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Abstract — This paper deals with the evolutionary design of 

application specific feature shapes of Local Binary Pattern (LBP) 

features for object detection in image processing applications. 

LBP features are very often utilized in image classification 

systems which are used for pattern recognition. By using genetic 

algorithm the application of specific weak classifiers’ feature 

shapes, which are highly optimized to achieve a better accuracy 
of the AdaBoost strong classifier, are being evolved.  
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I.  INTRODUCTION 

Object recognition and detection are widely exploited 
techniques in image processing, computer vision applications, 
security and surveillance systems, artificial intelligence etc. 
Object detection is usually the first step in the object 
recognition process and the quality of object detection 
significantly influences the quality of the whole system. 

The classification method AdaBoost [1] is very often used 
for object detection in image processing. The original 
AdaBoost method utilizes weak classifiers based on Haar-like 
features [2], [3], [4]. The later works show that Local Binary 
Pattern [5] features achieve at least the same accuracy of object 
recognition as Haar waves. LBP feature processing is easier 
and faster than the processing of Haar-like features and they 
are also highly suitable for implementation in Field 
Programmable Gate Arrays (FPGAs) [6]. 

The weak classifier, based on LBP, tries to recognize a 
relatively small piece of input image samples – a texture of 
classified object. It can be shown that the texture of two 
different object types may vary widely. LBP features to capture 
objects’ texture depend on shapes, which they utilize. The 
original LBP shapes are generally defined, so they cannot 
capture the texture with high precision. If the LBP shapes are 
tuned according to objects’ features, the texture of the object 
will be captured more precisely. The accuracy of weak 
classifiers and corresponding strong classifiers is closely 
related. Another benefit of this approach is reduction of the 
number of weak classifiers while preserving the same 
accuracy. It is very important when the strong classifier should 
be processed in real-time in embedded systems (e.g. using 
FPGAs). 

Recent studies in various areas have demonstrated that 
evolutionary algorithms (EA) can generate solutions, which 
have the same or higher quality than conventional solutions in 

many cases. The basic principle of the evolutionary design is 
that solutions are encoded as bit strings (chromosomes). 
Chromosomes are constructed and optimized by the 
evolutionary algorithm in order to obtain the implementation 
satisfying the specification given by the designer. The fitness 
function, which reflects the problem specification, is utilized 
for quality evaluation of a candidate solution and to ensure 
convergence to the resultant solution. The fitness function can 
include behavioural as well as non-behavioural requirements. 
For example, the correct functionality is a typical behavioural 
requirement. As a non-behavioural requirement, we can 
mention the requirement for minimum area occupied on the 
chip. As the EA is a stochastic algorithm, the quality of the 
resultant solution is not guaranteed at the end of evolution. 
However, the method has one important advantage: The 
artificial evolution can in principle produce (in principle can 
produce) designs which lie outside the scope of designs 
achievable by conventional design methods. 

This paper deals with the evolutionary design of LBP 
features shapes. The original feature shapes are designed for a 
huge amount of classified objects. The main goal of the paper 
is to demonstrate that weak classifiers based on highly 
application specific feature shapes, which are evolutionary 
designed only for classification of one object, achieve better 
classification accuracy than weak classifiers based on 
conventional feature shapes. The classification process is 
computationally intensive, thus a lot of researches create 
various implementations on various platforms, for example in 
FPGA [7], [8] or in Graphical Processing Unit [9]. One of the 
minor goals of this paper is to create optimized feature shapes 
for application in FPGA. 

The remainder of this paper is organized as follows. 
Section II introduces a LBP feature extraction method, weak 
classifiers based on LBP and the AdaBoost classifier. In 
Section III, EA for evolution of feature shapes is introduced. In 
Section IV, setting of experiments is presented. In Section V, 
results of EA and classification results are presented. The 
classification results of EA are compared with the results of 
conventional approaches. In Section VI, future work is 
discussed. Finally, conclusions are given in Section VII. 

II. CLASSIFICATION BACKGROUND 

The classifier is usually used for image pre-processing in 
complex image processing systems. For the classification 
problem, a number of various techniques can be used. Because 
the result of this work is intended for usage in FPGA 



technologies, the AdaBoost algorithm in conjunction with LBP 
(Local Binary Pattern) has been chosen. This combination 
achieves a very good accuracy in classification [5]. 

A. Local BinaryPattern 

LBP is a non-parametric operator, which was for the first 
time introduced in [10]. An improvement was introduced later 
in [11]. LBP is a structural operator, which provides image 
analysis. The LBP operator tries to recognize an image texture. 
The basic form of LBP works with a set (matrix) of nine 
values. In the terms of image processing values are represented 
by the pixels of an image. The set is created by eight adjoining 
pixels of a center pixel (the one being processed). In fact it is a 
3 x 3 matrix. The evaluation of the LBP operator is done by the 
following procedure. Each marginal pixel is compared with the 
centre pixel. If the value of marginal pixel is lower than the one 
of the center pixel, then the result of comparison is a logical 
zero; otherwise the result of comparison is a logical one. In the 
process of evaluating LBP, the comparison is made eight times 
- eight 1-bit values are obtained. These values are composed to 
one byte. The composition is predefined. The LBP operator has 
two hundred and fifty six different output results. The whole 
process of evaluation of LBP feature is shown in Figure 1. 

The evaluation of an LBP feature is expressed by the 
following equation [12]: 

         

(1)         

Where yc is the centre pixel, xc is a part of the input image, 
in corresponds to the values of 8 neighbourhood pixels and s(x) 
is a function expressed as: 

                            

(2)                      

LBP is a very powerful operator, which has many benefits. 
Some examples of them: LBP is an illumination invariant, LBP 
uses only simple mathematical operators in the evaluation 
process and LBP is very suitable for FPGA implementation. 

B. Multi-scale Block Local Binary Pattern 

The LBP operator has good classification accuracy. 
However, the LBP operator was improved to Multi-scale Block 
LBP (MB-LBP) [5]. The improvement in MB-LBP is in 
replacing the basic fields of LBP. The original fields in LBP 
consist only of one pixel. The original matrix of size 3 x 3 in 
LBP consists of nine fields. Each field in MB-LBP represents a 
group of image pixels (data). The field is a continuous area, 
which has an obvious rectangular shape. The representing 

value of each field is computed as a convolution of all pixels. 
The evaluation of MB-LBP is very similar to LBP. The 
difference is only in the coefficients xc and yc in the equation 
(1). When calculating MB-LBP, xc represents the convolution 
of each adjoining field and yc represents the convolution of 
pixels under the center field. Several MB-LBPs feature shapes 
are shown in Figure 2.  

The MB-LBP is more robust than original LBP. LBP 
covers only a small area of the image therefore it may only 
describe a small piece of the image (3x3 pixels), but MB-LBP 
may cover a whole image sample, so it may describe the whole 
image. MB-LBP can recognize the texture of the image more 
precisely than LBP. 

 
Figure 2: Types of MB-LBP feature shapes [13] 

C. Weak classifier 

In the preceding paragraphs, the LBP operator and its 
extensions were described. Let the LBP operator be a function 
fLBP (x, y, I), where x and y are the coordinates of the left upper 
corner of the 3 x 3 matrix for LBP in an input image sample I. 
The position of each feature is defined by the coordinates. The 
function fLBP may return one of 256 different values. The weak 
classifier is an extension of this function. The weak classifier 
transforms output the value of the fLBP function to a new value, 
which represents the probability that a detected object (a 
positive result of classification) is in the input image sample I. 
The weak classifier (sometimes called weak hypothesis) is 
represented by a function h (I). In the function h, constants x 
and y are defined. Constants define the position of the fLBP 
function in an image sample and there is also a probability 
table defined which has 256 values (one value for each result of 
the fLBP function). The probability table is obtained by the 
training process. Each weak classifier has to be trained first, 
before it is used for the first time. The training algorithm (in its 
simple form) of a weak classifier is described below. 

 

The function of a weak classifier h (I) is described by the 
code: 

 
Figure 1: Evaluation of LBP feature 

Let S={(x1,y,w1),(x2,y2,w2),…,(xN,yN,wN)} be a training set, 

where xi is an input image sample, yi  {-1,1} (-1 – negative 

sample, 1 – positive sample) and wi  R is a weight of the 
image. 

Init THIST (histogram table) to zero. 
Foreach s in S: 

 T[fLBP (x,y,s.x)] += s.y . s.w; 



 

Where the constants x, y and the table of constants THIST are 
obtained from the training process. 

D.  AdaBoost 

 The method called AdaBoost is a statistical method, which 
is widely used for object detection. This method is an extension 
of the original method called Boosting [14]. Boosting is 
a learning method. It is based on statistical combination of 
many weak hypotheses. AdaBoost [1] extends Boosting by 
adding weights to samples of a training set. The AdaBoost 
method consists of two basic parts – a training phase and a 
runtime phase. The training phase is a machine learning 
procedure, which was introduced in detail in [1]. The training 
process is complicated and it is out of the scope of this paper. 
The second part of the AdaBoost algorithm is the runtime 
phase. In this phase, the results of training are processed. The 
process of the runtime phase is described by the following 
equation: 

 

(3) 

The result of the function H(X), for an input image X, is 
computed as a linear combination of N weak hypothesis results. 
The linear combination is substituted by a simple sum in this 
case. The result of this linear combination is compared to the 
threshold t. If the comparison is positive, then the result of 
H(X) will be 1 otherwise it will be set to 0 (1 indicates that the 
object is detected). The function hi(X) represents a weak 
hypothesis (for example based on LBP). The αi is a constant 
obtained during the learning process. This constant represents 
the fidelity of the weak classifier. 

III. EVOLUTIONARY DESIGN OF NEW SHAPES 

A novel technique for designing new shapes of LBP 
features is proposed in this section. A new feature shape is 
considered as a set of nine convolutions. The inputs of the 
convolutions are pixels of a grayscale input image sample. The 
new shapes are created by EA without acceleration in FPGA. 
The design process will have to be repeated when the 
application requirements are changed. 

A. New geometric shape of features 

The original size of LBP features is restricted to 3 x 3 pixels 
of a source image. The size of MB-LBP features is restricted 
only by the size of the source image (precisely the size of the 
detection window). In face detection for example, the 
maximum size of MB-LBP features may be approximately 
24 x 24 pixels. The increasing size of MB-LBP does not 
produce much better results. For most applications the size of 
MB-LBP features can be restricted to 6 x 6 pixels. The features 
with unrestricted size can be difficult to implement into 
embedded systems using FPGAs as well as to design by EA. 

The standard feature shapes are shown in Figure 3. Each of 
those four basic shapes is formed by a continuous area. Each 
field in the feature is also a continuous area and each area has 
also the same size (for one feature shape). There are no 
overlapping fields. The original features have to comply with 
several criterions. The new features designed by genetic 
algorithm have to comply with one criterion only. The criterion 
is the maximum size of the area, on which the new shape lies. 
An example of a possible feature shape is shown in Figure 4. 

 

Figure 4: New feature shape example 

Figure 4 shows overlapping – fields 4 and 8, discontinuity – 
field 6, different area size –fields 5 and 7, and discontinuity of 
the whole feature. 

The evaluation of a new shape is similar to evaluation of 
the original LBP (equation 1). The number of fields in a new 
designed feature corresponds to the number of fields in the 
original LBP. Because of different dynamic ranges of all 
convolutions, normalization should be done to obtain a result 
as an 8-bit value. 

B. Problem encoding 

The candidate solution is needed to be encoded into a 
chromosome, which is represented by a bit string. The nine 
fields of the feature shape need to be encoded. Each 
convolution is encoded by a 36-bit string. Each bit in a sub-
chromosome corresponds to one pixel of a 6 x 6 pixel matrix. If 
the bit has the value 1, a corresponding pixel is contained in the 
convolution. Thanks to the use of a fixed length of a (sub-) 
chromosome, the operation of mutation and crossover are not 
difficult and the arbitrary operation returns a valid chromosome 
(each chromosome is valid). The final chromosome is obtained 
by merging nine sub-chromosomes. The length of the whole 

 

Figure 3: Standard feature shapes of MB-LBP 

h(I){ 

 const x; 

 const y; 

 return THIST[ fLBP (x,y,I) ] 

} 



chromosome is 9 x 6 x 6 = 324 bits.  Figure 5shows how the 
chromosome is created.  

C. Genetic algorithm 

The classical genetic algorithm GA [15] is used in this 
work. The GA has two interesting parts – initialization and 
evaluation of the population by the fitness function, which will 
be discussed here. There are two basic approaches to the 
initialization process. The first one is to carry out a guided 
initialization. In this case the population is initialized by 
existing shapes. The second approach is to carry out a random 
initialization. The disadvantage of guided initialization is the 
risk that the genetic algorithm may be stuck for a long time at a 
local extreme and it would not achieve the global maximum. 
GA is using tournament selection, which is making one point 
crossover and one mutation with predefined probability per 
chromosome. Due to predefined probability some 
chromosomes are unchanged after those operations. The 
creation of a new population is carried out by a technique 
called elitism (the best chromosomes are automatically inserted 
to the new population). 

D. Fitness functions 

The fitness function is the most important part of genetic 
algorithms. The final solution of GA is the one most affected 
by the fitness function. The form of fitness function determines 
how the final shape will work (what accuracy will be 
achieved). Fitness function for creating shapes, which could 
achieve the best result only at one place, or shapes which will 
achieve quite good results at several places, can be established. 
Also a fitness function, which optimizes the shape for FPGA 
implementation, can be founded.  

In the proposed method, the computation of fitness function 
is based on weak classifiers training. During the fitness 
function evaluation a set C of weak classifiers is synthesized. 
All of them are very similar, with the only difference in the 
position of the feature in the detection window. Each classifier 
of set C is based on the same shape and trained and evaluated 
separately. The accuracy is established during the training 
process on a testing data set. Each shape is trained in many 
ways and there are many results of classification (set C). The 

procedures of obtaining the final fitness function are described 
in the following subsections.  

1) Global maximum 
The first choice, how to compute the final value of the 

fitness function, is based on finding the maximum in set C (set 
of all classifiers’ accuracy). The fitness function finds the 
classifier from set C, which has the best accuracy. This 
accuracy is subsequently propagated as a value of the fitness 
function. This type of fitness is focused on finding shapes, 
which have the best accuracy only at one place in the detection 
window. The accuracy of weak classifiers based on such a 
shape is around 70 – 75 %. This fitness optimizes the feature 
shape during the evolutionary process only for one place. This 
feature has a very good accuracy, but a strong classifier may 
contain only a few weak classifiers, which are based on this 
feature shape (see Section VI). 

2) Average and mean value 
The next fitness is based on computation of an average or a 

mean value from the accuracy values of all weak classifiers in 
set C. Those functions find the feature shapes, which are 
optimal for the whole detection window. It is clear, that at 
some positions the feature will carry out a good accuracy and at 
another position it will carry out a poor accuracy. The number 
of positions, where the good accuracy is achieved, is higher 
than in the previous fitness. The accuracy achieved by this 
fitness is around 60 %. This accuracy is better than the 
accuracy achieved by the classifiers based on classical feature 
shapes. Unlike the shapes designed by the Global maximum 
fitness function, it is possible to construct the whole strong 
classifier from these weak classifiers. 

3) Averege and mean value of N best positions 
This type of fitness is based on an average or a mean value 

of classifier accuracy like the previous fitness. But the 
difference is in finding the average (or mean) value. In this 
case, fitness is not computed from the whole set C of the 
classifier but only from N best positions. The N may be chosen 
from 10 to 20. If a bigger N is chosen, the results will be very 
similar to the preceding function. The accuracy of this 
approach is around 65 %. It is not possible to synthesize the 
whole classifier from weak classifiers, which are based on this 
approach. But in this case, more weak classifiers can be used 
than in the Global maximum case. 

4) FPGA criterium 
The last type of a simple fitness function is focused on 

evaluating the feature shapes according to FPGA resources 
(slices – logical cells; BRAM – Block Random Access 
Memories). The numbers of operations needed for the 
evaluation of each shape can be determined. The set O of all 
possible operators, which are used for computation of LBP, 
include addition, division and division by power of two. 

For each operator is established an implementation cost in 
FPGA (amount of resources). The total cost of a feature shape 
is expressed by the following equation:  

 

Figure 5: Chromosome creation 



             

(3) 

Where fcost is a cost function of the operators; ffreq is a 
frequency function of the operators. Both functions have an 
input parameter o – an operator. Each shape is evaluated by 
equation 3. This fitness cannot be used individually, because 
the result of the evolution algorithm would make no sense from 
a classification point of view (see next subsection). 

5) Combination of fitness functions 
Because the FPGA fitness function does not deal with 

classification accuracy, a combination of fitness functions 
should be defined. One possible case of a combined fitness 
function can be expressed by the following equation: 

 (4) 

Where fFPGA() is the FPGA fitness function; fglobmax() is the 
global maximum fitness function; s is the shape feature; WFPGA 
is the weight of the FPGA fitness function; Wglobmax is the 
weight of the global maximum fitness function. The resulting 
fitness can be used to design the features with good accuracy 
and suitable for implementation in FPGA. 

IV. EXPERIMENTS 

The dataset used in our experiments is composed of two 
main parts – a training dataset and a testing dataset. The UIUC 
dataset was used [16]. The training dataset is composed of 
1050 image samples. There are 550 positive samples and 500 
negative samples. This sample set was used for training strong 
classifiers and also for training weak classifiers by the 
evolutionary algorithm. Each training sample has been resized 
to a width of 40 pixels and a height of 16 pixels. The size of the 
detection window was also 40x16 pixels. The training set is 
also used in a fitness function to find out the accuracy of the 
weak classifier.   

The testing set was used to test the accuracy of the strong 
classifier. The testing set is divided into two different parts. 
The first part of the training set is composed of 169 images, the 
objects in the image samples have similar size and one image 
sample may contain several objects (vehicles in this case). The 
second dataset is composed of 107 samples and the size of the 
objects differs. The accuracy of the strong classifier and the 
results of GA are evaluated on these two datasets. In the 
experiments, the results of the strong classifier, which utilizes 
evolutionary designed feature shapes, are compared with the 
classifier that utilizes only standard shapes. 

V. RESULTS 

The proposed method was examined in two ways. The first 
was focused on results of the genetic algorithm; the second one 
was focused on the results of classification. The fitness 
function Average of N best positions was used in all 
experiments where N was set to 10. 

A. Results of the genetic algorithm 

This paragraph examines the parameters of the genetic 
algorithm. All experiment results are obtained as an average 
value of three runs.  

1) Intialization 
Two ways of initialization were examined. The first case is 

a guided initialization. In the guided initialization, the whole 
population is initialized by standard shapes. The second case is 
random initialization. The chromosome is initialized randomly 
with a given rate. A higher rate determines that the shape will 
contain more image pixels. The test showed that random 
initialization with a small rate is the best solution. When we 
use guided initialization, GA often gets stuck at a local 
extreme. The results of initialization are shown in Figure 6. 
The vertical axis expresses the value of the fitness function (the 
smaller is better); the horizontal axis expresses the number of 
generations.  

2)  Genetic algorithm parameters 
The results of experiments with input GA parameters are 

described in this section. The main goal of this paragraph is to 
prove that the proposed GA, with good input parameters, 
converges in most cases. The examined parameters are the 
number of mutations in a chromosome in one step, mutation 
rate, population size, and crossover rate. One point crossover 
was used in our experiments. The parameters of the GA were 
examined with the goal value of the ending condition set to 500 
generations. When the algorithm reaches this number of 
generations, the last result is taken as the result of the fitness 
function. The meaning of all axes in the figures is the same as 
in Figure 6. 

Figure 7 shows the results of the experiment, in which the 
number of mutations was examined. The number of mutations 
was examined in a range of 0 – 30. When only crossover 
(0 mutations) was used, the GA did not converge to the goal 
value. In the experiment the following settings were used: 
mutation rate = 40 %, crossover rate = 80 % and population 

 

Figure 6: Average Error rate for different initialization of GA 



size = 40. The best results were achieved, when we used 1 
mutation per chromosome. 

The next experiment was focused on crossover rate. Figure 
8 shows, that the parameter of the crossover rate is less 
important than the number of mutations, because in most cases 
satisfactory results were achieved. The best results were 
achieved when the crossover rate was set to 0 % and 80 %.  If 

the crossover rate is set to 0 %, the GA often strands in some 
local extreme. The best crossover rate was selected as 80 %. 
The parameters were set to the following values: mutation 
rate = 40 %, number of mutations = 1 and population size = 40. 

The last examined parameter of the GA was mutation rate. 
The results of these experiments are shown in Figure 9. There 
is also shown, that for the rate of 0 % the algorithm does not 
converge (correspondence to the number of the 0 mutations 
experiment). The best result was achieved for mutation 
rate = 70 %. The experiment parameters were set to the 
following values: crossover rate = 80 %, number of mutations 
= 1 and population size = 40. 

The best parameters of the GA from these three results 
were as follows: mutation rate = 70 %, crossover rate = 80 %, 
number of mutations = 1, one point crossover. The mutation 
rate and crossover rate are slightly high. But this is caused by a 
required high variability of the population; the solution space is 
scanned sparsely but faster (evaluation of a chromosome takes 
a long time). This is possible because the optimal solution does 
not need to be necessarily found by EA. With these parameters 

faster convergence and smaller time consumption is achieved. 
One parameter was not yet examined – the population size. In 
all cases we use a population size = 40. 

3) Convergence of the GA 
Obviously the GA iterates until a solution is found. In the 

proposed method, a solution is found when the required 
accuracy is achieved (it is not necessarily the best solution). It 
was examined that the suitable size of the population is around 
40 individuals. When a smaller number of individuals is used, 
the GA does not converge in many cases. When a number that 
is too big is used, the GA converges in 95 % percent of cases, 
but the number of individuals’ evaluation is too high and the 
time needed for computation is too high.  

Figure 10 shows the convergence results of the proposed 
GA. The GA was run 15 times with same parameters and in 
each run the number of individuals’ evaluation was measured, 
which was represented by an evaluation of the fitness function. 
In the experiments, the parameters were set to the following 
values: population size = 40, mutation rate = 70 %, crossover 
rate = 80 %, one point crossover and number of mutations = 1.  

It is possible to see that nearly all runs have the number of 
evaluations close to the value of 10 000. Only one experiment 
differed. But even so, all experiments ended with a satisfying 
number of individuals’ evaluations. 

B. Classification results 

In this paragraph, the results of the strong classifier, which 
are based on the newly designed feature shapes, are examined. 

 

Figure 7:  Average Error rate for different count of mutation 

 

Figure 8:  Average Error rate for different crossover rates 



The whole strong classifier cannot be composed only of 
evolutionary designed features, because it would not work (see 
section VI). Evolutionary based weak classifiers were used 
only at the start of the classification cascade. However the 
experiments also show some results with weak classifiers, 
which were used at the end of the classification cascade. These 
results are not better than the results obtained by the standard 
classifier. 

Figure 11 shows the results of the strong classifiers. There 
are results of the classifier based only on standard shapes 
(Standard), and results based on evolutionary designed shapes 
in conjunction with standard shapes (EVO X-Y). In Figure 11, it 
is possible to see that the evolutionary shapes provide best 
accuracy when used at the beginning of the strong classifier. 
The mark EVO 10-5 means that the strong classifier is 
composed of three parts. The whole classifier has 100 weak 
features. The number 10 indicates that the first 10 weak 
classifiers are based on evolutionary designed shapes. The 
number 5 indicates that at the end of the strong classifier 5 
weak classifiers based on evolutionary design were used. 85 
standard weak classifiers are used in this case. The best result 
is obtained when the classifier EVO 10 - 0 is used. When we 
use the following configuration EVO 1 – 10 then the result of 
the classification is worse than the classifier based on standard 
feature shapes. Figure 11 has three parts: Correct Detection, 
False Detection and F Measure. Correct detection is the rate of 
correctly detected objects. False Detection is the rate of 
incorrectly detected images. F. Measure is a combination of the 
two previously defined indicators. 

The newly designed feature shapes are appropriately robust 
and general. The shapes, which are trained for the application 
of recognition of one object type, may be used for recognition 
of another object type. The accuracy of these feature shapes 
will moderately decrease below the level of standard feature 
shapes accuracy, however they are still applicable.  

VI. DISCUSSION 

In this paper, the process of designing new feature shapes 
and training of strong classifiers are described separately. This 
division has several disadvantages. The source of the problems 
is in the weights of image samples, which are used during the 
classifier training process. These weights are changed during 
the training process. But in the process of evolutionary design 
of new feature shapes, the algorithm works with the initial 
weights all the time. These initial weights are the same for all 
image samples. 

Therefore the evolutionary designed shapes are trained only 
for the usage at the start of the classification cascade of the 
strong classifier (AdaBoost). Their application at any position 
of the classification cascade does not produce satisfying results. 
This is also shown in Figure 11 (EVO 1 - 10). However this 
problem has a solution. Evolutionary design of feature shapes 
can be carried out during each training step of the strong 
classifier (after training one weak classifier). An obstacle of 
this approach is that the evolutionary design takes a long time 
and training such classifier will be much longer (several 
weeks). Another possibility is to carry out evolutionary design 
at each N step of the training process, where N may be set from 
1 to 10. By this way training time may be reduced. 

This work takes into account only weak classifiers based on 
the LBP function. There are other weak classifiers, which are 
very similar to LBP - for example, the Local Rank Pattern [17] 
and Local Rank Difference [18]. These features work with the 
same shapes as LBP and they can be also used. 

VII. CONCLUSION 

This paper introduces a novel method for design of new 
weak classifier application specific feature shapes by the 
genetic algorithm. The proposed method increases the accuracy 
of AdaBoost classifiers by about 3 – 4 % (see Figure 11). This 
is very good improvement, which may also be utilized in 
different ways. The strong classifier, which utilizes the new 
feature shapes, may be composed of less weak classifiers to 
achieve the same accuracy as the original classifier. This is 
very important when the classifier is implemented in an FPGA. 
Figure 6– 9 show the results of setting GA parameters. The 
best parameters were found (see section V.A.2) and verified 
(see Figure 10 and section V.A.3). 

Several fitness functions, which are able to affect the 
application of shapes, are introduced in the paper. Also a 
fitness function, which optimizes new shapes for use in FPGA, 
was introduced. A combination of fitness functions was 
introduced as an instrument to combine several fitness 
functions into one. Some feature work was mentioned in 
section VI. The newly designed feature shapes are intended to 
be used in the architecture, which was introduced in [19] and 
where the hardware implementation was done. 

 

Figure 9: Average Error rate for different mutation rate 
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Figure 10: Count of experiments histogram in dependence on count of evaluation 

Figure 11: Accuracy of classifiers 
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