
Multiobjective Evolution of Approximate Multiple
Constant Multipliers

Jiri Petrlik
Brno University of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech republic
Email: ipetrlik@fit.vutbr.cz

Lukas Sekanina
Brno University of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech republic
Email: sekanina@fit.vutbr.cz

Abstract—Multiple constant multiplier (MCM) is a digital
circuit which multiplies its single input by N constants. As
MCMs are composed of adders and shifters, their implementation
cost is relatively low. In this paper, we propose a method for
design of approximate multiple constant multipliers where the
requirement on functional equivalence between the specification
and implementation is relaxed in order to further reduce the area
on a chip or minimize delay. The proposed method is based on
multiobjective Cartesian Genetic Programming. It provides many
trade-off solutions among accuracy, area and delay.

I. INTRODUCTION

Multiple constant multiplier (MCM) is a digital circuit
which multiplies its single input by N constants. It consists
of adders, subtractors and shifters. As no multipliers are used,
the hardware implementation of MCMs is quite inexpensive.
MCMs are often utilized in low power finite-impulse-response
(FIR) filters. In order to design a MCM, various heuristics
have been proposed [1]. In this task, the main challenge is
to minimize the number of adders/subtractors and delay for
complex problem instances. It was also shown that MCMs
can successfully be designed by evolutionary methods such
as Cartesian Genetic Programming (CGP). In some cases the
evolutionary methods can provide even better results than the
best heuristics [2], [11].

In approximate circuits the requirement on functional
equivalence between the specification and implementation is
relaxed [3]. For these circuits it is possible to sacrifice a small
amount of accuracy in order to obtain a solution which exhibits
properties unreachable by fully functional solutions. Approx-
imate circuits have initially been constructed manually, e.g.
by removing those parts of existing fully functional designs
that did not contribute to the result significantly. The current
trend is to create general systematic design methods capable
of constructing approximate circuits which never exceed a
predefined error [4].

In this paper, we propose a method which can provide
MCMs multiplying the input by slightly different constants
than the specification requires. It leads to the delay and/or com-
ponent reduction in comparision with the exact solution. Our
method for the MCM design is multiobjective which means
that we optimize a circuit with respect to more objectives. If the
optimized objectives are conflicting, the goal of multiobjective
optimization is to find many trade-offs among these objectives.

In our work, we focus on the situation in which the accuracy
and other parameters like the number of components or delay
are optimized at the same time. At the end of the optimization
we should find many so-called Pareto optimal trade-offs.

The rest of this paper is organized as follows. Section II
describes main principles of CGP, especially the multiobjective
CGP. In Section III, the proposed method is introduced.
Section IV contains experimental results and discussion. Con-
clusions are given in Section V.

II. MULTIOBJECTIVE CARTESIAN GENETIC
PROGRAMMING

A. Cartesian Genetic Programming

Cartesian genetic programming is a branch of genetic
programming. In CGP a candidate solution is represented as a
directed acyclic graph, which differs from traditional genetic
programming, where the solution is represented as a tree [5].
It has been shown that CGP can successfully be used for
design of variety kinds of circuits such as arithmetic circuits,
filters, etc. [6]. The CGP representation is based on a grid
of computational nodes. Each of these nodes can hold one of
predefined functions and its inputs can be connected either to
the outputs of nodes of previous columns or to the primary
inputs. Information about functions and interconnection of the
nodes is represented in an array of integer values called the
chromosome.

The search algorithm commonly used in CGP is inspired in
the (1+λ) evolutionary strategy [6]. It works as follows: (1) At
the beginning 1+λ randomly generated solutions are created to
form the initial population. (2) The quality of solutions is then
evaluated using the fitness function. (3) The best solution (the
parent) is identified. (4) New λ solutions are created using
a mutation operator from the parent. (5) If the termination
condition is not fulfilled, then step 2 is taken, otherwise, the
fittest solution is the result of CGP. The mutation operator
randomly determines α items (genes) in the chromosome and
changes their values.

B. Multiobjective CGP

CGP has been proposed as a single objective evolutionary
design method [5]. A multiobjective optimization problem is
defined as



minimize/maximize fm(x), m = 1, 2, ...,M
subject to gj(x) ≥ 0 j = 1, 2, ..., J

hk(x) = 0 k = 1, 2, ...,K

where fi are optimized functions, which we try to minimize
or maximize. The solutions must fulfill some constraints to
be acceptable. We can define two kinds of constraints. The
inequity constraints are defined by functions gj and equity
constraints are defined by functions hk [7].

Many evolutionary methods for the multiobjective opti-
mization have been proposed. Most of them are based on
the idea of Pareto dominance and Pareto optimality. Pareto
dominance can be used for comparisons of solutions with
multiple objectives. We can say that the solution x dominates
the solution y, if the following two conditions hold. (1) The
solution x is no worse than y in all objectives. (2) The solution
x is strictly better for at least one objective than y. Pareto-
optimal solution x is a solution for which any other solution
y which dominates x does not exist. The goal of multiob-
jective optimization is to find Pareto-optimal solutions. If the
objectives are conflicting, there can exist many Pareto optimal
solutions. Then the goal of the multiobjective optimization is
to find possibly all Pareto optimal trade-offs among them.

Evolutionary algorithms are usually successful in multiob-
jective optimization, because they internally work with a set
of candidate solutions. NSGA-II is a genetic algorithm which
can be used for multiobjective optimization [8]. It is based
on sorting individuals according to the dominance relation. A
method for multiobjective CGP was proposed in [9]. It uses
a modified NSGA-II algorithm instead of the 1 + λ search
strategy. A few modifications of the NSGA-II is proposed. One
of them is such that the correct functionality is considered as a
constraint. It means that if a circuit is not functionally correct,
the solution is infeasible and it is not evaluated further. Whilst
the algorithm is searching for functionally correct circuits, it
uses the (µ+ λ) evolutionary strategy.

III. PROPOSED METHOD

In previous approaches to multiobjective CGP, the function-
ality was considered as a constraint (which must be fulfilled)
rather than an optimized objective. Our approach relaxes this
constraint. It allows MCM circuits to multiply the input by
slightly different constants than it is defined in the specifica-
tion. The method enables us to obtain many Pareto optimal
trade-offs among accuracy and other objectives such as the
number of components and delay. At the end of evolution,
the designer can choose a proper circuit, which shows an
acceptable accuracy and area/delay.

The goal is to create a MCM multiplier with N constants.
Let y1, y2, . . . , yn be desired constants and let y′

1, y
′
2, . . . , y

′
n

be constants implemented by a candidate circuit. In the mul-
tiobjective CGP, there is defined the following constraint

N∑
i=1

|(yi − y′
i)| = 0 (1)

which is fulfilled by candidate circuits which multiply the
input by those constants that are given in the specification. We
propose to redefine this constraint to

Fig. 1. Relation between optimized function ferr and acceptable treshold
E. When ferr > E then the solution is infeasible.

N∑
i=1

(yi − y′
i)

2 < E (2)

where E defines the maximal acceptable difference among
the desired outputs and the outputs of the candidate circuit.
This constant can be set by user according to his/her demands.
The second modification of our method consists in introducing
a new fitness function ferr reflecting the accuracy

ferr =
N∑

i=1

(yi − y′
i)

2. (3)

In order to optimize the number of components (f1), adders
(f2) and delay (f3), we will obtain four fitness functions
to optimize: f1, f2, f3 and ferr. We expect many Pareto
optimal trade-offs among these four objectives, but solutions
will always stay within some acceptable accuracy level defined
by E.

The situation with the constraint defined by E and the
newly added objective function ferr is depicted in Fig. 1.
The horizontal axis shows the values of ferr, the vertical axis
gives the values of some objective function fi (delay, etc.).
The Pareto optimal solutions are marked by black dots. It is
possible to see decreasing values of function fi, which has to
be minimized. But on the other hand, ferr, which describes
the difference against desired output values, is growing. At
some threshold, when ferr is high, we consider the solution
unacceptable. This threshold is defined by constant E. In
our method, we have utilized the NSGA-II algorithm with
controlled elitism [10] to achieve this goal.

IV. EXPERIMENTAL RESULTS

In order to evaluate the proposed method, six different
MCMs containing 3, 5, 8, 10, 15 and 20 constants were
chosen (Tab. I). The objective is to minimize the number
of components, the number of adders/subtractors and delay.
The number of adders/subtractors means the number of active



Fig. 2. Three different implementations of MCM with constants (83, 221, 71, 387, 13). Exact solution (left), ferr = 13 (middle) and ferr = 85 (right).

nodes of CGP, which are used as adders or subtractors. The
number of components is the number of adders/subtractors and
shifters together. Delay is the longest path between the input
and output computed as the number of nodes along this path.

For each MCM, we performed 20 independent runs of CGP
(12× 10 nodes utilized). The values of other CGP parameters
are: λ = 100; the number of generations 20.106; α = 7, and
E = 250. This CGP setting was determined on the basis of
our previous experience [11], [6]. The set of functions consists
of adder, subtractor and 1 – 15-bit left shift operations. Table I
gives the average time to perform one million generations of
CGP on an Intel Xeon 5355 CPU running at 2.66 GHz.

Fig. 2 shows three different implementations of the MCM
(5 constants) obtained from a single run of the algorithm. The
exact solution (ferr = 0) is depicted on the left-hand side. It
contains the highest number of computational nodes (13). On
the right-hand side there is depicted the MCM with ferr =
85, which utilizes only 6 computational nodes. A compromise
implementation between these two solutions is shown in the
middle of Fig. 2.

TABLE I. SETS OF MCM COEFFICIENTS USED FOR EVALUATION OF
THE PROPOSED METHOD.

N CGP time
(the number of Values of constants (1 million

constants) generations)
3 2925, 23111, 13781 27 m 28 s
5 83, 221, 71, 387, 13 27 m 24 s
8 5, 31, 105, 107, 541, 27 m 35 s

611, 721, 123314
10 117, 1123, 743, 221, 1069, 26 m 50 s

7605, 987, 16689, 3033, 29
15 3, 8, 33, 104, 109, 511, 621, 831, 26 m 47 s

1001, 1031, 2000, 2002, 2411, 123314, 124211
20 1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 29 m 1 s

41, 43, 47, 53, 59, 61, 67, 71

Fig. 3 shows Pareto fronts obtained. One can see that
with increasing ferr other fitness values are decreasing. The
results of our method were compared with results reported
in papers [2], [11] which do not consider the approximate

design scenario. The best results for the MCM with 3 constants
are given in Table II. Implementations showing various trade-
offs can easily be identified. Fig. 4 shows the progress of
optimization of the 8-constant MCM. Average fitness values
calculated from the best individual of each generation and each
run are reported.

TABLE II. TRADE-OFFS OBTAINED FOR THE MCM WITH
COEFFICIENTS 2925, 23111 AND 13781.

ferr Number of operations Adders/Subtractors Delay
0 by [1] 16 8 8
0 by [2] 14 8 7

1 15 8 6
1 16 8 5
1 14 8 7
1 15 9 5
2 15 8 5
2 13 7 6
5 12 6 6
5 11 6 7
5 14 7 5
9 19 11 4
10 17 9 4
11 16 8 4
19 13 6 5
35 12 6 5
35 15 8 4
83 12 5 7

179 14 7 4

V. CONCLUSIONS

A new method for design of approximate MCMs was
proposed. In this method, the requirement on functional equiv-
alence between the specification and implementation is relaxed
in order to reduce the number of adders/subtractors and delay.
Initial experiments have confirmed that approximate MCMs
can be evolved. In our future work we will evaluate the method
using more complex MCMs. Another goal is to reduce the
computational time.



Fig. 3. The best obtained trade-offs for MCMs from Table I.

Fig. 4. The progress of evolution for the MCM with 8 coefficients. Best
results averaged from 20 independent runs are shown.

ACKNOWLEDGMENT

This work was supported by IT4Innovations Centre of
Excellence CZ.1.05/1.1.00/02.0070, the Czech Science Foun-
dation project P103/10/1517 and the research program MSM
0021630528.

REFERENCES

[1] Voronenko, Y. and Püschel, M., Multiplierless Multiple Constant Mul-
tiplication, ACM Transactions on Algorithms, vol. 3, no. 2, 2007, pp.
1–28

[2] Vasicek, Z., Zadnik, M., Sekanina, L. and Tobola, J., On Evolutionary
Synthesis of Linear Transforms in FPGA, In Proc. of the Conference on
Evolvable Systems: From Biology to Hardware, LNCS 5216, Springer
Verlag, 2008, pp. 141–152

[3] Kulkarni, P., Gupta, P., Ercegovac, M., Trading Accuracy for Power
with an Underdesigned Multiplier Architecture, VLSI Design, 24th
International Conference on VLSI Design, 2011, pp. 346–351

[4] Venkatarami, S., Sabne, A., Kozhikkottu, J., Kaushik, R., Raghunatan,
A., SALSA: systematic logic synthesis of approximate circuits, The
49th Annual Design Automation Conference 2012, DAC’12, ACM,
2012, pp. 796–801

[5] Miller, J., F. and Thomson, P., Cartesian Genetic Programming, In Pro-
ceedings of the Third European Conference on Genetic Programming
(EuroGP2000). LNCS 1802, Springer Verlag, 2000, pp. 121–132

[6] Miller, J., F., et. al., Cartesian Genetic Programming. Springer, Heidel-
berg, 2011

[7] Deb, K., Multi-objective Optimization Using Evolutionary Algorithms.
Chichester, UK: Wiley, 2003

[8] Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T., A fast and
elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evolut.
Comput. 6 (2), pp. 182–197, 2002

[9] Hilder, J., Walker, J., A., Tyrrell, A., Use of Multi-Objective Fit-
ness Function to Improve Cartesian Genetic Programming Circuits,
NASA/ESA Conference on Adaptive Hardware and Systems, 2010, pp.
179–185

[10] Deb, K. and Goel, T., Controlled Elitist Non-dominated Sorting Genetic
Algorithms for Better Convergence, In Proc. of the Evolutionary Multi-
Criterion Optimization, LNCS 1993, Springer, 2001, pp. 67–81

[11] Petrlik, J., Sekanina, L., Multiobjective evolution of multiple constant
multipliers, In Proc. of the 18th Int. Conference on Soft Computing
Mendel, Brno, 2012, pp. 64–69


