
Concurrent Evolution of Hardware and Software for
Application-Specific Microprogrammed Systems

Milos Minarik and Lukas Sekanina
Brno University of Technology, Faculty of Information Technology

Brno, Czech Republic

Email: iminarik@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract—Embedded systems often have to calculate some
mathematical functions using iterative algorithms. When hard
constraints are specified in terms of the area on the chip a possible
solution is to implement the iterative algorithm by means of a
microprogrammed digital circuit. In this paper, the first version of
a new design framework is presented to automate the design and
optimization of such microprogrammed systems. The framework
utilizes evolutionary design and optimization techniques to find
the most suitable implementation of the hardware architecture
as well as the program for the programmable logic controller.
The functionality of the proposed approach is evaluated using
evolutionary design of three HW/SW systems under different
constraints.

I. INTRODUCTION

In many application domains (such as automotive or avion-
ics industry), one can find small analog/digital measurement
subsystems that are responsible for sampling signals from
sensors, their basic digital processing and sending the results
to a main controller. Their digital part, which is important for
this paper, in fact implements very simple operations such as
addition, multiplication, averaging or ultimately square root
over the incoming samples. The subsystem is typically im-
plemented as an application-specific integrated circuit (ASIC)
and fabricated using a relatively obsolete technology (e.g. 180
nm) because there are many analog components and the digital
part operates at low frequencies (e.g. 20 MHz). The relatively
old technology also offers more reliable solutions because it
ensures more stable physical properties of integrated circuits.
These ASICs are produced in large volumes and have to be
cheap.

In addition to meeting time requirements, there are strong
constraints in terms of area occupied by the digital part.
Because of that, it is impossible to implement the digital
part as a general-purpose microprocessor. Even specialized
iterative solutions based on the famous Cordic algorithm [1]
are prohibited in some applications. The arithmetic functions
are computed in iterations by means of a simple ALU and a
set of registers. Their control is carried out by a programmable
logic controller. The overall architecture is highly optimized
for a particular application. The designer has to determine the
number of registers and their bit width, the set of functions
of ALU, interconnection options (allowed by multiplexers)
etc. The hardware architecture influences the choice of the
instruction set of the controller and vice versa. The program
length and time of execution are determined by available
hardware resources as well as the instruction set. Because of
very specific and application dependent features, this kind of

subsystems is predominantly designed and optimized manually
which requires an extraordinary effort of a highly qualified
designer.

A CAD tool supporting or even allowing the automatic
design and optimization of such subsystems would be highly
appreciated by practitioners. The tool could be classified as a
HW/SW co-design tool in the scope of currently used CAD
software. The goal of this paper is to present the first version of
a new design framework that we have developed to automate
the design and optimization of digital parts of the above-
mentioned ASICs. The key idea behind the framework is
to employ evolutionary design and optimization to find the
most suitable implementation of the hardware architecture as
well as the program for the programmable logic controller.
In general, this is a very challenging task for evolutionary
computing. However, because the target system is relatively
small and its architecture can be predesigned to a wide extent,
the evolutionary approach seems to be applicable.

We propose to employ linear genetic programming (LGP)
to evolve programs for the controller [2]. The LGP chromo-
some is extended to encode selected features of the underlying
hardware architecture. This allows us to evolve hardware and
software together. Candidate solutions are then evaluated using
the design framework that we have developed. As we present
the first version of the framework, this paper concentrates on
definition of a suitable design environment, search methods,
and interaction of all components of the tool. The basic
functionality of the proposed approach is evaluated using three
case studies.

The rest of the paper is organized as follows. Section II
surveys relevant work in the area of bioinspired hardware-
software codesign. The proposed platform is introduced in
Section III. Evolutionary aspects of the platform, such as
problem encoding, genetic operations and fitness function, are
described in Section IV. The platform is evaluated using three
case studies which are presented together with obtained results
in Section V. Finally, conclusions are given in Section VI.

II. PREVIOUS RELEVANT WORK

The traditional design methodology would classify the
proposed work under the umbrella of hardware/software co-
design. Hardware/software co-design means meeting system-
level objectives by exploiting the synergism of hardware
and software through their concurrent design [3], [4]. The
hardware/software codesign methodology has to solve various
problems (such as partitioning, scheduling, allocation), many

43978-1-4673-5869-9/13/$31.00 c©2013 IEEE

of them known to be NP-complete. Hence various heuristics
have been applied including evolutionary computation.

One of the most developed tools, the MOGAC system,
employs a multioblective genetic algorithm that partitions
and schedules embedded system specifications consisting of
multiple periodic task graphs [5]. It optimizes price and power
consumption while no limit is placed on the number of
hardware or software processing elements in the architectures
it synthesizes. Detailed analysis and comparison of partitioning
algorithms, the most crucial part of the hardware/software
codesing, has been done in many papers, e.g. [6], [7]. With
the development of dynamically reconfigurable FPGAs, the
hardware/software codesign methodology has been extended
to support dynamically reconfigurable modules [8].

In the context of bio-inspired hardware, the most in-
teresting relevant approach is Tempesti’s hardware/software
co-evolution of programs and cellular processors. Cellular
processors are based on the so-called MOVE processors,
where all computation is carried out by the functional units
(adders, multipliers, register files, etc.) and the instructions
simply move data to and from the functional units according
the user program [9]. A genetic algorithm has been used to
determine which parts of the program have to be implemented
in hardware in order to satisfy some user-given constraints.
The GA, in facts, solves the partitioning problem.

Another relevant approach, genetic parallel programming
(GPP), has been developed to evolve parallel programs for
processors containing multiple ALUs [10]. Based on LGP, it
enables to automatically map a problem on parallel resources
and evolve a corresponding parallel program. The approach
is mainly focused on automated parallel programming. The
hardware-oriented constraints that we have to deal with in our
work are not taken into account.

A different GP-based approach to hardware/software code-
sign has been proposed by Deniziak and Gorski who evolved
the co-design process itself using genetic programming, i.e.
the chromosome represents the design decisions. The result of
evolution is a method for constructing the target system [11].

Finally, in our previous work, we have developed a method
to design iterative algorithms using Cartesian genetic program-
ming [12]. However, no hardware related constraints have been
considered.

III. MODEL OF A HW/SW SYSTEM

The proposed method is focused on HW/SW codesign
of application specific microprogrammed architectures. The
main goal is not to develop a framework that can be used
to evolve a HW/SW system for arbitrarily complex prob-
lems. The framework is meant to design and optimize small
microprogrammed systems for very specific problems with
constraints on various attributes such as area, speed or power
consumption. Typical usage of these HW/SW systems is e.g.
capturing and preprocessing the data from a sensor. The model
itself consists of three parts – microarchitecture, program
and environment. All these parts will be briefly discussed in
following subsections.

A. HW architecture

As can be seen in Figure 1, the architecture consists of
several interconnected basic components. The whole HW/SW
system operates iteratively by executing individual microin-
structions. Therefore, the operation of this system can be
described as:

1) Initialize the HW/SW system – all registers are set to
their initial value (typically 0) and program counter
is set to the first instruction of a program.

2) Fetch microinstruction from the program memory and
increment the program counter (PC).

3) Decode the microinstruction and check if it is a
branching instruction or ordinary instruction.

4) If it is a branching instruction, execute it, and modify
the PC accordingly. Then go back to 2.

5) Set multiplexers and address decoder to provide in-
terconnections as specified by the instruction.

6) If it is an I/O instruction, process the inputs and
outputs as necessary and go back to 2. Otherwise,
execute the modules specified by the instruction.

7) Update register values according to the outputs of
modules.

8) Go back to 2.

Some of the parts (e.g. registers and modules) can be
changed either by a user or by the optimization method
(LGP, in our case), while the others are hard–coded and
cannot be changed without modification of the framework’s
source code. Another noticable fact is that modules are not
directly interconnected. Therefore, information can be moved
among the modules just via registers. The advantage of such
connection is the posibility to use the modules simultaneously.
More detailed description of individual parts can be found in
the following paragraphs.

Fig. 1. HW architecture

Modules can be thought of as black boxes computing
specific functions. More formally, a module is a 6–tuple
M =< ni, no, a, p, d, t >, where ni is the number of inputs
(typically 2 or 3), no is the number of outputs (typically 1),
a is the area of the module, p is its power consumption,
d : Dni → D is a function specifying processing delay and
ft : Dni × Q → D

no is a function that sets module outputs
according to the inputs provided and module’s internal state
q ∈ Q1.

There are also other module parameters that don’t influ-
ence the computation of its function, but can be used by

1
D denotes a user-chosen data type.

44 2013 IEEE International Conference on Evolvable Systems (ICES)

the optimization framework. These parameters include the
module area, power consumption and delay. The optimization
framework uses these parameters to evaluate the fitness of the
individual, so it has to be correctly specified for the evolution
to succeed.

The architecture definition also contains the registers spec-
ification. This specification includes the register count and
bit widths of all the registers. Various register widths are
implemented by their masks. When the register widths are not
to be concerned, the default mask can be used.

The last part of HW architecture that can be specified
is the instruction set. The instruction set has to correspond
with the modules used in the architecture. By default, all
the instructions provided by the modules are used, so the
possibilities of HW/SW system can be fully utilized. The
system, however, does not have to utilize all the possibilities
of all modules. It can, for example, use the adder module
just to sum the content of two specific registers. In such case,
there will be less interconnections between the module and the
registers and the instruction decoder will be less complex as
well. This approach is useful when some particular information
about the algorithm to be found is known.

The whole HW part can be described by the following
components:

i the number of inputs

o the number of outputs

R = {r1, r2, ...rr} a set of registers

w : R → N a funcion setting widths of the registers

A = {M1,M2, ...Mm} a set of available modules

u : M → {0, 1} a function specifying module utilization

B. SW architecture

The next part of the model is the SW architecture, which
specifies the way the program is stored and executed. It is
closely related to the instruction set described in previous
subsection. However, this subsection mainly discusses the
representation of the instructions, not their physical execution.
The program consists of a sequence of instruction blocks
i1, i2, ...is, where s is the program size. The instruction block
serves as an envelope containing one or more microinstructions
and corresponding parameters and inputs and outputs used by
them. The instruction block can, therefore, be thought of as a
single instruction composed of several microinstructions.

The microinstruction format is quite simple, so new in-
structions can easily be specified by user. As can be seen
in Figure 2, there is a mandatory header, which specifies the
type of the microinstruction and also the modules used. Then
there might be a constant. Presence of a constant depends on
microinstruction type. Then, the specifications of the inputs
and outputs of all the modules follow.

Every input and output of each module used by the
instruction is represented by one byte. This byte can specify
the constant (only for module inputs), register index or a range
specification used during the final microinstruction generation.
If the input is a constant, the two highest bits are set to 10,
therefore the constant has to fit into 6 bits. If the constant is
greater than 63, it will have to be loaded via a register. If the

Fig. 2. Microinstruction format

input should be a register number, two leftmost bits have to
be 00. In such case, the number directly represents the index
of the register to be used. If two leftmost bits of the byte
are set to 11 and the byte value is different from FF, it will
be replaced by a randomly generated constant from the range
from 0 to the value specified by the remaining 6 bits. The last
option that can be used is random generation of a byte value.
When the byte of the input or output is set to FF value, it
will be replaced by random register index during the program
generation.

As was stated above, the program itself is represented by
one–dimensional array of instruction blocks. Execution of a
program starts at its first instruction block. Then, the blocks are
executed sequentially and the program counter is successively
incremented unless a branching instruction (i.e. conditional or
unconditional jump) is encountered. In such case, the program
counter is modified to point to a given instruction block and
the program execution continues from this point.

C. The model of the environment

The last part needed for successful simulation of the
microprogram architecture function is its connection with the
other parts of the resulting system. This can be accomplished
by the environment part of the model. The environment can
be thought of as a black box between the architecture outputs
and inputs.

We currently support two ways of specifying the environ-
ment. The first is the usage of an XML file. This file contains
the time series for individual inputs and also the timelines of
the expected outputs. An example of the XML file specifying
the environment can be found in Figure 3.

<environment>
<inputs>

<input index="0">
<change time="237" value="85" />
...

</input>
...

</inputs>
<outputs>

<output index="0">
<change time="330" value="34">
...

</output>
...

</outputs>
</environment>

Fig. 3. XML structure example

When a signal is set, it holds its value until another value
is set. Therefore, the temporary values, which are present only

2013 IEEE International Conference on Evolvable Systems (ICES) 45

for a limited amount of time, have to be explicitly specified
by their start and end time.

The second supported approach is defining the environment
by a reactive finite state machine which generates new inputs
for the HW/SW system on the basis of the HW/SW system
outputs and an internal state of the environment.

IV. EVOLUTIONARY FRAMEWORK

Having the model of the problem defined, the evolution
framework can be specified. This framework is supposed to
serve as a tool for evolutionary design and optimization of
HW/SW systems. First of all, it is crucial to define which
parts of the HW/SW system can be changed by the evolution
framework. Considering the HW, there are three parts that
should be included – registers, modules and instruction set.
The interconnections between the registers and modules do
not have to be included in the process of evolution, because
they can easily be derived from the modules, registers and
microinstructions used. In terms of SW there is only one thing
to be evolved – the program itself.

The next step is determining the search method that should
be used. Considering the fact that the SW part of the system
is represented by one–dimensional array of instruction blocks
and the programs are executed in sequentional manner, Linear
Genetic Programming (LGP) [2] seems to be the best solution.
However, to be able to evolve also the HW part of the system,
LGP has to be modified. The modifications will be discussed
in following sections.

A. Individual encoding

Since the individual has to encode both HW and SW part,
the chromosome structure has to be heterogenous.

The HW part of the architecture represents the usage and
bit widths of the registers and the usage of the modules. The
encoding needs to fulfill some special requirements. The most
important requirement is that the program stays valid indepen-
dently of the HW architecture changes. For example, when
a register is removed, the program still has to be valid and
executable. The proposed method deals with this problem in a
quite straighforward way. Each register has its width specified.
When the width is set to zero, the effect is the same as if the
register was removed, but all the instructions can be executed
the same way as before. If the module is to be removed, it is
just marked as inactive. During the instruction execution the
outputs of inactive modules are ommited. Using this approach,
the HW architecture can be represented as a heterogenous array
containing all the forementioned information.

Fig. 4. HW encoding

Figure 4 shows that the HW part of a chromosome
contains r integers representing register widths and m bit
values representing the utilization of modules. These individual
numbers are considered as genes, in terms of LGP, and their
counts are always constant. This property is particularly useful
when performing the crossover operation. The SW part of
the chromosome is encoded in such a way that individual
instruction blocks are considered as genes and the whole
program sequence equals to the SW part of a chromosome.

B. Generating the initial population

Considering the chosen individual encoding scheme, the
program can be generated very simply. It is sufficient to
randomly generate the instructions according to the maximal
program length specified. Some of the instructions use a
parameter, so it also has to be specified. Since the parameter
depends on instruction type, the valid parameter range has to
be specified for each instruction type. These ranges have some
default values, but all of them can be redefined by user. The
specification of parameter ranges can be very difficult since the
program will be modified during the evolution and the instruc-
tions can change their positions. For example, when a jump
instruction is generated with jump offset of 10 instructions and
during the evolution this instruction is moved to be e.g. just
4 instructions from end of the program, the instruction will
be invalid, because it is pointing outside the program. This
issue can be addressed by checking program validity during
the evolution. As this operation can be very time consuming,
another approach was chosen. When a jump exceeding the
program range is detected, it is limited to the beginning or
end of the program depending on its direction. Therefore,
the range can be the same for all the jump instructions
regardless of their position in a program. Given this condition
the parameters can be generated using Gaussian distribution
having the mean value in a center of the range and standard
deviation determined by the 3σ rule.

C. Computing the fitness function

As the problem is inherently multiobjective, the fitness
is not just a single value. There are four objectives to be
reflected in the fitness – speed, area, power consumption and
functionality (i.e. correctness of the output signals). The overall
fitness can be represented as:

�f = (fa, fp, fs, fo)

The area is expressend in terms of the fitness value as

fa =
1

1 +
m∑
i=1

{
ai if u(Mi) = 1
0 if u(Mi) = 0

=
1

1 +
m∑
i=1

u(Mi)ai

,

where ai is the area of corresponding module Mi. The function
takes into account, via the u predicate, only the modules used
in the final phenotype.

The power consumption fitness can be evaluated in a
similar manner as

fp =
1

1 +
m∑
i=1

u(Mi)pi

,

46 2013 IEEE International Conference on Evolvable Systems (ICES)

where pi is power consumption of respective module Mi.

The speed of computation depends just on the processing
time:

fs =
1

1 + T
,

where T is total processing time of the program.

The functionality depends on the HW/SW system outputs
generated during the execution of a program.

fo =

ne∑
i=1

{
1 if ei = oi

1
1+(ei−oi)2

otherwise =

ne∑
i=1

1

1 + (ei − oi)2
,

where ei is ith item from the sequence of expected outputs
(e1, e2, ...en) and oi is the ith output generated by the HW/SW
system.

The above-mentioned functions are predefined in the design
framework. However, they can be modified by user. It can be
useful e.g. when the user is concerned only in satisfying some
boundary conditions. For example the fitness dealing with the
time of execution can be specified as

fs =

{
1 if T < Tmax

1
1+T otherwise

.

This means that the individuals with processing time less than
the maximal allowed time Tmax will have the highest fitness
while other individuals will have the fitness proportional to
their execution time in the range from 0 to 1.

The fo fitness is usually obtained by comparing the output
values produced by an individual with expected output values.
This comparison can be done in several ways ranging from
simple Euclidean distance up to complex functions considering
also the relations between individual outputs. The choice of
the fitness function can strongly influence the success rate and
speed of LGP.

Because the fitness is represented by a vector of compo-
nents, there has to be an algorithm to compare two fitness
values. There are many possibilities of doing such comparison.
One of them is choosing the importance of components (i.e.
sorting them). Then two vectors can be compared easily by
comparing their components in a chosen order. The drawback
of this method is the need to sort the components by their
importance, because the evolution will always try to prefer
search in one direction. However, there is often a need to
find solutions from different parts of the search space, e.g.
fast but large solutions and small but slow solutions or their
combinations. The designer can then choose the solution which
suites best some particular use. In short, all the nondominated
solutions should have the highest fitness.

There are multiobjective algorithms that address this issue,
e.g. NSGA–II (nondominated sorting genetic algorithm – see
[13]) or ISMAUT (Imprecisely Specified Multi–Attribute Util-
ity Theory – see [14]). The proposed method uses NSGA–II
as the method for finding nondominated solutions. It sorts the
individuals into ranks by putting the nondominated solutions
into the first rank, removing them from the set, then taking
nondominated solutions from the remaining set and placing
them in the second rank etc. Solutions inside a rank are then
sorted by mean Euclidean distance from the other solutions

in the same rank, where the solutions with bigger mean
distance are considered better. During the expriments with the
proposed method, one disadvantage had been observed. At the
beginning of the evolution when none of the individuals has the
functionality fo greater than zero, the solutions occupying less
HW resources are preferred. This consequently leads to a state
when all the individuals have minimal HW and the solution
cannot be found due to insufficient HW resources. To address
this issue, only functionality can be taken into account at the
beginning of evolution. Once it reaches a predefined value,
NSGA–II is employed.

D. Selection

Having the fitness function and comparison method de-
fined, the selection can be performed. There are several selec-
tion methods, that can be used. Due to the use of NSGA–II
algorithm the fitness proportional selection cannot be directly
used, because the fitness vector cannot be converted to scalar
value in a simple manner. Tournament selection was chosen
from the remaining methods because of its advantages, namely
the possibility to easily change the selection pressure.

E. Crossover

After the individuals selection, the crossover takes place.
Considering the forementioned chromosome structure there are
several crossover methods that can be used. The proposed
framework allows specifying the number of parents and the
number of crossover points. The two point crossover was
chosen as default, as it led to the best results on most of the
experiments performed so far.

F. Mutation

Because the chromosome of the individual is heterogenous
in the proposed encoding, certain mutation types can be
performed only on some genes (e.g. a HW mutation can be
executed only on genes from the HW part of a chromosome).

HW mutation can basically influence registers, modules
and instruction set. The first of the mutation types modifies
the width of the register. The register is randomly chosen
using the uniform probability distribution, so the probability of
modification is the same for all the registers. Then, its width
is changed by nrand bits, where nrand is generated using the
Gaussian probability. The Gaussian mutation was chosen, as
it is considered superior to the traditional bit-flip mutation in
most cases regarding the numeric value mutation [15]. The
resulting width must lie in range from 0 to maximal allowed
width. When the register has the width of 0 bits, it is considered
unused. Hence, this mutation can effectively reduce the number
of registers.

The second type modifies the module usage. As availability
of each module is represented by one bit, the module usage
can be changed by simply flipping its respective bit. The bit
that will be flipped is randomly chosen using the uniform
distribution.

The last part of the architecture that can be affected
by mutation is the instruction set. There is a possibility to
change the instruction set, e.g. by adding new instruction that
will contain a sequence of two already existing instructions.

2013 IEEE International Conference on Evolvable Systems (ICES) 47

Such instruction can become a building block that speeds up
program evolution. To be able to generate suitable instructions
some statistics of used instructions and their relative order
in individuals with higher fitness would need to be done.
However, this functionality has not been implemented yet.

SW mutation can modify the program in terms of instruc-
tions, their types, parameters, inputs/outputs specification and
order. First of all, the instruction block is selected using the
uniform distribution. Then, the specific microinstruction can be
selected within the block again using the uniform distribution.
All the microinstructions, therefore, have the same probability
to be selected. When the microinstruction is selected, the
mutation types that will be applied are chosen by generating
random numbers and comparing them to probabilities of
mutation types.

The first mutation type changes the microinstruction as a
whole. It selects the microinstruction from the instruction set
and checks the valid range of the parameters and inputs/outputs
indices against the parameters of the original microinstruction.
If the parameter is out of range, the new one is generated the
same way as during the initial population generation.

The second type of mutation changes only the parameter of
the microinstruction. The original parameter is changed by the
value randomly generated using Gaussian distribution while
preserving the validity of the parameter value.

The third type changes the input and output indices of
the microinstruction. New index is generated in compliance
with constraints determined by the instruction specification
contained in the instruction set.

The last type of mutation doesn’t modify the microinstruc-
tion itself, but its position in a program. It randomly selects
the position offset using Gaussian distribution and then moves
the whole instruction block by the offset generated.

Operator probability adaptation: The last important
thing about genetic operators is the specification of their prob-
abilities. Choosing the most suitable probabilities of crossover
and mutation can be quite complex task by itself. Proposed
method addresses this problem by introducing self–adaptive
probabilities. At the beginning of the evolution the operator
probabilities are set to initial values and the evolution starts.
Every time some operator is carried out, the fitness of the
modified individual is computed and compared with the fitness
of the original individual. If it is greater, the score of respective
operator will be increased by one. After the specified number
of generations the usefulness of individual types is evaluated.
The most useful types (i.e. those with the highest score) will
get their probabilities increased, whereas the probabilities of
unusefull types will lower.

V. EXPERIMENTAL RESULTS

Several experiments were carried out to verify the proposed
method. This section contains some of them and also a
comparison with similar methods. It is, however, important
to keep in mind that the proposed method has to also deal
with evolution of hardware part whereas available methods
are used to develop just the software part. Another reason
for performing the experiments was also the need to find
out some useful information about the method itself, e.g.

what are the most useful operators, whether a population size
influences speed of the evolution etc. The experiments chosen
are quite simple, mainly because the proposed method is
still under development and these experiments were supposed
to verify core functionality of the method. More complex
experiments will be performed in the future. The second reason
for choosing these experiments was the need to compare the
proposed method with similar methods. The experiments were,
therefore, selected from the limited set of experiments common
to the methods compared.

Preparation of an experiment is quite straightforward. First
of all, the environment, available modules, registers count,
fitness function and termination condition must be specified.
Available modules and registers count can be overestimated,
because the evolution will optimize the architecture. Remain-
ing parameters of LGP can be left at their default values.

Common experiment parameters If not stated otherwise
the experiments were performed with the parameters listed
in Table I. Parameters that differ among the experiments
are specified in each experiment’s subsection. Two types of
modules were used in experiments. The first one (entitled
ALU) implements a simple ALU that can perform addition,
subtraction, incrementation and decrementation. The other one
(entitled MD) is a module implementing multiplication and
division operations.

TABLE I. COMMON EXPERIMENT PARAMETERS

Parameter Value

Register count 3

Default register width 32b

HW/SW system inputs count 1

HW/SW system outputs count 1

Program size 20 instruction blocks

Population size 5

Maximal number of generations 200,000

Crossover probability 0

Mutation probability 0.7

A. Fibonacci series

The goal of this experiment was to find a micropro-
grammed architecture generating the first 11 numbers of Fi-
bonacci series. This count was chosen to illustrate the possibil-
ities of hardware optimization. In this case the HW/SW system
has no inputs and one output. Two instances of ALU module
were chosen as the only available modules. The functionality
fitness function was defined as

fo =

ne∑
i=1

{
1 if ei = oi
0 otherwise

.

After performing several runs, some solutions were found.
Software part of one of these solutions is shown in Figure 5
(operations with no effect have been omitted to make the
figure clear). This solution uses only one of the two available
modules. The registers widths are 6 and 7 bits. Notice that the
registers have the smallest possible widths to be able to store
the last two numbers to be found. Therefore, it is the optimal
solution in terms of total area used.

Then the evolution was set to stop when the fitness value
of the best individual reaches 11 and the total area of the

48 2013 IEEE International Conference on Evolvable Systems (ICES)

LOAD r1, 1
ADD r1, r2 -> r2
OUT r1
OUT r1
ADD r1, r2 -> r1
OUT r1
ADD r1, r2 -> r2
OUT r2
JMP -4

Fig. 5. Software part of one of the solutions of Fibonacci experiment

microarchitecture is minimal. After defining these parameters
several runs were performed with various combinations of
crossover and mutation probabilities. Figure 6 shows the
computational effort (calculated according to [16]) obtained for
each combination of mutation and crossover probability using
20 independent runs. It can be seen that the computational
effort increases with increasing crossover probability. Hence,
the crossover should not be used in this case. The probability
of mutation should be approximately 0.7.

Fig. 6. Computational effort for Fibonacci experiment with respect to various
probabilities of crossover and mutation

Next modification of the experiment was supposed to show
how the population size affects the computational effort. 50
independent runs were performed with various population
sizes, while the number of evaluations remained constant. For
each population size some runs were constrained by a total
area allowed on a chip. This constraint was implemented by
a termination condition, which was set to stop the evolution
when all the ouputs were correct and the area was minimal.
Some other runs did not take this constraint into account.
The rest of the LGP parameters remained identical with the
previous experiment. Figure 7 shows that the computational
effort decreases with decreasing population size regardless of
whether the area constraints are taken into account or not.

B. Squares

This experiment was supposed to find a microarchitecture
outputting the squares of the input values. The environment

Fig. 7. Comparison of computational effort for Fibonacci experiment
regarding the different sizes of population and HW optimization

was specified in such way that the input value stays unmodified
until a new value is available at the circuit output. Then, the
input value is changed and stays at this value until next output
is provided. The fitness function is defined in the same way
as in the previous experiment. The termination condition was
set to stop the evolution when the best individual reaches
the maximal possible fitness in terms of correctness. The
experiment was split into two parts. In the first part the allowed
modules were 1xMD and 1xALU. As can be seen in Table II,
the evolution was able to find a solution in both cases, although
the computational effort is significantly higher in the second
case due to the fact it has to evolve a program consisting of
two nested loops – the inner one computing the square and
the outer one iterating through the inputs.

TABLE II. COMPARISON OF COMPUTATIONAL EFFORT OF SQUARES

EXPERIMENT WITH RESPECT TO AVAILABLE MODULES

Computational Effort Ratio

With MD 32,000 1.0

Without MD 17,790,000 555.9

C. Sextic polynomial

This experiment was chosen mainly to compare the pro-
posed method with existing methods in the field of symbolic
regression. The environment was defined the same way as
in the previous experiment. The polynomial to be found was
x6 − 2x4 + x2. The available modules were chosen so all the
operations typically used by other methods were implemented
(i.e. 1xADD module and 1xMD module). The termination
condition was set to stop LGP when all the values of the
training set consisting of 20 samples were found by a candidate
program. The computational effort estimated from 100 runs is
shown in Table III together with computational efforts of other
methods for comparison.

VI. CONCLUSION

We have shown that the proposed method can evolve
microprogrammed architectures capable of solving some of
typical problems that were approached by GP in the past.

2013 IEEE International Conference on Evolvable Systems (ICES) 49

TABLE III. COMPARISON OF EXPERIMENTAL RESULTS WITH OTHER

METHODS

Method Computational Effort Ratio

GPP M1,2 [17] 5,310,000 5.4

GP [16] 1,440,000 1.5

Proposed solution 990,000 1.0

GPP M8,8 [17] 540,000 0.5

In some cases the proposed method provides better results in
terms of computational effort. The method, therefore, seems
promising for further exploration.

The main goal of our upcoming research will be improving
the method to be usable in real-world problems and under hard
constraints such as iterative computation of

√
x2 + y2 using

only addition, subtraction and shift operations. We will try to
achieve this goal by implementing some techniques that proved
useful in decreasing the computational effort needed to find a
solution, such as automatically defined functions [16]. Another
subject to explore could be parallelization in terms of speeding
up the evaluation but also lowering the computational effort
(see [17]).

ACKNOWLEDGMENT

This work was supported by the Czech science foundation
project P103/10/1517.

REFERENCES

[1] J. E. Volder, “The cordic trigonometric computing technique,” IRE
Transactions on Electronic Computers, vol. EC-8, no. 3, pp. 330 –334,
1959.

[2] M. Brameier and W. Banzhaf, Linear Genetic Programming. Berlin:
Springer Verlag, 2007.

[3] G. D. Micheli and R. K. Gupta, “Hardware/software co-design,” IEEE
MICRO, vol. 85, no. 3, pp. 349–365, 1997.

[4] M. Chiodo, P. Giusto, A. Jurecska, A. Sangiovanni-Vincentelli, and
L. Lavagno, “Hardware-software codesign of embedded systems,” IEEE
Micro, vol. 14, no. 4, pp. 26–36, 1994.

[5] R. P. Dick and N. K. Jha, “Mogac: a multiobjective genetic algorithm for
hardware-software cosynthesis of distributed embedded systems,” IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 17, no. 10, pp.
920–935, 1998.

[6] M. López-Vallejo and J. C. López, “On the hardware-software parti-
tioning problem: System modeling and partitioning techniques,” ACM
Trans. Des. Autom. Electron. Syst., vol. 8, no. 3, pp. 269–297, 2003.

[7] T. Wiangtong, P. Y. K. Cheung, and W. Luk, “Comparing three heuristic
search methods for functional partitioning in hardware-software code-
sign,” Design Autom. for Emb. Sys., vol. 6, no. 4, pp. 425–449, 2002.

[8] L. Shang, R. P. Dick, and N. K. Jha, “Slopes: Hardware-software
cosynthesis of low-power real-time distributed embedded systems with
dynamically reconfigurable fpgas,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 26, no. 3, pp. 508–526, 2007.

[9] G. Tempesti, P.-A. Mudry, and G. Zufferey, “Hardware/software coevo-
lution of genome programs and cellular processors,” in First NASA/ESA
Conference on Adaptive Hardware and Systems (AHS 2006). IEEE
Computer Society, 2006, pp. 129–136.

[10] S. M. Cheang, K. S. Leung, and K. H. Lee, “Genetic parallel program-
ming: design and implementation,” Evol. Comput., vol. 14, no. 2, pp.
129–156, 2006.

[11] S. Deniziak and A. Gorski, “Hardware/software co-synthesis of dis-
tributed embedded systems using genetic programming,” in Evolvable
Systems: From Biology to Hardware, ser. LNCS, vol. 5216. Springer,
2008, pp. 83–93.

[12] M. Minarik and L. Sekanina, “Evolution of iterative formulas using
cartesian genetic programming,” in Knowledge-Based and Intelligent
Information and Engineering Systems - 15th International Conference,
KES 2011, Part I, ser. LNCS, vol. 6881. Springer, 2011, pp. 11–20.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” Evolutionary Computa-
tion, IEEE Transactions on, vol. 6, no. 2, pp. 182–197, Apr. 2002.

[14] B. S. Ahn, “Multiattribute decision aid with extended ismaut,” Systems,
Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions
on, vol. 36, no. 3, pp. 507 –520, may 2006.

[15] R. Hinterding, “Gaussian mutation and self-adaption for numeric ge-
netic algorithms,” in Evolutionary Computation, 1995., IEEE Interna-
tional Conference on, vol. 1, 29 1995-dec. 1 1995, pp. 384–389.

[16] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge, MA: MIT Press, 1994.

[17] K. S. Leung, K. H. Lee, and S. M. Cheang, “Parallel programs are
more evolvable than sequential programs,” in Proceedings of the 6th
European conference on Genetic programming, ser. EuroGP’03. Berlin,
Heidelberg: Springer-Verlag, 2003, pp. 107–118.

50 2013 IEEE International Conference on Evolvable Systems (ICES)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

