N pieces of the same size. The value
N depends on the number of bits used for encoding of the parameter.
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Using a 6-bit value and the minimal length of the cell 0.125 m the maximal
cell length is 8 m (64 x 0.125). The cell length is the first model parameter —
p1. One vehicle always occupies as many such cells as it fits into the 5.5 m (or
nearer, but not smaller). For example, for the smallest cell length (0.125 m)
it is exactly 44 cells. Bigger vehicles, such as trucks, occupy only two times
bigger place (11 m). The second model parameter, ps, is the simulation time-
step (also the reaction time) with the minimal value of 0.05 and maximum value
of 3.2 seconds encoded again using 6 bits. The cell neighbor, ps3, is encoded using
12 bits (e.g. when the cell length is at minimum then the maximum neighbor
is 0.125 x 4096 = 512 m). The next parameter is maximal vehicles speed p4
(encoded on 11 bits, i.e. 2048 possible values for a chosen reaction time and cell
lenght) giving, as in the original model [7], the number of cells per simulation
step. The probability of slowing down is represented by ps (encoded on 8 bits)
and slow speed boundary is encoded as pg (1 — 512 cells per simulation step
on 9 bits). Then, the speed-up probability is denoted as p7. The parameter
ps is probability of vehicles slowing down in case of a vehicle speed greater
than the slow speed pg. Further model constants pg and pig are coefficients
of vehicle approximation in case of previous vehicle acceleration and previous
vehicle slowing-down. Both parameters have minimal value of 1 and maximal
value of 32 (encoded on 5 bits). All parameters with their respective minimal
values, maximal values and step, are briefly summarized in Tab. [l

Table 1. CA model parameters and values

Bits used [#] Min. value Max. value Step

P1 6 0.125 8.000 0.125
p2 6 0.05 3.20 0.05
D3 12 p1 2'% x py p1
2 11 pi/p2 2 Xpi/p2 pi/p2
Ps 8 0.00392 1.00000 0.00392
Pe 9 pi/p2 2" xpi/p2 pi/pe
p7 8 0.00392 1.00000 0.00392
P8 8 0.00392 1.00000 0.00392
Po 5 1 32 1
P1o 5 1 32 1
Pm 10 0.00097 1.00000 0.00097
Pe 4 0.06667 1.00000 0.06667

3.2 Chromosome

The proposed GA has an auto-evolution or also self-adaptation capability, which
means that parameters of the algorithm (the probability of mutation p,, and
crossover p,..) are also part of the chromosome. Hence the user is not forced to set
them. The whole set of parameters is represented using one 92-bit number. It is
important to note that each parameter of the chromosome is encoded using Gray
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encoding to ensure that the maximal Hamming distance between two successive
values is only one. This setup does not allow big jumps between values in case of
a single bit change. The first population (X (0)) consists of 60 such chromosomes
(|X(0)] = 60) generated randomly.

3.3 Fitness Function

All chromosomes from population X; are separately evaluated using the same
fitness function. Firstly, a candidate CA road segment is constructed using the
parameters obtained from a candidate chromosome. Then simulation is per-
formed for that model. Incoming vehicles are generated depending on their time
of arrival based on measurements from the field. Vehicles outgoing from the
simulated road segment are simply removed and their travel time is recorded.
Depending on the facility type, various vehicle types could be generated where
possible. Whole simulation is executed until the same number of simulated ve-
hicles as the number of vehicles in the field data is reached (N, ). After that, the
fitness function F' (see Eq. 3) is calculated as a sum of two functions. The error
function F is defined as

& ’xmi 7xfi|
E=>)_ . , (1)
i=1 7

where M is time interval (e.g. travel times of 50 to 51 seconds — in the scope
of 1 second), z,,; and xy, are frequencies (or occurrence) of i-th travel time
measured from the calibrated model and from the field data respectively. Then
the penalty function P is

P = (cel length) ™8, (2)

This penalization ensures that the solutions where the cell length is very small
are not preferred due to noticeable slower simulation runtime. Moreover, it is
multiplied by the number of vehicles — N (to add a constant error to every
vehicle). Thus the fitness function is

F=FE+(NxP). (3)

Finally, GA tries to minimize this fitness function F' as better solutions are
always with lower fitness value.

3.4 Creating a New Population

Selection: After evaluation of all chromosomes from the population X (i) is
complete, some of them are selected for next operations using a tournament
selection with base 2 giving a new population Xg(i), where |Xg(7)| = 30.
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Crossover: Two-point crossover is applied between two randomly selected in-
dividuals giving a new set X¢ (i) (where X¢ (i) C Xg(¢) and | X¢(7)| = 30). The
first point of crossover operation is between the p3 and p4 parameter and the sec-
ond one right after p;g parameter, to allow alternation of the model and the GA
parameters individually. This operator is applied with the average probability
calculated from two chosen chromosomes (p..).

Mutation: On all chromosomes from X¢ (i) a mutation operator (i.e. changing
bit 0 — 1 or 1 — 0) is applied with the probability (p,,) taken from evaluated
individual, which gives a brand new population X /() of the same size.

Population Recovery: Finally, a new population of 60 individuals X (i + 1)
is selected from the previous population X (7) and the Xjs(i) population. This
ensures that the best solution will always survive (i.e. elitism is present) [8].

4 Experimental Results

4.1 Field Data

In order to evaluate proposed method, field data have been utilized. Our field
data comes from 2431 meters long road segment between two bigger villages in
the Slovak Republic with a maximum allowed speed of 50 km/h. This segment
is a bit crocked one and there is no allowance for another vehicle advancement
due to the local restrictions. The particular segment is on the way to the country
seat, so the road is utilized mostly by drivers going to work and back on ordinary
business days, but traffic is not strictly homogenous here. This road segment is
also a part of the route between two biggest cities in the region and statistically
given 5% of traffic comes from bigger vehicles (e.g. busses, trucks, etc.).

Data set was obtained using standard monitoring technology (i.e. detection
loops and detection cameras) for every day and night of the year 2010. There-
fore, it was possible to measure travel time for vehicles on given road segment.
To be able to get frequency of individual travel times (that is used for model
comparison), we decided to round these travel times to 1 second scope. Based
on this, it is possible to get frequencies of travel times for different intervals
(e.g. morning travel times, one day travel times, week travel times, etc.). We
utilized two such data sets, where travel time for every single vehicle is present.
Frequencies of travel time from ordinary business day (Tuesday, 18/5/2010) (1)
and from the last business day (Friday, 21/5/2010) (2) of the same week has
been selected. First data set (1) has average travel time of 197.74 seconds for
6702 vehicles (N). Second data set (2) has about 11.21 seconds greater average
travel time for 8511 vehicles (V2). It is also important to note that there were
sometimes short-term traffic jams during the second selected day. Both data sets
for different week day are shown in Fig. [l
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Fig. 1. Frequencies of travel times for two days

4.2 Calibrated Model

All parameters of the CA based microscopic traffic simulation model
(p1..-p10,Pm and p.), which were evolved for our data sets separately are shown
decoded as real values in Tab.[2l All come from the best solution of the last gener-
ation (220 000) of GA. Tab.lalso shows parameters of our previously manually
tuned and updated CA model as introduced in [5] and in [6] (in the first column
of the table). Some of those manually updated values, are generally not available
(GA parameters) or have a bit different meaning in our previous model. Such
an example is the low speed boundary value pg, which is identical with maximal
vehicles speed py4. This is caused by absence of the first parameter in the updated
model, because slowing down was performed for all available vehicles (with prob-
ability ps). Also all vehicles in the updated model tend to always accelerate, so
pPr = 1.0.

In order to check whether all evolved values are not only a result of stochastic
nature of GA we made a simple convergence test and it was discovered, that all
parameters tend to evolve to one particular value during generations of GA. Due
lack of space we do not illustrate this test results here.

The cell length parameter (p;) is nearly 2 times less in contrast to our previ-
ously manually updated model. This also means that single vehicle is represented
using two such cells. The evolved reaction time (p3) of 1.5 seconds corresponds to
the minimal increment of 7.43 km/h (p1 /p2 as seen in Tab.[Il). This parameter is
also slightly different compared to our previous model. However, very important
finding is that these parameters (p; and p2) converged to the same value for both
data sets as they are strictly model oriented. All other parameters (ps...p1o)
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Table 2. Parameters and errors for updated model and models evolved for data sets

Updated model Model for (1) Model for (2)

p1 5.500 m 2.375 m 2.375 m
P2 1.200 s 1.15 s 1.15 s
p3 60.5 m 194.75 m 166.25 m
P4 181.5 *m 81.78 K 89.22 K
s 0.3000 0.1059 0.4118
Pe 181.5 *m 29.74 km 59.48 Fm
pr 1.00000 0.8314 0.7569
Ps n/a 0.1451 0.4549
Do 12 2 2
P10 12 2 3
P n/a 0.00196 0.00293
Pe n/a 0.66667 0.66667
E; on (1) 28.19% 7.63% 15.21%
E; on (2) 36.40% 19.23% 6.35%

are a bit different in between two given data sets. The first such parameter is cell
neighbor (ps). It is 194.75 m (i.e. 82 cells) for the first data set (1) and 166.25 m
(i.e. 70 cells) for the second data set (2). The maximum allowed speed (p4) is
for both models higher than a local speed restrictions. This represents the real
situation at the road segment as some drivers do not keep the maximum speed
limit here.

For the model calibrated to (1), the probability of slowing down (ps) is 0.1059
for vehicle speeds lower than the evolved boundary (ps) of 29.74 km /h. The same
slowing down (in case of speed lower than 59.48 km/h) occurs for 41.18% in the
model calibrated to (2). On the other hand, the probability of acceleration (p7)
is higher for (1). The parameter (ps) of slowing down in case of speeds greater
than the evolved boundary speed (pg) is nearly the same as the previous one
(ps). This could indicate that it would be possible to somehow interoperate both
of these parameters and simplify the simulation model.

Parameters pg and pjp are surprisingly very small and also quite similar.
However, based on their convergence tests, we claim that these parameters (i.e.
driver sensitivity) can be also statistically obtained for a desired road segment
and/or time.

Tab. 2] also shows the average travel time error E; for one time interval com-
puted as

Et = M, (4)

where M is the number of time intervals for a given data set. We also measured
this error for our manually updated model with additional maximal speed re-
adjustment for exact local conditions (e.g. maximal speed). It can be seen that
all three new calibrated models, which were obtained using described GA, are
significantly better on a particular data set in comparison to our manually up-
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dated model (compared previously only with fundamental diagrams). Moreover,
all new models are also better when compared to different data sets. This finding
is very important for future travel time estimation using simulations.

1,E4+04 1 F

1,E+03 -

1,E4+02

I
0,0E+00 5,0E+04 1, 0E+05 1,5E+05 2, 0E+05

Generation [#]

Fig. 2. Fitness F(1) and F(2) in all generations as an average value out of 50 indepen-
dent runs when calibrating to data set (1) and (2) respectively

It is also important to note, that completing all runs for one data set (50
runs of 220 000 generations) takes more than three days running at Intel Xeon
CPU5420 @ 2.5 GHz due to need for performing simulations. Fig. 2 shows the
average fitness value F(1) and F(2) for 50 successive runs and for data set (1)
and (2) respectively. Note that y-axis is in the logarithmic scale. It can be also
seen, that quality tends to increase (lower fitness) during evolution of 220 000
generations which is ensured by elitism. After that number of generations, the
quality of population is not changing dramatically. Our genetic algorithm was
tuned to always find a reasonable solution after this number of generations. The
whole tuning process will be described in the forthcoming paper.

5 Conclusions

In this work, we proposed an effective calibration method for a simple micro-
scopic traffic simulation model. The proposed model is based on the cellular



816 P. Korcek, L. Sekanina, and O. Fucik

automaton, which can easily be accelerated. We utilized genetic algorithm for
model parameters optimization, that was able to find all parameters of the CA
model for a given field data. We increased the precision of simulator in aver-
age by more than 1/4 in comparison with our previously updated and manually
tuned model. Furthermore, new evolved models have better stability compared
to original model (i.e. model calibrated to (1) utilizable for (2) and vice versa).
Therefore, the proposed methods seem to be promising for calibration in the
task of travel time estimation of pre-selected road segments of interest.

In our future work, it would be very interesting to derive how much data has
to be used for a proper model calibration in the case when a sufficient amount of
data is not available. This could be very important in the travel time estimation
using such calibrated cellular automaton based models.

Acknowledgments. This work has been partially suported by the Czech Sci-
ence Foundation under projects P103/10/1517 and GD102/09/H042, by the
IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070, by the re-
search program MSM 0021630528 and FIT BUT grant FIT-S-12-1.

References

1. Hellinga, B.R.: Requirement for the Calibration of Traffic Simulation Models. De-
partment of Civil Engineering, University of Waterloo (2009)

2. Dowling, R., et al.: Guidelines for Calibration of Microsimulation Models:
Framework and Applications. Transportation Research Record: Journal of the
Transportation Research Board, Transportation Research Board of the National
Academies 1876, 1-9 (2004) ISSN: 0361-1981

3. Punzo, V., Simonelli, F.: Analysis and Comparison of Microscopic Traffic Flow Mod-
els with Real Traffic Microscopic Data. Transportation Research Record: Journal of
the Transportation Research Board, Transportation Research Board of the National
Academies 1934, 53-63 (2005) ISSN: 0361-1981

4. Van Aerde, M., Rakha, H.: Multivariate Calibration of Single Regime Speed-Flow-
Density Relationships. In: Vehicle Navigation and Information Systems (VNIS) Con-
ference, Seattle (1995)

5. Korcek, P., Sekanina, L., Fucik, O.: A Scalable Cellular Automata Based Microscopic
Traffic Simulation. In: IEEE Intelligent Vehicles Symposium 2011 (IV11), pp. 13-18.
IEEE ITSS, Baden-Baden (2011) ISBN 978-1-4577-0889-3

6. Korcek, P., Sekanina, L., Fucik, O.: Cellular automata based traffic simulation ac-
celerated on GPU. In: 17th International Conference on Soft Computing (MENDEL
2011), Brno, CZ, UAI FSI VUT, pp. 395-402 (2011) ISBN 978-80-214-4302-0

7. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Jour-
nal de Physique I 2(12), 2221-2229 (1992)

8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning,
1st edn. Addison-Wesley (1989) ISBN: 0201157675



	Calibration of Traffic Simulation Models
Using Vehicle Travel Times
	Introduction
	Updated Local Transition Function
	Optimization of the Model
	Parameters Encoding
	Chromosome
	Fitness Function
	Creating a New Population
	Selection:
	Crossover:
	Mutation:
	Population Recovery:


	Experimental Results
	Field Data
	Calibrated Model

	Conclusions
	References




