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Abstract—The limitations of reconfigurable chips have al-
ways raised barriers for evolvable hardware. Zynq-7000 all
programmable system-on-chip, the recent innovation in the re-
configurable field offers new possibilities for bypassing once again
these barriers. In this paper, evolvable hardware implementations
are considered on this new Zynq platform. The possibilities
of the platform are demonstrated by evolutionary design of
switching image filters. The investigated implementations include
virtual reconfigurable circuits and the use of dynamic partial
reconfiguration. The achieved results demonstrate the advantages
and disadvantages of the Zynq platform. The observations are
intended to be useful for designers who are going to develop
evolvable hardware on this new platform.

I. INTRODUCTION

Evolvable hardware (EHW) is a collective term which
usually refers to either evolutionary hardware design or adap-
tive hardware. Evolutionary hardware design is based on the
development of hardware by the use of evolutionary algorithms
(EAs) or other bio-inspired methods. The goal of adaptive
hardware is self-adaptation to changing environmental condi-
tions or self-repair in the presence of faults [1], [2].

EHW utilizes many types of reconfigurable devices includ-
ing field programmable analog arrays, reconfigurable anten-
nas, mirrors, special reconfigurable materials but field pro-
grammable gate arrays (FPGAs) are the most popular ones [1].
The creativity of EHW designers has always been limited by
the possibilities offered by the available FPGAs. The XC6200
family of FPGAs was an almost ideal platform for EHW since
the device configuration could be directly generated by an EA.
The first experiments with this device family [3] motivated
many researchers. Later, newer FPGAs had insufficient support
for reconfiguration which gave inspiration to introduce virtual
reconfigurable circuits (VRCs) for EHW. VRCs subsequently
proved to be very successful in many application domains [4]–
[6].

Recent Virtex FPGAs have better support for reconfigura-
tion. Their features include internal configuration access port
(ICAP) which allows the FPGA to reconfigure itself by an on-
chip hard or soft processor. This progress made available to
develop EHW using native reconfiguration of FPGAs [7]–[9].
Mainly Xilinx FPGAs are used for EHW [1] therefore, FPGAs
from other manufacturers are not studied in this paper.

Zynq-7000 all programmable (AP) system-on-chip (SoC)
introduced in 2011 by Xilinx is a reconfigurable SoC. It inte-
grates programmable logic (PL) compatible with other 7-series
FPGAs and a processing system (PS) with a dual-core ARM
processor [10]. It is an interesting and potentially beneficial

platform for EHW because among others, the processor is very
powerful with various operational modes and can exploit the
attached PL.

In this paper, EHW implementations are considered on
the new Zynq platform. The possibilities of the platform
are demonstrated by evolutionary design of switching image
filters. The investigated implementations include VRCs and
the use of dynamic partial reconfiguration. The achieved
results demonstrate the advantages and disadvantages of the
Zynq platform. The observations are intended to be useful
for designers who are going to develop EHW on this new
platform.

The rest of the paper is organized as follows. Section II
contains the related work. Section III introduces the Zynq-
7000 AP SoC platform and evaluates its feasibility for EHW.
FPGA-based acceleration of switching image filter evolution
is discussed in Section IV. Section V discusses the achieved
results and Section VI provides final conclusions.

II. FPGA-BASED EVOLVABLE HARDWARE

FPGA-based EHW uses an EA to generate candidate chro-
mosomes. The chromosome represents the candidate circuit by
specifying the function and interconnections of configurable
resources in the FPGA. (1) The candidate circuit is config-
ured/assembled and (2) evaluated based on a fitness function.
(3) This evaluation is repeated for all candidate circuits in the
given population. The evaluation can be executed sequentially
or in parallel. (4) New populations are assembled by the use
of bio-inspired operators (e.g. crossover, mutation) until an
acceptable solution is found or some limit is exceeded (e.g. the
number of generations, the time of evolution).

The format of the configuration bit stream of the given
FPGA determines how the candidate circuit can be down-
loaded into the FPGA. If the format is open (i.e. the format is
well documented and the setup of the configuration resources
of the FPGA is known exactly) then the chromosome can be
directly used as the configuration bit stream. The XC6200
family is an example of this class of FPGAs.

If the format of the bit stream is not documented well
enough in detail then the EA needs to use an additional
software from the FPGA manufacturer to transform the chro-
mosome into the configuration bit stream. The use of this
software is necessary in order to ensure that the configuration
bit stream represents a valid FPGA configuration which will
not damage the FPGA. The chromosome can define in the case
of Virtex FPGAs the set of pre-generated partial bit streams.



These selected bit streams can be downloaded into the FPGA
by ICAP which establishes the candidate circuit inside the
FPGA. This process is called dynamic partial reconfiguration
(DPR).

The approach based on VRC is platform independent be-
cause VRC can be implemented in an FPGA of any kind.
It uses multiplexers to select the specified functionality of
the candidate circuit. Here, the reconfiguration means just
writing the configuration bit stream (i.e. the chromosome) into
a set of registers (the configuration sets the multiplexers which
reconfigures the circuit to the desired function).

The EA can be implemented either outside the FPGA in
a personal computer [3], [6], [11] or inside the FPGA. The
second option is currently the preferred solution [1] because
the EA is a software and the on-chip processor can execute
it very effectively. Here the reconfiguration is performed by
either VRC [12]–[14] or DPR [7]–[9]. Another approach is to
implement the EA as a specialized circuit by programmable
resources of the FPGA [15]–[17].

EHW systems based on DPR, internal reconfiguration and
EA executed by on-chip processors can nowadays be con-
sidered as the state-of-the-art [1]. They prosper from fast
DPR and EA optimized for the given application. The main
disadvantage of this DPR-based approach in comparison with
VRC is the slower reconfiguration time. On the other hand,
DPR does not need the additional multiplexers required by
VRC and therefore the operational frequency is higher and
the candidate evaluation faster [18].

The Zynq-7000 AP SoC was recently analyzed as a possible
platform for EHW [19]. Image filter evolution was considered
as the case study. VRC- and DPR-based hardware accelera-
tions were evaluated and the possible speed-up of evolution
was estimated. In this paper, VRC is also considered but
furthermore, a new hybrid VRC-DPR approach is proposed.
Previous DPR-based EHWs use hard-wired interconnections
which is a certain limitation in comparison with VRC. The
proposed hybrid approach has computationally an equal power
to the pure VRC (because there is no limitation in comparison
with VRC) what makes it a good choice for accurate compar-
ison. Previously only estimations were published concerning
the possible magnitude of hardware acceleration on the Zynq
platform. Here, the results of a successful hardware implemen-
tation are evaluated. The achieved results demonstrate that the
previous estimations were too optimistic and the DPR is not
so advantageous in comparison with VRC. Furthermore, the
control unit represents a serious limitation for both approaches.
One can assume that this is a Zynq-specific (or 7-series Xilinx
PL) problem since previous publications did not indicate
that the propagation paths inside the control unit limit the
operational frequency of the EHW system (previously the
propagation paths inside the functional part were the only
concern). The contribution of the paper can be summarized
as follows:

1) Evolutionary design of switching image filters is imple-
mented on the Zynq-7000 AP SoC platform.

2) The hybrid VRC-DPR approach is proposed which has

an equal computational power to the pure VRC-based
approach.

3) The limitation represented by the control unit is identified
and the possible solutions are discussed in detail.

III. XILINX ZYNQ-7000 AP SOC PLATFORM FOR
EVOLVABLE HARDWARE

Zynq-7000 AP SoC was introduced recently by Xilinx. It
has an ARM-based PS and a 7-series Xilinx PL fabricated with
28 nm technology. The hard on-chip processor used in the PS
is a dual-core ARM Cortex-A9. The processor is equipped
with instruction and data caches, on-chip read-only memory
(ROM) and random-access memory (RAM), external memory
interfaces, direct memory access (DMA) controller and input-
output peripherals. The PL is based on an FPGA system
similar to Artix-7 and Kintex-7 with the usual programmable
resources: configurable logic blocks (CLBs), block RAMs,
digital signal processing blocks. Among the most interesting
features is the analog-to-digital converter (ADC) which gives
the opportunity to get feedback from the real-life “analog
world” [10].

Zynq-7000 AP SoC is conceptually different from the
members of previous FPGA families. It has a PS-centric
architecture with the platform built around the processor. The
architecture of previous FPGAs was PL-centric with the on-
chip processor used only as an extension. The PS of Zynq
boots always first and the PL configuration is performed only
later. As a matter of fact, the PL cannot be powered on until
the PS is configured and operational [10].

The dual-core ARM processor can function in several
operating modes. (1) It is possible that only one of the cores
is functional and the other one is turned off. (2) Or otherwise,
both cores can be turned on. In this case they can work in a
symmetric or asymmetric way. Symmetric operational mode
exploits both cores in the service of a single operating system
(OS), or each core has its own OS in the asymmetric mode.

Configuration by ICAP requires the implementation of a
special core in the PL. This means that the PL has to be
configured before the processor can perform reconfiguration.
ICAP is supported also by the Zynq platform but a new
feature called processor configuration access port (PCAP) has
been introduced. PCAP in comparison with ICAP does not
need the implementation of any special core what makes
the reconfiguration be more consistent with the new unique
architecture. The PS can work with the PL turned off because
they have different power supplies. Later when it is required,
the PS can configure the PL. The supported download speed
of reconfiguration is 400 megabytes per second (in non-secure
configuration mode) [20].

The configuration bit stream contains instructions for syn-
chronization and configuration, and also data for configuration.
The bit stream is downloaded into the PL by DMA transfer
what allows the PS to be free and perform some other task
during the download [21], [22].

The ARM processor in the center of the architecture and
other unique features make Zynq an interesting and potentially



beneficial platform for EHW. The ADC allows measuring
environmental conditions or getting feedback from the system-
under-control, and subsequently Zynq can adapt itself to the
changed environment. It can also host the user application
natively in the PS and can use the PL only if it is necessary.
The user application can be executed by a high-level OS
with full support for the peripherals and the evolution can
be performed in the PL. The EA can run either on the same
OS as the user application or on a different OS (and the other
processor core).

The PL of Zynq consists of several configuration frames
similarly to previous FPGA families. The configuration op-
eration must work with whole frames because they are the
smallest addressable parts of the device configuration memory
space [21]. DPR can rewrite the content of these frames but
the reconfiguration of partial frames is not possible. These
frames compose larger frames which will be the only frames
considered in the rest of the paper because the current recom-
mended partial reconfiguration flow generates bit streams for
these frames only. This kind of frames contains 50 CLB in the
case of Zynq-7000 AP SoC and is organized in 50 CLB high
and 1 CLB wide rows [22]. Similar frames are defined for the
other programmable resources. These frames are much larger
than the frames of previous FPGA families (Virtex-6 had 40
CLBs and Virtex-5 only 20 CLBs) [22]. This can be considered
as a disadvantage for EHW because the EA usually changes
only small portion of the chromosome but always 50 CLBs
are needed to be reconfigured no matter how small the change
in the chromosome is. This means that Zynq will require more
than twice the time for reconfiguration in comparison with a
Virtex-5 FPGA because the frames are more than twice larger
(the speed of reconfiguration has not been improved in the
new platform).

IV. CASE STUDY: EVOLUTION OF SWITCHING IMAGE
FILTERS

The possibilities offered by EHW on the Zynq-7000 AP
SoC platform is demonstrated by the case study of switching
image filter evolution [23]. An example of switching filter is
shown in Figure 1 where i0, . . . , i8 are filter inputs, y is the
filter output, PE00, . . . , PE22 are processing elements (PEs),
f is the filtered pixel, s is the “switch” between the filtered
pixel and the current pixel i4. The filter shown in Figure 1
is unconnected. One of the tasks during filter evolution is to
interconnect these unconnected PEs. Another task is to select
the appropriate functions for these PEs (these functions are
selected usually from a pre-defined set of arithmetic and logic
operations). The main goal of the evolution is to accomplish
these two tasks in such a way that the resulting candidate filter
will be good for image filtering (the “goodness” is measured
by the fitness and is described later). The image filter in the
case study is able to filter 8-bit grayscale images, therefore,
all the wires in Figure 1 have 8 bits. The filter tries to correct
the potential damage in the current pixel denoted as i4. This is
performed by exploiting the neighbors. The filter considered
here uses a kernel of 3 × 3 which means that there are 9

filter inputs: the current pixel and the 8 neighbors. The PE
array computes the filtered pixel f and the filter switch s. The
filter switch will choose (by means of a multiplexer shown as
MUX in Figure 1) between the filtered pixel and the current
pixel. This will allow detecting if the current pixel has not been
corrupted. Consequently, the current pixel will be passed to the
filter output and the filtered image will have better quality [23].
Otherwise, the filtered pixel will become the filter output. It
should be noticed that the filter processes only one pixel at
the time; the pixels of the image are filtered sequentially.

The PE inputs can be connected to a filter input or to a PE
output from the previous l columns, where l is the level-back
parameter. If l = 1 then only neighbor PE columns can be
interconnected.

The chromosome encodes the interconnections and the
selected PE functions. This means that each PE is represented
in the chromosome by 3 numbers: 2 identifiers for the 2 input
connections and 1 identifier for the function. The filtered pixel
and the filter switch each have 1 connection-identifier in the
chromosome. This gives 3 columns × 3 rows × 3 + 1 + 1 =
29 numbers in the chromosome for the example in Figure 1.

The filter evolution is performed by the EA and the search
is directed toward better filters. The search is guided by the
fitness function which determines how good the current filter
candidate is. The fitness function used in the case study is the
following one:

c∑
i=1

r∑
j=1

∣∣y(i, j)− r(i, j)
∣∣

where c is the number of image columns, r the number of
image rows, y(i, j) the filter output and r(i, j) the correct
(reference) image pixel. This function measures the difference
between the filtered and correct images. A smaller value
indicates a better filter than a greater value. The value 0
represents an ideal filter which is able to remove all the noises
and restore the image to its original (correct) form.

In the rest of the paper, several approaches are considered of
how to implement the evolution of image filters on the Zynq-
7000 AP SoC platform. Sequential candidate evaluation will
be considered in all of the approaches.

A. Software-Based Filter Evolution

The evolution consists of the establishing and evaluation of
the candidates. Establishing a candidate means copying the
chromosome of the parent and changing (mutate) a part of it.
The mutation requires the generation of a few pseudo-random
numbers. The time spent for establishing the candidates is
negligible since the chromosome is relatively short and only
a small number of mutations are performed.

Most of the time during the evolution is spent by evaluating
the candidates. Here, several arithmetic and logic operations
are executed for all the image pixels. For example, all these
operations are executed 126 × 126 = 15 876 times for a
training image of size 128 × 128 (the border pixels are not
considered because they do not have 8 neighbors).
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Figure 2. Hardware acceleration of image filtering

The following approaches will consider the evaluation of
candidates by FPGA since the evaluation is the most time
consuming part of the filter evolution. The ARM processor
of the Zynq platform will be employed for establishing the
candidates because this can be executed by software very
effectively.

B. FPGA-Based Acceleration

The hybrid VRC-DPR approach is proposed to accelerate
the evaluation of candidate circuits. The EHW system is shown
in Figure 2 and the filter evolution is performed according to
the following steps.

1) The EA stored in external memory (shown as DDR) is
executed by the PS. The EA generates a chromosome
(which represents a candidate filter).

2) The PEs are reconfigured in a way which corresponds
to the chromosome. The reconfiguration is performed by
DPR which uses configuration bit streams for frames.
These frames are stored in external memory (DDR).

3) The interconnections of PEs are set by the config register
(corresponding part of the chromosome).

4) The training (corrupted) image is transferred kernel-by-
kernel to the PE array.

5) The filter output is transferred to the fitness unit (FU) in
order to include it into the fitness.

6) The FU computes the absolute difference of the current
(correct) pixel and the filter output. The result is accu-
mulated.

7) The accumulated result becomes the fitness value after
the whole image has been processed. The fitness is trans-
ferred to the EA. The evaluation of the next candidate
follows by repeating these steps.

The PE array is pipelined in order to achieve higher oper-
ational frequency. Each PE column corresponds to one stage
in the pipeline. Furthermore, each PE input is connected to a
multiplexer which selects the desired interconnection based on
the chromosome (config register). This means that the prop-
agation paths of these pipeline stages are determined by the
implementation of PE functions prolonged by a multiplexer.
The longest among these paths will be the critical path which
will specify the maximal operational frequency of the PE
pipeline.

The principle of the pure VRC-based approach is very
similar: the only difference is that the PE functions are set
also by the config register and not by DPR. This means that
this register contains the whole chromosome. One of the main
implications is that the reconfiguration is much faster because
writing the chromosome into the config register is very fast
in contrast to the replacement of frames by DPR. However,
all functions need to be implemented in all PEs. Firstly, this
will cause higher implementation area (more programmable
resources). Secondly, an additional multiplexer is placed at
each PE output (the multiplexer selects the PE function based
on the chromosome stored in the config register). This implies
that the propagation paths of the pipeline stages will be
determined by the implementation of PE functions prolonged
by two multiplexers. As the result, the operational frequency
of the PE array will be lower in comparison with the hybrid
VRC-DPR approach since the propagation paths are longer by
the implementation of one additional multiplexer.

C. Implementation of the Control Unit

Previous research indicates that the operational frequency
of FPGA-based EHW systems depends exclusively on the
propagation paths of the PE array. It was revealed after our
implementation on the Zynq-7000 AP SoC platform that the
control unit has also serious influence.



control

inner
control

counter
“jump”

detection
logic

state

(a) Control words based on states

control

inner
control

counter

“jump”
logic

ROM
address

(b) Control words in ROM

control

partial address

start

ROM

(c) Whole “program” in ROM

Figure 3. Control unit implementations

The first control unit implementation shown in Figure 3a is a
standard, finite state machine (FSM) style. The FSM contains
only a few states. Additional counters are used to determine
that during how many clock cycles will the FSM remain
in the given state. The counter and the additional “jump”
detection logic create longer propagation paths than those in
the PE array and therefore, the control unit will influence the
operational frequency of the filter evolution. This implies that
the hybrid VRC-DPR approach will not be able to work on
higher frequency than the pure VRC-based approach.

The second considered implementation is shown in Fig-
ure 3b. The goal was to reduce the paths by implementing
the control unit partially by ROM. In this case the “program”,
i.e. the control words containing the control signals, is stored
in the ROM and the address is generated by a counter. There is
some additional “jump” logic which implements jumps in the
program, i.e. if a given address is detected then it changes the
value of the counter. There were several program alignment
considered with this implementation style (it has influence on
the jump logic). However, even the best one resulted in an even
lower frequency than the previous low-area implementation
style.

The third implementation style was a full ROM control unit
shown in Figure 3c. The ROM in this implementation stores
the whole program, i.e. the control words and the next address
which easily implements the jump functionality and additional
logic is not necessary. The stored address is only a partial
address which is joined with the start input to form the actual,
full address. The start input signalizes that the candidate is
ready for evaluation. This implementation style proved to be
the most successful one. It allows high enough operational
frequency that the critical path moves into the PE array and
both VRC and VRC-DPR gain in the speed of evolution. The
disadvantage of the full ROM implementation style is high
area overhead which is challenging for some smaller Zynq
devices as the ROM is implemented by block RAMs.

V. EXPERIMENTAL RESULTS

The described approaches were implemented in order to
demonstrate the evolutionary hardware design on the new
Zynq-7000 AP SoC platform. The device used in the ex-
periments was an XC7Z020-1CLG484CES. The parameters
used for evolutionary design of switching image filters were
as follows: (1+4) evolutionary strategy, pipelined 4 rows and
8 columns of PEs, 16 operations of PEs shown in Table I,
kernel size 3 × 3, Lena benchmark image of size 128 × 128

Table I
8-BIT OPERATIONS OVER OPERANDS x, y IMPLEMENTED BY PES

Code Operation Description

0 255 constant
1 x identity
2 255− x inversion
3 x ∨ y bitwise OR
4 x ∨ y bitwise x OR y

5 x ∧ y bitwise AND
6 x ∧ y bitwise NAND
7 x⊕ y bitwise XOR
8 x� 1 right shift by 1
9 x� 2 right shift by 2
10 swap(x, y) swap nibbles
11 x+ y addition
12 x+s y addition with saturation
13 (x+ y)� 1 average
14 max(x, y) maximum
15 min(x, y) minimum

and 256 × 256, 5% salt and pepper noise, level-back 1.
These parameters were selected as the most common ones
in the field [1] and the experiments were not aimed at their
optimization.

A. Time Required for Filter Evolution

VRC, the most popular approach and the proposed hybrid
VRC-DPR approach were implemented with the main goal to
evaluate the evolution time on the Zynq platform. The achieved
results are summarized in Table II where “PS (ARM)” denotes
the results achieved by the on-chip ARM processor (667 MHz)
without the PL, “desk” the results of a desktop computer
with an Intel Core i5 661 3.33 GHz processor, VRC the
results of the ARM processor with the VRC-based approach,
and VRC-DPR the results of the ARM processor with the
hybrid VRC-DPR approach. The results of the hybrid approach
are shown for various number of PE mutations because this
parameter has an influence on the reconfiguration time. The
mutation of interconnections has similarly negligible influence
on the evaluation time just like for the other approaches. The
total number of mutations considered for the other approaches
was 7 (approximately 2 PE mutations are equivalent to 7
mutations considering the same mutation ratio). Table II shows
the time required to evaluate one filter candidate (individual),
the time for a generation of filter candidates (4 individuals), the



Table II
TIME OF FILTER EVOLUTION

Image 256 × 256 Image 128 × 128
PE mutations Individual Generation Generations Acceleration Individual Generation Generations Acceleration

(1) (µs) (µs) (s−1) (1) (µs) (µs) (s−1) (1)

PS (ARM) 225 285.3 901 141.1 1.1 1 55 055.7 220 222.9 4.5 1
desk 42 372.9 169 491.5 5.9 5 10 081.7 40 326.7 24.8 6
VRC 316.8 1267.4 789 717 78 312 3206.5 713
VRC-DPR 1 284.2 1136.6 879.8 800 100.8 403.3 2479.3 551
VRC-DPR 2 325.2 1300.6 768.9 699 141.8 567.3 1762.6 392
VRC-DPR 3 366.2 1464.6 682.8 621 182.8 731.3 1367.3 304
VRC-DPR 4 407.2 1628.6 614 558 223.8 895.3 1116.9 248
VRC-DPR 5 448.2 1792.6 557.8 507 264.8 1059.3 944 210
VRC-DPR 6 489.2 1956.6 511.1 465 305.8 1223.3 817.4 182
VRC-DPR 7 530.2 2120.6 471.6 429 346.8 1387.3 720.8 160
VRC-DPR 8 571.2 2284.6 437.7 398 387.8 1551.3 644.6 143

number of generation per second and the relative acceleration
in comparison with the ARM processor (without the PL).

First, the pure software-based approach was evaluated on
the ARM processor of the available Zynq device. 10 runs
and 100 generations were considered and the number of clock
cycles was measured. Table II contains the average results after
the cycles were converted to seconds. The observed 1.1 and
4.5 generations per second were used later to determine the
relative acceleration for images 256 × 256 and 128 × 128,
respectively.

The second experiment was aimed to compare the processor
of Zynq with a desktop processor (Intel i5). The code of
the EA developed in language C was pre-ported to that
processor (standard output interface and time measurement
were changed). Here, 10 measurements and 50 000 generations
were considered and the averages of the achieved results are
denoted as “desk” in Table II. According to this experiment,
the Intel i5 processor was 5 and 6 times faster than the ARM
processor of the Zynq device.

It can be noticed that the filter evolution takes almost exactly
4 times longer for the larger training image (the larger image
has 4 times more pixels than the smaller one). This can be
considered as a proof that the evaluation of candidate filters
represents almost the full time of filter evolution (the other
parameters of the experiments were constants).

The goal of the third experiment was to determine the mag-
nitude of the FPGA-based acceleration of the filter evolution.
The implementation revealed that the operational frequency of
the pure VRC and hybrid VRC-DPR approach is 203.6 MHz
and 265.3 MHz, respectively. This means that the hybrid
approach is able to evaluate the candidate filters approximately
by 30% faster. On the other hand, the VRC approach mutates
the circuit in negligible time and the hybrid approach requires
more time. The hybrid approach changes the interconnections
similarly to the pure VRC approach but the replacement of
the PEs by DPR takes longer. According to the experiments,
the replacement of a PE requires 41 µs through PCAP (for a
100 MHz ICAP this would take 39 µs).

Table III
FPGA UTILIZATION FOR IMAGE 128 × 128

Available VRC VRC-DPR without PEs

Flip-flops 106 400 3492 3.3 % 644 0.6 %
LUTs 53 200 6340 11.9 % 2325 4.4 %
Logic 53 200 6276 11.8 % 2261 4.3 %
Shift 17 400 64 0.4 % 64 0.4 %
Block RAM 140 58 41.4 % 58 41.4 %

As the results demonstrate in Table II, the FPGA-based
approaches achieve several hundred times faster filter evolution
than the pure ARM-based approach. Even the improvement by
the Intel i5 processor is negligible compared to the FPGA-
based approaches. The hybrid VRC-DPR was faster with
comparison to the VRC only for the larger image and 1
PE mutation. In this case the speed of candidate evaluation
is more dominant than the reconfiguration time. However,
with higher number of PE mutations and/or smaller image
the reconfiguration time becomes significant and the hybrid
method cannot be faster than the pure VRC approach. It is
possible to address this issue by using a pure DPR-based
approach where all of the multiplexers are removed from the
PE array. This would result in a higher operational frequency
and faster candidate evaluation. However, the removal of the
rest of the multiplexers would introduce a certain limitation
and the comparison with VRC would be less objective.

B. Required FPGA Resources

The FPGA resources required to implement the VRC and
VRC-DPR approaches are shown in Table III. The utilization
of shift-register look up tables (LUTs) and block RAMs are
the same for these approaches. The difference is in the number
of LUTs used as logic and the number of flip-flops. The
VRC-based approach requires more programmable resources
because each function from Table I is implemented in each
PE all the time. On the other hand, DPR replaces these PEs
according to the chromosome content. It should be noted that



Table IV
OPERATIONAL FREQUENCIES

Control unit VRC VRC-DPR

Low overhead 198.2 MHz 198.2 MHz
Partial ROM 128.2 MHz 128.2 MHz
Full ROM 203.6 MHz 265.3 MHz

the results for the VRC-DPR approach do not contain the PEs
(the implementation of PEs is implied by the chromosome
content; the PEs are downloaded into the FPGA after the
establishment of the chromosome). For these PEs there are
frames reserved in the PL: 8 columns × 4 rows × 50 CLBs =
1 600 CLBs = 12 800 LUTs + 25 600 flip-flops. The reserved
space is relatively large but the PEs occupy only a small
fragment of it. Usually it would be allowed for reconfigurable
and non-reconfigurable parts to share these reserved frames.
However, this is not possible here because the PEs need to
be relocated in order to limit the number of configuration
bit streams. Relocation means that only one bit stream is
prepared for a given PE function which is used to reconfigure
all PEs to this function (for 16 functions only 16 bit streams
are required). Otherwise, a bit stream should be prepared for
each function in each PE location which would require a
considerable memory space to store (8 columns × 4 rows
× 16 functions = 512 bit streams).

C. Influence of the Control Unit on the Operational Frequency

So far the results considered the full ROM implementation
style of the control unit (shown in Figure 3c). 50 block RAMs
out of 58 shown in Table III are occupied by this unit. The
initial part of the “program” takes 259 clock cycles (initial fill-
up of the pipeline) and after that the evaluation of a candidate
filter takes 16 388 cycles. The full program has a length of
33 794 cycles. Each word of this program has 25 bits (10
control bits and 15 address bits). One additional address bit
(start bit in Figure 3c) together with the 15 bits stored in ROM
defines the address space of length 65 536. The synthesis tool
from the manufacturer was not able to generate the required
control unit. A special software developed in C was used to
produce the content of this ROM.

Image 256 × 256 implies approximately 4 times more states
in the control unit and longer program with wider program
words. Such program requires more than the available amount
of block RAM resources. A possible solution is to choose
another Zynq device with more block RAM resources [10].

Operational frequencies for various control unit implemen-
tations are shown in Table IV in order to demonstrate the
possible effects and implications. If the full ROM imple-
mentation of the control unit does not fit into the device
then the low-overhead style is used (because the operational
frequency will be still better than that of the partial ROM
implementation). In this case the critical path influencing the
maximum operational frequency moves from the PE array into
the control unit. Therefore, the control unit will influence the
“speed” of the circuit and both implementation will be able to

operate on 198.2 MHz. This means that the main advantage of
DPR (faster candidate evaluation) is eliminated and the VRC
approach becomes definitely the preferable one (because the
reconfiguration by VRC is faster).

It can be observed that the pure VRC-based approach does
not gain much by the full ROM implementation style. Probably
this is the reason why the published methods concerning VRC
does not deal with the implementation style of the control unit.
However, as it was shown by the experiments, the approach
using DPR requires the effective control unit implementation
in order to be able to operate on higher operational frequency.

VI. CONCLUSIONS

Zynq-7000 AP SoC is a recent innovation in the reconfig-
urable field which offers new possibilities for EHW designers.
It has useful features (e.g. asymmetric multiprocessing, ADC
or PCAP) which make it an interesting and potentially bene-
ficial platform for EHW.

In this paper, the Zynq platform was evaluated based on
the usual requirements for evolutionary hardware design. The
possibilities of the platform were demonstrated by evolution-
ary design of switching image filters. The experimental results
and the observations are intended to be useful for designers
who are going to develop EHW on the new Zynq platform.

VRC, the most popular approach and a hybrid VRC-DPR
approach were considered. The hybrid approach represent
computationally equal power to the pure VRC what makes
it a good choice for accurate comparison.

DPR offers higher operational frequencies by shortening
the propagation paths in the circuit. This is achieved by the
elimination of some of the multiplexers and also results in
lower area overhead if the reserved large reconfigurable frames
are not taken into account. The high reconfiguration time
of DPR caused by the coarse-grained reconfigurable frames
remains an open problem for EHW.

As the experiments demonstrated, DPR can outperform the
pure VRC-based approach only in special cases when the time
required for candidate evaluation dominates the reconfigura-
tion time. However, there is a catch. The candidate evaluation
dominates the reconfiguration time only if there is a large
amount of training data which consequently imply a control
unit with many states. But such a control unit requires low-area
implementation style which reduces the operational frequency
of the circuit and eliminates the main advantage of the DPR-
based approach. Obviously, a golden mean can be found.

EHW on the Zynq platform is promising in many aspects
but raises many questions some of which were answered by
this paper but others require further investigation. Future work
will be conducted to exploit all the features and advantages
of this platform for EHW design. The results provided in
this paper are only preliminary. Some further changes in
the proposed method are expected in order to overcome the
limitations. Power consumption will be investigated and the
quality of the evolved filters will be addressed.
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