
Evolutionary design of Local Binary Pattern feature

shapes for object detection

Filip Kadlček, Otto Fučík

Faculty of Information Technology

Brno University of Technology

Brno, Czech Republic
{ikadlcek, fucik}@fit.vutbr.cz

Abstract — This paper deals with the evolutionary design of

application specific feature shapes of Local Binary Pattern (LBP)

features for object detection in image processing applications.

LBP features are very often utilized in image classification

systems which are used for pattern recognition. By using genetic

algorithm the application of specific weak classifiers’ feature

shapes, which are highly optimized to achieve a better accuracy
of the AdaBoost strong classifier, are being evolved.

Keywords: Local Binary Pattern (LBP), AdaBoost,

Evolutionary designm, feaure shapes.

I. INTRODUCTION

Object recognition and detection are widely exploited
techniques in image processing, computer vision applications,
security and surveillance systems, artificial intelligence etc.
Object detection is usually the first step in the object
recognition process and the quality of object detection
significantly influences the quality of the whole system.

The classification method AdaBoost [1] is very often used
for object detection in image processing. The original
AdaBoost method utilizes weak classifiers based on Haar-like
features [2], [3], [4]. The later works show that Local Binary
Pattern [5] features achieve at least the same accuracy of object
recognition as Haar waves. LBP feature processing is easier
and faster than the processing of Haar-like features and they
are also highly suitable for implementation in Field
Programmable Gate Arrays (FPGAs) [6].

The weak classifier, based on LBP, tries to recognize a
relatively small piece of input image samples – a texture of
classified object. It can be shown that the texture of two
different object types may vary widely. LBP features to capture
objects’ texture depend on shapes, which they utilize. The
original LBP shapes are generally defined, so they cannot
capture the texture with high precision. If the LBP shapes are
tuned according to objects’ features, the texture of the object
will be captured more precisely. The accuracy of weak
classifiers and corresponding strong classifiers is closely
related. Another benefit of this approach is reduction of the
number of weak classifiers while preserving the same
accuracy. It is very important when the strong classifier should
be processed in real-time in embedded systems (e.g. using
FPGAs).

Recent studies in various areas have demonstrated that
evolutionary algorithms (EA) can generate solutions, which
have the same or higher quality than conventional solutions in

many cases. The basic principle of the evolutionary design is
that solutions are encoded as bit strings (chromosomes).
Chromosomes are constructed and optimized by the
evolutionary algorithm in order to obtain the implementation
satisfying the specification given by the designer. The fitness
function, which reflects the problem specification, is utilized
for quality evaluation of a candidate solution and to ensure
convergence to the resultant solution. The fitness function can
include behavioural as well as non-behavioural requirements.
For example, the correct functionality is a typical behavioural
requirement. As a non-behavioural requirement, we can
mention the requirement for minimum area occupied on the
chip. As the EA is a stochastic algorithm, the quality of the
resultant solution is not guaranteed at the end of evolution.
However, the method has one important advantage: The
artificial evolution can in principle produce (in principle can
produce) designs which lie outside the scope of designs
achievable by conventional design methods.

This paper deals with the evolutionary design of LBP
features shapes. The original feature shapes are designed for a
huge amount of classified objects. The main goal of the paper
is to demonstrate that weak classifiers based on highly
application specific feature shapes, which are evolutionary
designed only for classification of one object, achieve better
classification accuracy than weak classifiers based on
conventional feature shapes. The classification process is
computationally intensive, thus a lot of researches create
various implementations on various platforms, for example in
FPGA [7], [8] or in Graphical Processing Unit [9]. One of the
minor goals of this paper is to create optimized feature shapes
for application in FPGA.

The remainder of this paper is organized as follows.
Section II introduces a LBP feature extraction method, weak
classifiers based on LBP and the AdaBoost classifier. In
Section III, EA for evolution of feature shapes is introduced. In
Section IV, setting of experiments is presented. In Section V,
results of EA and classification results are presented. The
classification results of EA are compared with the results of
conventional approaches. In Section VI, future work is
discussed. Finally, conclusions are given in Section VII.

II. CLASSIFICATION BACKGROUND

The classifier is usually used for image pre-processing in
complex image processing systems. For the classification
problem, a number of various techniques can be used. Because
the result of this work is intended for usage in FPGA

technologies, the AdaBoost algorithm in conjunction with LBP
(Local Binary Pattern) has been chosen. This combination
achieves a very good accuracy in classification [5].

A. Local BinaryPattern

LBP is a non-parametric operator, which was for the first
time introduced in [10]. An improvement was introduced later
in [11]. LBP is a structural operator, which provides image
analysis. The LBP operator tries to recognize an image texture.
The basic form of LBP works with a set (matrix) of nine
values. In the terms of image processing values are represented
by the pixels of an image. The set is created by eight adjoining
pixels of a center pixel (the one being processed). In fact it is a
3 x 3 matrix. The evaluation of the LBP operator is done by the
following procedure. Each marginal pixel is compared with the
centre pixel. If the value of marginal pixel is lower than the one
of the center pixel, then the result of comparison is a logical
zero; otherwise the result of comparison is a logical one. In the
process of evaluating LBP, the comparison is made eight times
- eight 1-bit values are obtained. These values are composed to
one byte. The composition is predefined. The LBP operator has
two hundred and fifty six different output results. The whole
process of evaluation of LBP feature is shown in Figure 1.

The evaluation of an LBP feature is expressed by the
following equation [12]:

(1)

Where yc is the centre pixel, xc is a part of the input image,
in corresponds to the values of 8 neighbourhood pixels and s(x)
is a function expressed as:

(2)

LBP is a very powerful operator, which has many benefits.
Some examples of them: LBP is an illumination invariant, LBP
uses only simple mathematical operators in the evaluation
process and LBP is very suitable for FPGA implementation.

B. Multi-scale Block Local Binary Pattern

The LBP operator has good classification accuracy.
However, the LBP operator was improved to Multi-scale Block
LBP (MB-LBP) [5]. The improvement in MB-LBP is in
replacing the basic fields of LBP. The original fields in LBP
consist only of one pixel. The original matrix of size 3 x 3 in
LBP consists of nine fields. Each field in MB-LBP represents a
group of image pixels (data). The field is a continuous area,
which has an obvious rectangular shape. The representing

value of each field is computed as a convolution of all pixels.
The evaluation of MB-LBP is very similar to LBP. The
difference is only in the coefficients xc and yc in the equation
(1). When calculating MB-LBP, xc represents the convolution
of each adjoining field and yc represents the convolution of
pixels under the center field. Several MB-LBPs feature shapes
are shown in Figure 2.

The MB-LBP is more robust than original LBP. LBP
covers only a small area of the image therefore it may only
describe a small piece of the image (3x3 pixels), but MB-LBP
may cover a whole image sample, so it may describe the whole
image. MB-LBP can recognize the texture of the image more
precisely than LBP.

Figure 2: Types of MB-LBP feature shapes [13]

C. Weak classifier

In the preceding paragraphs, the LBP operator and its
extensions were described. Let the LBP operator be a function
fLBP (x, y, I), where x and y are the coordinates of the left upper
corner of the 3 x 3 matrix for LBP in an input image sample I.
The position of each feature is defined by the coordinates. The
function fLBP may return one of 256 different values. The weak
classifier is an extension of this function. The weak classifier
transforms output the value of the fLBP function to a new value,
which represents the probability that a detected object (a
positive result of classification) is in the input image sample I.
The weak classifier (sometimes called weak hypothesis) is
represented by a function h (I). In the function h, constants x
and y are defined. Constants define the position of the fLBP
function in an image sample and there is also a probability
table defined which has 256 values (one value for each result of
the fLBP function). The probability table is obtained by the
training process. Each weak classifier has to be trained first,
before it is used for the first time. The training algorithm (in its
simple form) of a weak classifier is described below.

The function of a weak classifier h (I) is described by the
code:

Figure 1: Evaluation of LBP feature

Let S={(x1,y,w1),(x2,y2,w2),…,(xN,yN,wN)} be a training set,

where xi is an input image sample, yi {-1,1} (-1 – negative

sample, 1 – positive sample) and wi R is a weight of the
image.

Init THIST (histogram table) to zero.
Foreach s in S:

 T[fLBP (x,y,s.x)] += s.y . s.w;

Where the constants x, y and the table of constants THIST are
obtained from the training process.

D. AdaBoost

 The method called AdaBoost is a statistical method, which
is widely used for object detection. This method is an extension
of the original method called Boosting [14]. Boosting is
a learning method. It is based on statistical combination of
many weak hypotheses. AdaBoost [1] extends Boosting by
adding weights to samples of a training set. The AdaBoost
method consists of two basic parts – a training phase and a
runtime phase. The training phase is a machine learning
procedure, which was introduced in detail in [1]. The training
process is complicated and it is out of the scope of this paper.
The second part of the AdaBoost algorithm is the runtime
phase. In this phase, the results of training are processed. The
process of the runtime phase is described by the following
equation:

(3)

The result of the function H(X), for an input image X, is
computed as a linear combination of N weak hypothesis results.
The linear combination is substituted by a simple sum in this
case. The result of this linear combination is compared to the
threshold t. If the comparison is positive, then the result of
H(X) will be 1 otherwise it will be set to 0 (1 indicates that the
object is detected). The function hi(X) represents a weak
hypothesis (for example based on LBP). The αi is a constant
obtained during the learning process. This constant represents
the fidelity of the weak classifier.

III. EVOLUTIONARY DESIGN OF NEW SHAPES

A novel technique for designing new shapes of LBP
features is proposed in this section. A new feature shape is
considered as a set of nine convolutions. The inputs of the
convolutions are pixels of a grayscale input image sample. The
new shapes are created by EA without acceleration in FPGA.
The design process will have to be repeated when the
application requirements are changed.

A. New geometric shape of features

The original size of LBP features is restricted to 3 x 3 pixels
of a source image. The size of MB-LBP features is restricted
only by the size of the source image (precisely the size of the
detection window). In face detection for example, the
maximum size of MB-LBP features may be approximately
24 x 24 pixels. The increasing size of MB-LBP does not
produce much better results. For most applications the size of
MB-LBP features can be restricted to 6 x 6 pixels. The features
with unrestricted size can be difficult to implement into
embedded systems using FPGAs as well as to design by EA.

The standard feature shapes are shown in Figure 3. Each of
those four basic shapes is formed by a continuous area. Each
field in the feature is also a continuous area and each area has
also the same size (for one feature shape). There are no
overlapping fields. The original features have to comply with
several criterions. The new features designed by genetic
algorithm have to comply with one criterion only. The criterion
is the maximum size of the area, on which the new shape lies.
An example of a possible feature shape is shown in Figure 4.

Figure 4: New feature shape example

Figure 4 shows overlapping – fields 4 and 8, discontinuity –
field 6, different area size –fields 5 and 7, and discontinuity of
the whole feature.

The evaluation of a new shape is similar to evaluation of
the original LBP (equation 1). The number of fields in a new
designed feature corresponds to the number of fields in the
original LBP. Because of different dynamic ranges of all
convolutions, normalization should be done to obtain a result
as an 8-bit value.

B. Problem encoding

The candidate solution is needed to be encoded into a
chromosome, which is represented by a bit string. The nine
fields of the feature shape need to be encoded. Each
convolution is encoded by a 36-bit string. Each bit in a sub-
chromosome corresponds to one pixel of a 6 x 6 pixel matrix. If
the bit has the value 1, a corresponding pixel is contained in the
convolution. Thanks to the use of a fixed length of a (sub-)
chromosome, the operation of mutation and crossover are not
difficult and the arbitrary operation returns a valid chromosome
(each chromosome is valid). The final chromosome is obtained
by merging nine sub-chromosomes. The length of the whole

Figure 3: Standard feature shapes of MB-LBP

h(I){

 const x;

 const y;

 return THIST[fLBP (x,y,I)]

}

chromosome is 9 x 6 x 6 = 324 bits. Figure 5shows how the
chromosome is created.

C. Genetic algorithm

The classical genetic algorithm GA [15] is used in this
work. The GA has two interesting parts – initialization and
evaluation of the population by the fitness function, which will
be discussed here. There are two basic approaches to the
initialization process. The first one is to carry out a guided
initialization. In this case the population is initialized by
existing shapes. The second approach is to carry out a random
initialization. The disadvantage of guided initialization is the
risk that the genetic algorithm may be stuck for a long time at a
local extreme and it would not achieve the global maximum.
GA is using tournament selection, which is making one point
crossover and one mutation with predefined probability per
chromosome. Due to predefined probability some
chromosomes are unchanged after those operations. The
creation of a new population is carried out by a technique
called elitism (the best chromosomes are automatically inserted
to the new population).

D. Fitness functions

The fitness function is the most important part of genetic
algorithms. The final solution of GA is the one most affected
by the fitness function. The form of fitness function determines
how the final shape will work (what accuracy will be
achieved). Fitness function for creating shapes, which could
achieve the best result only at one place, or shapes which will
achieve quite good results at several places, can be established.
Also a fitness function, which optimizes the shape for FPGA
implementation, can be founded.

In the proposed method, the computation of fitness function
is based on weak classifiers training. During the fitness
function evaluation a set C of weak classifiers is synthesized.
All of them are very similar, with the only difference in the
position of the feature in the detection window. Each classifier
of set C is based on the same shape and trained and evaluated
separately. The accuracy is established during the training
process on a testing data set. Each shape is trained in many
ways and there are many results of classification (set C). The

procedures of obtaining the final fitness function are described
in the following subsections.

1) Global maximum
The first choice, how to compute the final value of the

fitness function, is based on finding the maximum in set C (set
of all classifiers’ accuracy). The fitness function finds the
classifier from set C, which has the best accuracy. This
accuracy is subsequently propagated as a value of the fitness
function. This type of fitness is focused on finding shapes,
which have the best accuracy only at one place in the detection
window. The accuracy of weak classifiers based on such a
shape is around 70 – 75 %. This fitness optimizes the feature
shape during the evolutionary process only for one place. This
feature has a very good accuracy, but a strong classifier may
contain only a few weak classifiers, which are based on this
feature shape (see Section VI).

2) Average and mean value
The next fitness is based on computation of an average or a

mean value from the accuracy values of all weak classifiers in
set C. Those functions find the feature shapes, which are
optimal for the whole detection window. It is clear, that at
some positions the feature will carry out a good accuracy and at
another position it will carry out a poor accuracy. The number
of positions, where the good accuracy is achieved, is higher
than in the previous fitness. The accuracy achieved by this
fitness is around 60 %. This accuracy is better than the
accuracy achieved by the classifiers based on classical feature
shapes. Unlike the shapes designed by the Global maximum
fitness function, it is possible to construct the whole strong
classifier from these weak classifiers.

3) Averege and mean value of N best positions
This type of fitness is based on an average or a mean value

of classifier accuracy like the previous fitness. But the
difference is in finding the average (or mean) value. In this
case, fitness is not computed from the whole set C of the
classifier but only from N best positions. The N may be chosen
from 10 to 20. If a bigger N is chosen, the results will be very
similar to the preceding function. The accuracy of this
approach is around 65 %. It is not possible to synthesize the
whole classifier from weak classifiers, which are based on this
approach. But in this case, more weak classifiers can be used
than in the Global maximum case.

4) FPGA criterium
The last type of a simple fitness function is focused on

evaluating the feature shapes according to FPGA resources
(slices – logical cells; BRAM – Block Random Access
Memories). The numbers of operations needed for the
evaluation of each shape can be determined. The set O of all
possible operators, which are used for computation of LBP,
include addition, division and division by power of two.

For each operator is established an implementation cost in
FPGA (amount of resources). The total cost of a feature shape
is expressed by the following equation:

Figure 5: Chromosome creation

(3)

Where fcost is a cost function of the operators; ffreq is a
frequency function of the operators. Both functions have an
input parameter o – an operator. Each shape is evaluated by
equation 3. This fitness cannot be used individually, because
the result of the evolution algorithm would make no sense from
a classification point of view (see next subsection).

5) Combination of fitness functions
Because the FPGA fitness function does not deal with

classification accuracy, a combination of fitness functions
should be defined. One possible case of a combined fitness
function can be expressed by the following equation:

 (4)

Where fFPGA() is the FPGA fitness function; fglobmax() is the
global maximum fitness function; s is the shape feature; WFPGA
is the weight of the FPGA fitness function; Wglobmax is the
weight of the global maximum fitness function. The resulting
fitness can be used to design the features with good accuracy
and suitable for implementation in FPGA.

IV. EXPERIMENTS

The dataset used in our experiments is composed of two
main parts – a training dataset and a testing dataset. The UIUC
dataset was used [16]. The training dataset is composed of
1050 image samples. There are 550 positive samples and 500
negative samples. This sample set was used for training strong
classifiers and also for training weak classifiers by the
evolutionary algorithm. Each training sample has been resized
to a width of 40 pixels and a height of 16 pixels. The size of the
detection window was also 40x16 pixels. The training set is
also used in a fitness function to find out the accuracy of the
weak classifier.

The testing set was used to test the accuracy of the strong
classifier. The testing set is divided into two different parts.
The first part of the training set is composed of 169 images, the
objects in the image samples have similar size and one image
sample may contain several objects (vehicles in this case). The
second dataset is composed of 107 samples and the size of the
objects differs. The accuracy of the strong classifier and the
results of GA are evaluated on these two datasets. In the
experiments, the results of the strong classifier, which utilizes
evolutionary designed feature shapes, are compared with the
classifier that utilizes only standard shapes.

V. RESULTS

The proposed method was examined in two ways. The first
was focused on results of the genetic algorithm; the second one
was focused on the results of classification. The fitness
function Average of N best positions was used in all
experiments where N was set to 10.

A. Results of the genetic algorithm

This paragraph examines the parameters of the genetic
algorithm. All experiment results are obtained as an average
value of three runs.

1) Intialization
Two ways of initialization were examined. The first case is

a guided initialization. In the guided initialization, the whole
population is initialized by standard shapes. The second case is
random initialization. The chromosome is initialized randomly
with a given rate. A higher rate determines that the shape will
contain more image pixels. The test showed that random
initialization with a small rate is the best solution. When we
use guided initialization, GA often gets stuck at a local
extreme. The results of initialization are shown in Figure 6.
The vertical axis expresses the value of the fitness function (the
smaller is better); the horizontal axis expresses the number of
generations.

2) Genetic algorithm parameters
The results of experiments with input GA parameters are

described in this section. The main goal of this paragraph is to
prove that the proposed GA, with good input parameters,
converges in most cases. The examined parameters are the
number of mutations in a chromosome in one step, mutation
rate, population size, and crossover rate. One point crossover
was used in our experiments. The parameters of the GA were
examined with the goal value of the ending condition set to 500
generations. When the algorithm reaches this number of
generations, the last result is taken as the result of the fitness
function. The meaning of all axes in the figures is the same as
in Figure 6.

Figure 7 shows the results of the experiment, in which the
number of mutations was examined. The number of mutations
was examined in a range of 0 – 30. When only crossover
(0 mutations) was used, the GA did not converge to the goal
value. In the experiment the following settings were used:
mutation rate = 40 %, crossover rate = 80 % and population

Figure 6: Average Error rate for different initialization of GA

size = 40. The best results were achieved, when we used 1
mutation per chromosome.

The next experiment was focused on crossover rate. Figure
8 shows, that the parameter of the crossover rate is less
important than the number of mutations, because in most cases
satisfactory results were achieved. The best results were
achieved when the crossover rate was set to 0 % and 80 %. If

the crossover rate is set to 0 %, the GA often strands in some
local extreme. The best crossover rate was selected as 80 %.
The parameters were set to the following values: mutation
rate = 40 %, number of mutations = 1 and population size = 40.

The last examined parameter of the GA was mutation rate.
The results of these experiments are shown in Figure 9. There
is also shown, that for the rate of 0 % the algorithm does not
converge (correspondence to the number of the 0 mutations
experiment). The best result was achieved for mutation
rate = 70 %. The experiment parameters were set to the
following values: crossover rate = 80 %, number of mutations
= 1 and population size = 40.

The best parameters of the GA from these three results
were as follows: mutation rate = 70 %, crossover rate = 80 %,
number of mutations = 1, one point crossover. The mutation
rate and crossover rate are slightly high. But this is caused by a
required high variability of the population; the solution space is
scanned sparsely but faster (evaluation of a chromosome takes
a long time). This is possible because the optimal solution does
not need to be necessarily found by EA. With these parameters

faster convergence and smaller time consumption is achieved.
One parameter was not yet examined – the population size. In
all cases we use a population size = 40.

3) Convergence of the GA
Obviously the GA iterates until a solution is found. In the

proposed method, a solution is found when the required
accuracy is achieved (it is not necessarily the best solution). It
was examined that the suitable size of the population is around
40 individuals. When a smaller number of individuals is used,
the GA does not converge in many cases. When a number that
is too big is used, the GA converges in 95 % percent of cases,
but the number of individuals’ evaluation is too high and the
time needed for computation is too high.

Figure 10 shows the convergence results of the proposed
GA. The GA was run 15 times with same parameters and in
each run the number of individuals’ evaluation was measured,
which was represented by an evaluation of the fitness function.
In the experiments, the parameters were set to the following
values: population size = 40, mutation rate = 70 %, crossover
rate = 80 %, one point crossover and number of mutations = 1.

It is possible to see that nearly all runs have the number of
evaluations close to the value of 10 000. Only one experiment
differed. But even so, all experiments ended with a satisfying
number of individuals’ evaluations.

B. Classification results

In this paragraph, the results of the strong classifier, which
are based on the newly designed feature shapes, are examined.

Figure 7: Average Error rate for different count of mutation

Figure 8: Average Error rate for different crossover rates

The whole strong classifier cannot be composed only of
evolutionary designed features, because it would not work (see
section VI). Evolutionary based weak classifiers were used
only at the start of the classification cascade. However the
experiments also show some results with weak classifiers,
which were used at the end of the classification cascade. These
results are not better than the results obtained by the standard
classifier.

Figure 11 shows the results of the strong classifiers. There
are results of the classifier based only on standard shapes
(Standard), and results based on evolutionary designed shapes
in conjunction with standard shapes (EVO X-Y). In Figure 11, it
is possible to see that the evolutionary shapes provide best
accuracy when used at the beginning of the strong classifier.
The mark EVO 10-5 means that the strong classifier is
composed of three parts. The whole classifier has 100 weak
features. The number 10 indicates that the first 10 weak
classifiers are based on evolutionary designed shapes. The
number 5 indicates that at the end of the strong classifier 5
weak classifiers based on evolutionary design were used. 85
standard weak classifiers are used in this case. The best result
is obtained when the classifier EVO 10 - 0 is used. When we
use the following configuration EVO 1 – 10 then the result of
the classification is worse than the classifier based on standard
feature shapes. Figure 11 has three parts: Correct Detection,
False Detection and F Measure. Correct detection is the rate of
correctly detected objects. False Detection is the rate of
incorrectly detected images. F. Measure is a combination of the
two previously defined indicators.

The newly designed feature shapes are appropriately robust
and general. The shapes, which are trained for the application
of recognition of one object type, may be used for recognition
of another object type. The accuracy of these feature shapes
will moderately decrease below the level of standard feature
shapes accuracy, however they are still applicable.

VI. DISCUSSION

In this paper, the process of designing new feature shapes
and training of strong classifiers are described separately. This
division has several disadvantages. The source of the problems
is in the weights of image samples, which are used during the
classifier training process. These weights are changed during
the training process. But in the process of evolutionary design
of new feature shapes, the algorithm works with the initial
weights all the time. These initial weights are the same for all
image samples.

Therefore the evolutionary designed shapes are trained only
for the usage at the start of the classification cascade of the
strong classifier (AdaBoost). Their application at any position
of the classification cascade does not produce satisfying results.
This is also shown in Figure 11 (EVO 1 - 10). However this
problem has a solution. Evolutionary design of feature shapes
can be carried out during each training step of the strong
classifier (after training one weak classifier). An obstacle of
this approach is that the evolutionary design takes a long time
and training such classifier will be much longer (several
weeks). Another possibility is to carry out evolutionary design
at each N step of the training process, where N may be set from
1 to 10. By this way training time may be reduced.

This work takes into account only weak classifiers based on
the LBP function. There are other weak classifiers, which are
very similar to LBP - for example, the Local Rank Pattern [17]
and Local Rank Difference [18]. These features work with the
same shapes as LBP and they can be also used.

VII. CONCLUSION

This paper introduces a novel method for design of new
weak classifier application specific feature shapes by the
genetic algorithm. The proposed method increases the accuracy
of AdaBoost classifiers by about 3 – 4 % (see Figure 11). This
is very good improvement, which may also be utilized in
different ways. The strong classifier, which utilizes the new
feature shapes, may be composed of less weak classifiers to
achieve the same accuracy as the original classifier. This is
very important when the classifier is implemented in an FPGA.
Figure 6– 9 show the results of setting GA parameters. The
best parameters were found (see section V.A.2) and verified
(see Figure 10 and section V.A.3).

Several fitness functions, which are able to affect the
application of shapes, are introduced in the paper. Also a
fitness function, which optimizes new shapes for use in FPGA,
was introduced. A combination of fitness functions was
introduced as an instrument to combine several fitness
functions into one. Some feature work was mentioned in
section VI. The newly designed feature shapes are intended to
be used in the architecture, which was introduced in [19] and
where the hardware implementation was done.

Figure 9: Average Error rate for different mutation rate

ACKNOWLEDGMENT

 This paper has been elaborated in the framework of the
IT4Innovations Centre of Excellence project, reg. no.
CZ.1.05/1.1.00/02.0070 supported by Operational Programme
'Research and Development for Innovations' funded by
Structural Funds of the European Union and state budget of the
Czech Republic.

REFERENCES

[1] Viola, P., Jones, M.: Real-time object detection. Int. J. Comput. Vision,

vol. 57, no. 2, pp. 137–154, May 2004.

[2] Viola, P. and Jones, M.: Rapid object detection using a boosted cascade
of simple features. In CVPR, 2001.

[3] Haar, A.: Zur Theorie der orthogonalen Funktionensysteme, chapter

Mathematische Annalen. 1910, s. 331-371.

[4] Wilson, P. I., Fernandez, J.: Facial feature detection using Haar
classifiers. J. Comput. Small Coll., ročník 21, č. 4, 2006: s. 127-133,

ISSN 1937-4771.

[5] Liao, S., Zhu, X., Lei, Z., et al.: Learning Multi-scale Block Local

Binary Patterns for Face Recognition. Chinese Academy of Sciences,
China, 2007, s. 828-837.

[6] Hradis, M., Herout, A., Zemcik, P.: Local Rank Patterns –Novel

Features for Rapid Object Detection. In: Proceedings of International
Conference on Computer Vision and Graphics 2008, Heidelberg, DE,

Springer, 2008, s. 1-12, ISSN 0302-9743.

[7] Kyrkou, CH. A Flexible Parallel Hardware Architecture for AdaBoost-
Based Real-Time Object Detection. IEEE Transactions on very large

scale integration (VLSI) systems, p. 14.

[8] Zemčík, P., Žádnik, M.: AdaBoost Engine. In Field Programmable
Logic and Applications, Aug. 2007, p. 656-660.

[9] Polok, L., Herout, A., Zemčík, P., Hradiš, M., Juránek, R., Jošth,

R.:"Local Rank Differences" Image Feature Implemented on GPU. In:
Proceedings of the 10th International Conference on Advanced

Concepts for Intelligent Vision Systems, Berlin, Heidelberg, DE,

Springer, 2008, s. 170-181, ISBN 978-3-540-88457-6.

[10] Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture
measures with classification based on featured distributions. Pattern

Recognition, ročník 29, č. 1, 1996: s. 51-59, ISSN 0031-3203.

[11] Mäenpää, T.: The Local Binary Pattern approach to texture analysis -
extensions and applications. PHD thesis, Faculty of Technology,

University of Oulu, 2003.

[12] Herout, A., Juránek, R., Zemčík, P.: Implementing the Local Binary
Patterns with SIMD Instrictions of CPU. In proceedings of WSCG 2010

Plzeň, CZ, ZČU v Plzni, 2010, , ISBN 978-80-86943-86-2 p. 39-42.

[13] Zhang, L., Chu, R., Xiang, S., et al.: Face Detection Based on Multi-
Block LBP Representation. In Advances in Biometrics, Chinese

Academy of Sciences, 2007, ISBN 978-3-540-74548-8, s. 11-18.

[14] Freund. Y., Schapire, R.: A short introduction to boosting. Soc. for Artif,

ročník 14, č. 5, 1999: s. 771-780.

[15] Holland, J.: Adaption in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 1975.

[16] Agarwal, S., Awan, A., Roth, D.: UIUC Image Database for Car

Detection.

[17] Hradiš, M., Herout, A., Zemčík, P.: Local Rank Patterns - Novel
Features for Rapid Object Detection. In Proceedings of International

Conference on Computer Vision and Graphics 2008, číslo 12 in Lecture
Notes in Computer Science, Springer Verlag, 2008, ISSN 0302-9743, s.

1-12.

[18] Polok, L., Herout, A., Zemčík, P., Hradiš, M., Juránek, R., Jošth, R.:
”Local Rank Differences“ Image Feature Implemented on GPU. In

ACIVS ’08: Proceedings of the 10th International Conference on
Advanced Concepts for Intelligent Vision Systems, Berlin, Heidelberg:

Springer-Verlag, 2008, ISBN 978-3-540-88457-6, s. 170-181.

[19] Kadlček, F., Zemčík, P., Juránek, R.: Automatic synthesis of classifiers
in FPGA. In International Bata conference for Ph.D. Students and

Young Researchers, Tomas Bata University in Zlin, 2011, ISBN 978-80-
7454-013-4.

Figure 10: Count of experiments histogram in dependence on count of evaluation

Figure 11: Accuracy of classifiers

http://www.fit.vutbr.cz/research/view_pub.php?id=8971

