
IMPLEMENTATION TECHNIQUES FOR EVOLVABLE HW SYSTEMS:
VIRTUAL VS. DYNAMIC RECONFIGURATION

Ruben Salvador, Andres Otero, Javier Mora
Eduardo de la Torre, Teresa Riesgo ∗

Centro de Electrónica Industrial
Universidad Politécnica de Madrid

José Gutierrez Abascal, 2 28006, Madrid, Spain
email: ruben.salvador@upm.es

Lukáš Sekanina †

Faculty of Information Technology
Brno University of Technology

Božetěchova 2, 612 66 Brno, Czech Republic
email: sekanina@fit.vutbr.cz

ABSTRACT
Adaptive hardware requires some reconfiguration capa-
bilities. FPGAs with native dynamic partial reconfigura-
tion (DPR) support pose a dilemma for system designers:
whether to use native DPR or to build a virtual reconfig-
urable circuit (VRC) on top of the FPGA which allows se-
lecting alternative functions by a multiplexing scheme. This
solution allows much faster reconfiguration, but with higher
resource overhead. This paper discusses the advantages of
both implementations for a 2D image processing matrix.
Results show how higher operating frequency is obtained
for the matrix using DPR. However, this is compensated
in the VRC during evolution due to the comparatively
negligible reconfiguration time. Regarding area, the DPR
implementation consumes slightly more resources due to the
reconfiguration engine, but adds further more capabilities to
the system.

1. INTRODUCTION
In the field of evolvable hardware systems, evolutionary
algorithms (EA) are combined with reconfigurable devices
to either automatically design or adapt hardware. Since all
candidate circuits are evaluated in a reconfigurable device,
the reconfiguration time and a suitable granularity of re-
configuration are the key factors that determine the overall
performance of evolvable systems.

Initial works in evolvable hardware directly evolved the
reconfiguration bitstream. However, this is not possible with
current devices since random modifications of the bitstream
may damage the device. After some initial attempts, like
Xilinx JBits, two lines of research seem to be consolidating
regarding reconfiguration techniques for evolvable systems
in FPGAs. One of them makes use of the dynamic partial
reconfiguration (DPR) capabilities of modern FPGAs; the
other, known as Virtual Reconfigurable Circuit (VRC) [1],

∗. Supported by Spanish Ministry of Science and Research, project
DR.SIMON (TEC2008-06486-C02-01)
†. Supported by the IT4Innovations Centre of Excellence project

CZ.1.05/1.1.00/02.0070

builds a virtual reconfiguration layer on top of the recon-
figurable fabric using multiplexers, enabling the designer
to create an application-specific reconfigurable platform
consisting of application-specific processing elements (PEs).

Regarding DPR, it utilizes the Internal Configuration
Access Port (ICAP) of modern Xilinx FPGAs that allows
the FPGA to be reconfigured internally. Upegui and Sanchez
evolved the LUT contents (in one dimension) while keeping
a fixed routing [2]. This concept has been extended to two
dimensions exploring thus the capabilities of recent Virtex 4
devices [3]. In [4] a data classification system able to change
the number of functional units from a pre-synthesized set
is proposed. Probably the most sophisticated ICAP-based
(implemented in HW) evolvable platform for the Virtex 5
family has been introduced by the authors of this paper
[5]. Its detailed description follows in Section 2. Its main
advantage is the bitstream relocation capability into any
compatible position of the FPGA.

In the case of VRCs, although reconfiguration is very fast,
since it only involves writing a big register (the configuration
memory) which controls a set of multiplexers, this approach
suffers from a huge area overhead since it involves the
implementation of every possible function in every virtual
reconfigurable element. Besides, the multiplexers, used to
select the desired functionality in each PE, increase circuit
delay. This approach has been utilized by several research
groups to solve different tasks [6], [7], [8].

Because of the radically different approach, various pros
and cons can be observed in each method. So, what this
paper tries to address is a comparison between both for
a given reconfigurable processing architecture. In previous
works, the authors proposed an FPGA-based self-adaptive
platform based on a library of simple, dynamically re-
configurable, processing elements (PE) and an enhanced
HWICAP reconfiguration engine [9], [5]. These PEs, which
are arranged in a 2D processing array, are defined by
their partial reconfiguration bitstream, which requires a
somehow complex and very specific design process to be
created. Besides, resource usage increases due to the extra



Fig. 1. System architecture holding the evolvable platform.

logic needed to perform DPR. For this work a VRC-based
implementation of the processing array using VHDL has
been accomplished so that a fair comparison in terms of
performance and implementation area between both could
be obtained for modern FPGAs. The reference application
is image filtering since an EA is expected to efficiently deal
with uncertainty coming from the unknown types of noise
that might appear at the input signal.

The following section gives a brief overview of the sys-
tem architecture before describing its computational core,
an evolvable processing array, using both reconfiguration
options, DPR and VRC. Finally, the results for both im-
plementations are presented in section 3 in order to provide
data for discussion. Paper is concluded in section 4.

2. EVOLVABLE PLATFORM DESCRIPTION

The proposed self-adaptive, evolvable, platform, built into a
Virtex-5 FPGA device, is defined by a set of components
(IP blocks) connected through a common bus interface.
An adaptation engine acts upon the measured component
performance trying to fulfil the adaptation requirements
within a changing operating environment. An EA based on
Cartesian genetic programming (CGP) was chosen for the
task. Besides, since some kind of reconfiguration capability
is required, two versions of the component’s processing
matrix featuring the two reconfiguration options mentioned
previously have been implemented and evaluated.

Fig. 1 shows the proposed architecture, deeply analysed
in [9], [5]. An embedded MicroBlaze microprocessor runs
the system software that includes the control of the adaptive
component, both at run and adaptation time. Hence, this
microprocessor, among various other different tasks, runs
the EA which proposes new candidate solutions of the com-
ponent and issues the required commands to evaluate the
population of candidate solutions. This process involves the
reconfiguration of the array with these candidate solutions.
A peripheral for HW fitness evaluation can also be observed,
as well as a tightly coupled RAM memory, both of which
serve in accelerating this task.

Fig. 2. Reconfigurable architecture of the processing array.

The processing architecture of the evolvable component
is a highly regular and parallel two dimensional mesh-type
array of A × B processing elements (PEs) organized as a
systolic structure where inter-node connectivity is fixed and
restricted to the four closest neighbours (North, South, East,
West), as shown in Fig. 2. The input to the array is the
same as in typical image convolution filters, a moving square
window, sized 3 × 3. However, there is not a predefined
routing from the window to the input PEs. By the contrary,
each input PE has an associated 9-to-1 multiplexer so that
circuit inputs may be chosen by the EA. The output of the
array is obtained from any of the eastern (right-side) PEs, by
using a 4 inputs multiplexer controlled by evolution. Each
PE consists of a functional block (FB), some routing logic
in the input and a register (R) in the output, which is the
same for both East and South ports. The FB of each PE
can be dynamically configured to perform one of the 16
functions shown in [9], such as maximum, minimum, adding,
etc. operating over 8 bits.

The architecture proposed is a generic evolvable process-
ing framework, and its suitability for different processing
tasks depends on the chosen library. Adaptation is achieved
by directly configuring the required PE in each position of
the array. This can be seen as placing pieces in a puzzle.
For each piece, or PE to (re-)configure, a reconfiguration
engine (RE) places the required element as commanded by
the processor in the assigned position of the matrix. This RE
will act as the interface hiding the reconfiguration details as
much as possible to the designer; therefore, the version of
the component using DPR shall contain a Xilinx HWICAP
which is not needed in the VRC.

The chromosome which encodes the candidate solutions,
and therefore serves as the interface with the RE, is com-
posed of a set of integer numbers representing connection
genes for the input and output multiplexers and functionality
genes as index pointing to the library for each PE. Based
on preliminary simulations (see [9]), an array size of 4× 4
PEs was selected, which yields a chromosome of 25 integer
genes (1 output MUX, 8 input MUXs and 16 PEs).

2.1. Reconfigurable Array (RA)
The component based on DPR uses an enhanced HWICAP,
which, unlike the standard Xilinx module, allows read-
back and re-allocation, reducing this way external memory



(a) (b)

Fig. 3. (a) shows a PE in the DPR case (register not shown
for simplicity) and (b) its abstraction in the VRC

accesses when moving/copying one PE from one position
to another within the array. Besides, the ICAP was over-
clocked at up to 200 MHz and attached to an external DDR2
memory through a fast Xilinx NPI to accelerate the memory
access process. Each FB is pre-synthesized and stored as
an independent module in the library of reconfigurable
PEs defined by their partial bitstreams. Unlike VRCs, fixed
connections and a single function are implemented in each
PE. Fig. 3a shows a PE from the reconfiguration point of
view. There is one Bus Macro per port of the PE (N,S,E,W)
so that all PEs share a common connection interface.

2.2. Virtual Reconfigurable Circuit
To mimic the behaviour of the reconfigurable library in the
RA version, a kind of virtual reconfiguration library is syn-
thesized locally into each PE by using a simple VDHL case
statement containing the 16 functions mentioned previously,
as shown in Fig. 3b. A direct consequence of this decision
is the elimination of the input multiplexer at each FB (to
select either N or W ) in typical VRC implementations. The
VRC is configured through the PLB bus, which involves the
transfer of 98 bits (obtained in 4 simple 32-bit transfers).

3. IMPLEMENTATION RESULTS
The evolvable platform was implemented in a Virtex-5
LX110T FPGA included in Digilent’s XUPV5 Evaluation
Platform. Results are given for a 4×4 array. Each PE within
the RA implementation occupies two CLB columns along
one clock row, that is, 40 CLBs. According to individual
synthesis results per PE (needed to extract the partial bit-
stream), these occupy from 7 to 10 slices. Overhead due to
the communication is also very high, since 6 of these slices
are dedicated to bus-macro terminals. Regarding the VRC
implementation, a highly functional description was used,
which yielded moderate synthesis results. The VRC was
built aside the prototype RA implementation so some rough
edges still need to be polished to obtain good synthesis
results (mainly in terms of circuit delay, as a result of
plugging the shared components together).

Table 1 shows the implementation results obtained for
each version of the component. The module Component

refers to the whole evolvable component as the higher
entity to be considered in the comparison. No results are
thus considered for the MicroBlaze implementation and
associated resources needed for the whole design. In Table1,
Array corresponds just with the evolvable 2D architecture
of PEs, while Misc comprises all the associated logic and
memory resources needed to control the array and feed its
inputs. In this case, the resource usage reported for the Array
entry in the RA version is based on the FPGA region that
needs to be declared as a reconfigurable region so that the
synthesizer does not use it for other purposes. Therefore,
the figures do not indicate how many resources are actually
needed to hold each PE implementation but those contained
within that region. Finally, the enhanced HWICAP and the
external memory controller resource usage are shown, which
might be reused for other purposes in the system.

3.1. Timing Analysis
Two operating modes have to be considered to evaluate
timing performance. One of them is the adaptation phase,
when the component is evolving. Once a working circuit
has been found, evolution is stopped and the system enters
into its standard mode of operation. Within these phases,
several different tasks need to be accomplished. In each
generation during evolution, the EA creates new offspring
candidate solutions (task Toffs) which are evaluated (Teval)
and assigned a fitness value (Tfit) before selection (Tsel)
of the best fitted individual(s) for the next generation is
done. This cycle is repeated throughout a given number
of generations. In order to evaluate an individual, the array
needs to be reconfigured to this candidate filter. Therefore,
Teval can be split into reconfiguration (Trec) and filtering
(Tfilt). Finally, during normal system operation, images are
filtered with the selected candidate, which corresponds with
Tfilt. Taking into account the associated times for each of
these tasks (toffs for Toffs and so on), time elapsed in each
generation during evolution can be written as:

tg ≡ λ× (toffs + trec + tfilt + tfit) + tsel (1)

where λ is the population size. Therefore, if Ng is the
number of generations, the total time needed for evolution
can be expressed as tevo ≡ tg×Ng . Eq. (1) can be simplified
since the execution of some tasks is overlapped; Toffs is
done in SW and Teval in HW, which takes longer for this
application. Besides, Tfit and Tsel are also done in HW in
parallel with Tfilt. Therefore, tevo ≈ λ×Ng (trec + tfilt) ≡
NEV ALS × teval, where NEV ALS is the total number of
evaluations. Due to the inherent pipeline of the matrix the
array produces one pixel per clock cycle, so filtering time
of one candidate circuit takes R×C clock cycles, where R
and C are the number of rows and columns of the image.

Significant performance dissimilarities are expected due
to the big differences between reconfiguration and filtering



Table 1. Usage results for the evolvable processing architecture.
Version Module Slices Slice Regs Slice LUTs LUTRAM DSP BRAM

RA

Component 5763 12931 11276 1518 0 38
Array 1280 5120 5120 1280 0 0
Misc 1101 1932 1932 64 0 12
HWICAP 1615 2765 2344 145 0 9
Mem. Ctrl 1767 3114 1880 29 0 17

VRC
Component 2791 4224 5472 128 0 12

Array 1096 215 2539 0 0 0
Misc. 1567 3676 2300 128 0 12

Table 2. Reconfiguration, filtering and evolution times
Time (µs)

Task RA@200MHz VRC@100MHz

Reconfig. (1 PE) 15.92 0.4Reconfig. (3 PE) 69.61a

Filtering 82.12 163.84

Total evolution 122 132
a Average time measured during evolution. For
a given circuit, changing k PEs involves chang-
ing also some PEs needed to return to the
original, common parent.

times of each version. Table 2 shows a timing comparison
along an evolutionary cycle of 100000 generations using a
128 × 128 size image and a mutation rate of 3. Maximum
frequency for each version is also reported in Table 2.
Regarding filtering time, it differs as a result of the extra
delay of the VRC due to the multiplexers. However, RA
reconfiguration will take longer, and will depend on the
number of changed PEs (mutation rate in the EA).

3.2. Discussion on the results
As seen in Table 1 the RA uses slightly more than twice
the resources of the VRC. More than half of it is due
to the RE (HWICAP and Multi-Port Memory Controller,
MPMC) needed to access the DDR2 memory containing
the PE library. Therefore, the extra resources wasted in the
VRC implementation are compensated by those needed to
use DPR, so no real difference is observed here. However,
if the bitstream size per PE is reduced (which is being
tackled now by reducing the reserved logic for the RA), the
need for an external memory could disappear, saving the
resources consumed by the MPMC. Also, higher array size
is in favour of RA, since variable size-dependent resource
usage is smaller.

Regarding timing performance, reconfiguration time is
fixed for different mutation rates in the VRC, since it
just involves writing the configuration register. However,
this time depends on the number of changed PEs for the
RA, yielding a higher timing overhead in reconfiguration.
Since filtering time is double in the VRC, the whole timing
performance is very similar under these circumstances. The
operating frequency of the final circuit is significantly higher

in the RA case, yielding a higher throughput. In any case, a
VRC would be able to achieve a frame rate of up to 48.23
images per second for full-HD resolution.

4. CONCLUSIONS
A comparison has been carried out between an evolvable
architecture using both native DPR and a VRC. For modern
6 input LUT devices, the area overhead of VRCs is not as
high as expected. In terms of maximum working frequency,
the VRC is in clear disadvantage, but it is still able to
hold full-HD throughput. Nevertheless, deeper and further
comparisons, including power consumption, are still needed.

5. REFERENCES
[1] L. Sekanina, Evolvable Components - From Theory to

Hardware Implementations, ser. Natural Computing Series.
Springer Verlag, 2003.

[2] A. Upegui and E. Sanchez, “Evolving Hardware with
Self-Reconfigurable Connectivity in Xilinx FPGAs,” in 1st
NASA/ESA Conf. on Adaptive Hardware and Systems (AHS–
2006). Los Alamitos, CA, USA: IEEE Computer Society,
2006, pp. 153–160.

[3] F. Cancare, M. Santambrogio, and D. Sciuto, “A direct bit-
stream manipulation approach for Virtex4-based evolvable
systems ,” in Proc. of 2010 IEEE Int. Symp. on Circuits and
Systems. IEEE, 2010, pp. 853–856.

[4] J. Torresen, G. Senland, and K. Glette, “Partial Reconfigu-
ration Applied in an On-line Evolvable Pattern Recognition
System,” in NORCHIP, 2008., nov. 2008, pp. 61 –64.

[5] A. Otero, R. Salvador, J. Mora, E. de la Torre, T. Riesgo, and
L. Sekanina, “A fast Reconfigurable 2D HW core architecture
on FPGAs for evolvable Self-Adaptive Systems,” in 2011
NASA/ESA Conf. on Adaptive Hardware and Systems (AHS),
june 2011, pp. 336 –343.

[6] K. Glette, J. Torresen, and M. Yasunaga, “An Online EHW
Pattern Recognition System Applied to Sonar Spectrum Clas-
sification,” in Evolvable Systems: From Biology to Hardware,
ser. LNCS, vol. 4684. Springer Verlag, 2007, pp. 1–12.

[7] L. C. Wang J., Chen Q.S., “Design and implementation of
a virtual reconfigurable architecture for different applications
of intrinsic evolvable hardware,” IET computers and digital
techniques, vol. 2, no. 5, pp. 386–400, 2008.

[8] Z. Vasicek and L. Sekanina, “Hardware Accelerator of Carte-
sian Genetic Programming with Multiple Fitness Units,” Com-
puting and Informatics, vol. 29, no. 6, pp. 1359–1371, 2010.

[9] R. Salvador, A. Otero, J. Mora, E. de la Torre, T. Riesgo,
and L. Sekanina, “Evolvable 2D computing matrix model for
intrinsic evolution in commercial FPGAs with native recon-
figuration support,” in 2011 NASA/ESA Conf. on Adaptive
Hardware and Systems (AHS), june 2011, pp. 184 –191.


