
Cache Efficient Implementation for Block Matrix Operations
Lukas Polok, Viorela Ila, Pavel Smrz
{ipolok,ila,smrz}@fit.vutbr.cz

Brno University of Technology, Faculty of Information Technology.
Bozetechova 2, 612 66 Brno, Czech Republic

Keywords: Block matrix, high performance, sparse BLAS,
nonlinear least squares

Abstract
Efficiently manipulating and operating on block matrices can
be beneficial in many applications, among others those in-
volving iteratively solving nonlinear systems. These types of
problems consist of repeatedly assembling and solving sparse
linear systems. In the case of very large systems, without a
careful manipulation of the corresponding matrices, solving
can become very time consuming.

This paper proposes a memory storage scheme convenient
for both, numeric and structural matrix modification and, at
the same time, allowing efficient arithmetic operation. This
scheme was used in the implementation of a simple BLAS-
like library. The advantage of the new scheme is demonstrated
through exhaustive tests on the popular University of Florida
Sparse Matrix Collection. Furthermore, this library was used
in solving several nonlinear graph optimization problems.

1. INTRODUCTION
Many applications ranging from physics, computer graph-

ics, computer vision to robotics rely on efficiently solving
large nonlinear systems of equations. In this case the solution
can be approximated by incrementally solving a series of lin-
earized problems. In some applications, the size of the system
considerably affects performance. The most computationally
demanding part is to assemble and solve the linearized system
at each iteration. This paper exploits both, the block structure
and the sparsity of the corresponding system matrices and of-
fers very efficient solutions to manipulate, store and perform
arithmetic operations.

A block matrix is a matrix which is interpreted as parti-
tioned into sections called blocks that can be manipulated at
once. A matrix is called sparse if many of its entries are zero.
Considering both, the block structure and the sparsity of the
matrices can bring important advantages in terms of storage
and operations.

Using dense blocks is a natural way to minimize cache
misses, since the CPU automatically prefetches the data as
they are accessed. Nevertheless, taking care about the layout
of the individual blocks in memory is also very important in
order to avoid cache misses at block boundaries, especially
if the blocks are small. Finally, the compressed format the

blocks are to be stored in, needs to be chosen carefully oth-
erwise the handling of the blocks can easily outhweigh the
advantage of cache efficiency.

Most of the existing state of the art implementations of
nonlinear solvers rely on sparse block structure schemes.
In general, the block structure is maintained until the point
of solving the linear system. Here is where CSparse [1] or
CHOLMOD [2] libraries are used to perform the matrix fac-
torization. The CSparse is the state of the art element-wise
implementation of operations on sparse matrices.

The advantage of element-wise sparse matrix schemes
is that the arithmetic operations can be performed effi-
ciently. Compressed column storage (CCS) format [3] used in
CSparse is an efficient way to store the sparse data in mem-
ory. The disadvantage of this format is its inability or imprac-
ticality to change a matrix structurally or numerically once
it has been compressed. The block-wise schemes are com-
plementary, their advantages include both easy numeric and
structural matrix modification, at the cost of memory over-
head and reduced arithmetic efficiency, speed-wise.

The well known element-wise CCS sparse matrix repre-
sentation [3] is as efficient (sometimes even more efficient)
as any block matrix structure, in case of operating on a set
of structurally-different matrices. Iterative solvers, however,
involve operating iteratively on matrices where large portions
of the matrix structure do not change between the iterations.
In such case, block matrix schemes can be very proficient, as
they allow for modifying parts of the block structure as well
as efficiently modifying the numeric content.

This paper proposes a fast and cache efficient data struc-
ture for sparse block matrix representation, which combines
the advantages of element-wise and block-wise schemes. It
enables simple matrix modification, be it structural or numer-
ical, while also maintaining, and often even exceeding the
speed of element-wise operations schemes. Another impor-
tant advantage of the proposed scheme is the overall robust-
ness of the structure, allowing for error-checking, resulting in
easier usage and in more stable error-free code.

2. RELATED WORK
Several sparse linear algebra libraries are currently avail-

able. They range from implementation of basic routines to
complete linear algebra solutions [1, 4–7]. Recently, more so-
phisticated libraries implementing routines for iterative non-

linear solvers were developed [8]. This work is concerned
with the implementation and evaluation of kernel operations
and storage, and it is particularly focused on matrices having
a block structure. The operations we tackle are the building
blocks for any nonlinear solver, and the performance of their
execution is crucial.

Standard interfaces for various linear algebra packages
proved to be very useful in the past. Perhaps the most used in-
clude the three levels of BLAS [4–6], basic linear algebra sub-
programs, containing simple operations on vectors and ma-
trices, and LAPACK [7], containing additional factorization
functions and other more advanced functionality. These in-
terfaces were originally proposed for dense matrices only. In
time, other implementations emerged, including implementa-
tions for sparse matrices. Few of the available libraries sup-
port sparse block matrix operations, however.

CSparse [9], developed by Tim Davis [1] is one of the most
used sparse linear algebra libraries. It is written in pure ”C”
and its functions are also available through MATLAB inter-
face. It is highly optimized in terms of run time and memory
storage and it is also very easy to use. It implements most of
BLAS and some of LAPACK functionality, it was therefore
used as a reference for comparison with the algorithms pro-
posed in this paper. As mentioned above, CSparse stores its
matrices in compressed column format which is suitable for
operation on matrices, or coordinate format for simple matrix
specification. Functions to convert between the formats are
provided.

NIST Sparse BLAS [10] is also written in ”C” and its
source codes are generated from a set of kernel templates.
Although very fast, it only implements a limited subset of
BLAS. Operations, such as product of two sparse matrices,
are not implemented. It introduces two block matrix storage
formats, constant block size (CBS) and variable block size
(VBR) compressed row. These are similar to CSparse’s com-
pressed column format. Unlike CSparse, it does not define
any structure to store the matrices nor does it implement func-
tions for conversion between different storage formats. As a
result, it is rather hard to use as the proposed block storage
scheme is quite complex. To our knowledge, it is the only
library with BLAS interface to support block matrices.

Note that there are also other high performance implemen-
tations of BLAS, especially the parallel ones, which were
omitted since the parallelism is not a focus of this paper. How-
ever, the proposed scheme can be parallelized.

Ceres-solver [8] is a portable C++ library for solving large
nonlinear least squares problems. Ceres-solver is very popu-
lar since it is used at Google to estimate the pose of Street
View cars, aircrafts, and satellites; to build 3D models for
PhotoTours; to estimate satellite image sensor characteristics,
and more. Ceres-solver uses CSparse for most of the linear
algebra operations. It contains an internal implementation of

block matrix storage and supports a limited set of operations
on it, essentially the matrix-vector product. This block ma-
trix functionality is not exported by the library, and as such is
not available to the user out of the box. The block matrices in
Ceres are stored in a way, similar to the scheme we propose in
this paper, but their implementation does not allow for matrix
modification and everytime the block matrix changes struc-
turally, it needs to be rebuilt. This is a major drawback for the
iterative nonlinear solvers as a significant amount of time will
be lost in rebuilding the system matrix at every iteration.

The remainder of the paper is structured as follows. The
next section introduces nonlinear least squares problem as the
motivation of this work. Section 4. details the proposed im-
plementation of the kernel operations. Section 5. shows the
performance of the proposed solutions through benchmarks
and time comparisons with the exiting implementations. Con-
clusions and future work are given in Section 6.

3. MOTIVATION
Nonlinear least squares (NLS) estimation is used in a broad

range of applications across science and engineering. The ba-
sis of solving NLS problems is to approximate the nonlinear
system by a linear one and to refine the parameters by succes-
sive iterations. Given the NLS problem:

x∗ = argmin
x∈Rn

S(x) (1)

S(x) =
m

∑
i=1

r2
i (x) =‖ r(x) ‖2 , m≥ n , (2)

minimizes the sum of m squared nonlinear residuals
r(x) = [r1(x), ...,rm(x)]>, n being the number of variables.

Iterative methods such as Gauss-Newton or Levenberg-
Marquardt are often used to solve the nonlinear problem.
They are based on a series of linear approximations of r(x)
around the current linearization point xi:

r̃(xi) =‖ r(xi)+ J(xi)(x−xi) ‖2 , (3)

where J is the Jacobian matrix which gathers the derivative
of the components of r(xi). Gauss-Newton methods compute
the correction δ = x− xi by solving the linear least squares
problem:

δ
∗ = argmin

δ

‖ r(xi)+ J(xi) δ ‖2 . (4)

The solution δ
∗ can be obtained by solving the linear system.

At each iteration, the Jacobian matrices J(xi) calculated using
the current linearization point xi, can be collected into the
matrix A and the current residuals, into the right-hand side
vector b =−r(xi), to obtain the linear system in δ:

A δ = b . (5)

The system matrix A can become very large in case of m� n.
The normalized system has the advantage of remaining of the
size of number of variables, n, even if the number of con-
straints, m, increases:

Λ δ = η , (6)

Here Λ = AT A is the normal system matrix and η = AT b is
the corresponding right hand side.

This paper is concerned with system matrices, A or Λ,
which are sparse and have an underlying block structure,
where the size of the blocks corresponds to the number of de-
grees of freedom of the variables. The solution of the linear
system can be obtained either using sparse matrix decompo-
sitions, QR for the system in (5) or Cholesky for the system
in (6), or gradients methods.

The process of assembling and solving very large, sparse
linear systems can become very expensive when the size of
the problem grows. The used data structure has to allow both,
efficiently re-building the system every time a new lineariza-
tion point is available and high speed arithmetic operations.
The reminder of the paper introduces a solution to this prob-
lem, which highly exploits the matrix sparse block structure.

4. PROPOSED IMPLEMENTATION
When dealing with matrices with a block structure, oper-

ating on dense blocks is a natural way to support vectoriza-
tion and improve cache efficiency without any additional ef-
fort. Note that this only holds for SIMD type processors, and
likely would not be practical for true vector processors, such
as Cray machines, where interleaved block storage would be
more beneficial. On the other hand, the use of dense blocks
allows efficient data representation at their natural granular-
ity, making it simple to reference the data inside the matrix
and change their value when it is needed.

In the existing block matrix implementations, the blocks
are usually allocated on the heap, and it can not be guar-
anteed that the blocks are allocated in close memory loca-
tions. If the blocks are allocated in distant memory locations,
cache misses still occur. To improve that, our implementation
uses segregated storage, which guarantees that the blocks are
stored tightly next to each other.

The arithmetic efficiency of block matrices is mostly re-
duced, compared to element-wise sparse matrices. That is
because two extra loop counters for block rows and block
columns are needed. Our implementation elegantly solves
this issue using metaprogramming. Since for the least square
problems the size of the blocks corresponds to the number of
degrees of freedom of the variables, the possible block sizes
of a given problem are known in advance at compile time. It is
therefore possible to hint the individual operations on matri-
ces with lists of possible block sizes occuring in the operands.

4.1. The data structure
In general, all existing block matrix schemes, including

ours, involve the same data layout as CCS representation (or
equivalent), but use more complicated data structures to make
the matrix structure editable. For example, in some existing
implementations [8], trees or other higher abstract data struc-
tures are used.

In the proposed block matrix implementation, block row
and block column layouts are described using the same struc-
ture, except that the columns also contain the non-zero matrix
blocks. The structure is implemented as a sorted list of cumu-
lative sums of block sizes (see Fig. 1 a)). The matrix blocks
are also stored in a sorted list. Each matrix block contains row
index and a pointer to matrix data. The data itself is allocated
in forward-allocated segregated storage (see Fig. 1 b)), a stor-
age model similar to a pool but only permitting allocation and
de-allocation of elements from the end of the storage, in the
same manner stacks do. This yields fast allocation and im-
proves cache coherency.

The choice of a sorted list over e.g. a tree structure is given
by the nature of matrix usage. When iteratively solving an
NLS problem, the block columns or block rows are created
once and used (referenced) many times. This reflects the na-
ture of a sorted list where insertion is costly (except for the
insertion at the end) but lookup is fast. At the same time the
flat structure is cache friendly. Tree structures have more bal-
anced insertion and lookup costs, but since the nodes of a tree
are typically allocated on the heap, cache misses are incurred
at every lookup.

In order to enable the unusually fast O(1) block lookup in
arithmetic operations and also to facilitate error checking for
incorrectly placed blocks, one important restriction on block
and column layouts must be applied. The whole area of the
matrix needs to be represented, which means that the lay-
out of null rows or columns needs to be represented as well.
Those are marked in yellow in Fig. 1 a) and their representa-
tion is shown in Fig. 1 b) where the fifth and sixth fields from
the block column layout are empty.

This contrasts with the usual sparse block matrix repre-
sentations, which only describe the layout of nonzero blocks
without caring about the null elements in between. It comes
at the cost of small increase in memory requirements, but
only for the layout itself, not for the data. If nb and mb are
the number of block rows and columns, respectively, up to
f loor(mb/2)+ f loor(nb/2) additional cumulative sums are
stored in the worst case. These describe the layout of null
block rows and columns. This assumes no null space frag-
mentation which indeed does not occur in our implementa-
tion. The exact amount of required extra memory depends on
the positions of the nonzero blocks in the matrix. Please note
that for NLS problems there are no such null columns or rows,
therefore, no extra space requirements apply.

(a) (b)

Figure 1. Block row/column layout of a block matrix. a) An example of a sparse block matrix and the actual values of the
cumulative block sum (on top and left side). Non-zero dense blocks are shown in violet. Yellow shows null rows/columns. b)
Dense block data in segregate storage. On the bottom, we show the block column layout and the corresponding sorted list of
pairs of type (iRL, pDB), where iRL is the index of the row layout, and pDB is the pointer to the block data in the memory.

4.2. Block matrix insertion

In order to write (scatter) a block in the matrix, the block
column and block row need to be resolved first. Adding a
new block row or column inside the matrix area, or reusing
or subdividing an existing one is a logarithmic time operation.
However, incrementally appending the matrix with blocks to
or after the last block row or column is a constant time oper-
ation, as it only needs to determine whether to create a new
block row or column at the end, or to use an existing one.
This is a basic operation but frequently used in the context
of incremental solvers where the system matrix grows every
step.

In order to lookup a block by its position given by the row
and column numbers in elements, the block column and block
row are resolved first in O(lognb + logmb) time. Then the
block needs to be found in the sorted list, taking additional
O(log fb) time (fb being the number of nonzero blocks, the
fill-in, of a given column; for most sparse matrices fb�mb).
This operation can mostly be avoided by storing a reference
to the block after inserting it in the matrix. This is very use-
ful for updating the system matrices in (5) or (6) every time
a new linearization point is available. In this case, the new
values of the blocks can be calculated directly inside the ma-
trix, avoiding data copying or block lookup. In addition, our
implementation allows insertion of block using logical index-
ing, where the block position is given by indices of block row
and block column. That avoids the block column and row res-
olution and only requires to find the block in a sorted list, tak-
ing O(log fb) time. This feature is useful for applications that
insert many blocks in the same column, and for arithmetic
operations which operate with logical indexing.

C ←MULT(A,B)
1: C← blank-matrix(rows(A),cols(B))
2: for each columnBblock in B do
3: colB← column-of(columnBblock)
4: for each blockB in columnBblock do
5: rowB← row-of(blockB)
6: columnAblock← find-column(rowB,A)
7: for each blockA in columnAblock do
8: rowA← row-of(blockA)
9: blockdest ← alloc-block(rowA,colB,C)

10: blockdest ← blockA∗blockB
11: end for
12: end for
13: end for

Algorithm 1: Block Matrix Multiplication.

4.3. Arithmetic operations
The arithmetic operations on block matrices are carried out

in the same manner as on element-wise sparse matrices, with
the exception of handling matrix blocks instead of scalar val-
ues. Most of the arithmetic operations require block lookup at
some point. In other existing block matrix implementations,
the O(lognb) lookup is used, and an example of the matrix
multiplication is given in Algorithm 1. On line 6, an O(lognb)
lookup is required to find block column. Then on line 9, an-
other O(lognb+ logmb+ log fb) lookup is performed in order
to place a new block in the destination matrix. To improve
performance, a mapping function can be used. Consider Al-
gorithm 2. First, note the use of logical indexing of block
rows and block columns by their id, instead of by their phys-
ical position in elements, used in Algorithm 1. The mapping
is calculated as a projection from block rows of the B ma-

C ← FASTMULT(A,B)
1: C← blank-matrix(rows(A),cols(B))
2: fmap←mapping-function(block-cols(A)),block-rows(B))
3: colBid ← 0
4: for each columnBblock in B do
5: for each blockB in columnBblock do
6: rowBid ← row-id-of(blockB)
7: columnAid ← fmap(rowBid)
8: if columnAid == null then
9: exit {block layout mismatch, product not defined}

10: end if
11: columnAblock← block-cols(A)[columnAid]
12: for each blockA in columnAblock do
13: rowAid ← row-id-of(blockA)
14: blockdest ← alloc-block-log(rowAid ,colBid ,C)
15: blockdest ← blockA∗blockB
16: end for
17: end for
18: colBid ++
19: end for

Algorithm 2: Fast Block Matrix Multiplication.

trix to block columns of the A matrix. The cost of calculating
the mapping function is O(nb) in the number of block rows
or block columns. Note that the mapping function needs to
be only calculated once, before the arithmetic operation takes
place. Also, the complexity involved is negligible, compared
to the complexity of the arithmetic operation itself. This later
allows to replace the logarithmic time columnAblock lookup
by an O(1) lookup. It also enables checking whether the
matrix product is defined on the given block matrices. Fur-
ther, the insertion of the block only requires insertion into
the sorted list which is O(log fb) but avoids lookup of block
row and block column. Note that for some types of operands
(such as diagonal matrices or symmetric matrices), the order
of inserted blocks can be anticipated and the O(log fb) time
lookup can be avoided. In our implementation, this is used to
optimize matrix products in the AT A form.

As mentioned above, the block sizes correspond to the
DOF of the variables and, in general, are known in advance.
Using typelists and templates, decision trees are built at com-
pile time that later at runtime enable the use of code gener-
ated for a given block size. This allows for optimization us-
ing loop unrolling and vectorization at the block level, e.g. in
Algorithm 2 at line 15. It can be easily shown that if log2 of
the number of possible block sizes is smaller than the average
block size, the resulting code will contain less branching and
thus will run faster. Note that in C++, this functionality is ac-
cessible using simple and easy to read syntax where the list of
block sizes is passed to each individual matrix operation call
in angled brackets. It would also be possible to restrict whole
matrices to only contain blocks of specified sizes, but this so-
lution was seen as less versatile, and was not implemented.

5. PERFORMANCE ANALYSIS
In this section we compare the timing results for several

matrix operations performed using the proposed implemen-
tation with similar state of the art implementations such as
CSparse, Ceres and NIST Sparse BLAS. Note that aparts
from the latter two, at the time of writing the paper, we were
not aware of any other practical block matrix implementa-
tions. NIST implementation can store matrices in several for-
mats. CSR is a compressed sparse row element-wise format,
similar to the one used in CSparse. BSR denotes constant
block size compressed block row format, and is a simple
block matrix format where all the blocks have the same size.
Finally, VBR denotes variable block size compressed block
row format, which is an extension of BSR where the individ-
ual blocks can have arbitrary size. This format is the most
general, and is equivalent to the one used in Ceres and by the
proposed solution. The proposed implementation is denoted
as UBlock, and the version with metaprogramming optimiza-
tion is denoted UBlock FBS (fixed block size).

In the second section of this chapter, we also briefly discuss
speed improvements on an incremental NLS implementation.
For more comperhensible comparison, see [11].

All the tests were performed on a computer with Intel Core
i5 CPU 661 running at 3.33 GHz and 4 GB of RAM. This is
a quad-core CPU without hyperthreading and with full SSE
instruction set support. During the tests, the computer was not
running any time-consuming processes in the background.
Each test was run ten times and the average time was cal-
culated in order to avoid measurement errors, especially on
smaller matrices. The computer was running Ubuntu 11.10
(64 bit) and all the tested libraries were compiled using g++
version 4.6.1.

5.1. Matrix Operations Performance
The evaluation was performed on a subset of the The Uni-

versity of Florida Sparse Matrix Collection [12]. This col-
lection was chosen because it contains sparse matrices corre-
sponding to a diverse set of problems, and as such it is suit-
able for testing of general purpose linear algebra implemen-
tations. However, this collection does not contain any block
matrices, and for that reason only the structure of the matri-
ces was used, and each nonzero element was assumed to be
a block of size given by each particular test configuration. As
the speed of blockwise operations depends on block size, the
block size was varied from 1× 1 to 30× 30 elements. Note
that these benchmarks are synthetic, but still highly relevant
in the context of problems with natural block structure, such
as (but not limited to) NLS.

Several matrices were selected for comparison. In particu-
lar, the MCCA matrix, a relatively small matrix of 180×180
elements containing 2659 nonzero entries, was used for the
comparison with the NIST implementation. This matrix was

selected because the authors already performed experimen-
tal evaluation [10] on it. Their block matrix representation
is rather complex and it would present a significant effort to
compare also on other matrices. Since the NIST implemen-
tation is not widely used, this limited comparison should be
sufficient. For the rest of the comparisons, 200 matrices from
The University of Florida Sparse Matrix Collection were cho-
sen randomly.

1,E-5

1,E-4

1,E-3

1,E-2

1,E-1

1,E+0

0 5 10 15 20 25 30

Block size

T
im

e
[s

ec
]

CSparse Ceres UBlock

Figure 2. Time for compression of the MCCA matrix
(smaller is better).

A comparison of the time required to compress a sparse
matrix using CSparse, Ceres and our implementation is
shown in Fig. 2. The NIST implementation is missing from
the plot because their library does not provide compression
routines. Note that CSparse time is directly dependent on the
number of matrix nonzero elements. The block schemes be-
come more efficient as the block size grows; our implementa-
tion becomes the fastest for 6×6 blocks (or larger). The test
was run on the MCCA matrix [12].

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30

Block size

T
hr

ou
gh

pu
t [

M
F

LO
P

S
]

CSparse NIST CSR NIST BSR NIST VBR

Ceres UBlock UBlock FBS

Figure 3. General matrix vector product on the MCCA ma-
trix.

Similarly, Fig. 3 shows the time comparison for the general
matrix vector product operation. For 1×1 blocks, CSparse is
faster than every other implementation, except for the NIST
element-wise implementation and the proposed fixed block
size implementation. Although the NIST element-wise imple-

mentation is very fast and significantly outperforms CSparse,
there is only small speedup with their block matrix formats.
For block size 1× 1, the NIST element-wise sparse imple-
mentation is the fastest. Interestingly enough, the Ceres im-
plementation is slower than the NIST implementation, ap-
proaching NIST performance as the block size grows. It be-
comes faster than CSparse for block size 5× 5. Our general
implementation becomes faster than CSparse for 4×4 block
and is the fastest for 8×8 blocks or larger. However, the pro-
posed fixed block size implementation is always the fastest.
Note that for 1× 1 blocks, it is even slightly faster than the
CSparse library.

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

450,00

0 5 10 15 20 25 30

Block size

T
hr

ou
gh

pu
t [

M
F

LO
P

S
]

CSparse UBlock UBlock FBS

Figure 4. Linear combination of the MCCA matrix and its
transpose.

An additional benchmark is performed for the operation
of addition of the matrix and its transpose. This operation is
not particularly important in the context of nonlinear solvers,
but due to its arithmetic simplicity it is sensitive to efficient
data manipulation. Since the MCCA matrix is not structurally
symmetric, the result of this operation has a different nonzero
pattern than the operands. That can be expected in most ma-
trix addition situations, therefore it serves as a valid bench-
mark. The results can be seen in figure 4. Note that the
time spikes of the proposed implementation, especially on
the fixed-block-size version, are caused by the compiler be-
ing able to generate SSE optimized code for blocks of sizes
that are multiples of four.

Multiplication benchmark in Fig. 5 displays similar be-
haviour. Note that the gap between element-wise sparse and
blockwise sparse implementation gets very wide as the block
size increases. On the other hand, most of the popular nonlin-
ear least squares problems will likely only use blocks up to
no more than 10×10.

We also performed cache profiling using the Cachegrind
tool, with the default settings (64 kB of L1 cache and 6 MB
of L2 cache). The benchmark with the MCCA matrix was
run several times in order to identify outliers in Cachegrind
results. The test was run with block size 4× 4, and con-
firmed that the proposed storage is indeed cache efficient.

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

Block size

T
hr

ou
gh

pu
t [

M
F

LO
P

S
]

CSparse UBlock UBlock FBS

Figure 5. Product of the MCCA matrix and its transpose.

Matrix multiplication had 8.3 % L1 cache misses and 16.3 %
last level cache misses, compared to CSparse. Similarly, ma-
trix vector multiplication reduced L1 cache misses down to
14.2 % and last level cache misses to 9.45 %.

Additional benchmarks are shown in Table 1, which con-
tains the average run times on 200 randomly chosen matri-
ces from The University of Florida Sparse Matrix Collection
[12]. The benchmarks involved matrix addition, matrix prod-
uct, optimized matrix product for symmetric matrices, matrix
- vector product, matrix compression from sparse values in
triplet form, matrix transpose and the triangular solve oper-
ation. Note that some of the above operations could only be
executed on a subset of chosen matrices. It can be seen that
for 1× 1 blocks, CSparse is the fastest, except for the trian-
gular solve operation. Otherwise the proposed implementa-
tion consistently yields better times, with the fixed block size
optimization being faster than the general optimization. The
only exception is the compression benchmark, where Ceres
also gets good results. This is understandable as Ceres does
not provide any functionality to change the matrix once it has
been compressed, which makes the storage simpler. This is a
disadvantage in the context of incremental iterative solvers,
since the system matrix adds a few new blocks at every step
and it is considerably more efficient to have an option to alter
compressed matrix than to recompress at every step. For per-
formance evaluation in a real NLS application, please refer
to [11]. Also note that the proposed scheme only accelerates
problems with inherent block structure, and is not suitable for
general sparse matrix operations where CSparse is faster.

5.2. Solving NLS Performance
In order to evaluate our new efficient block matrix scheme,

we implemented a standard nonlinear graph optimization
algorithms based on Gauss-Newton iterative solver. The tests
were performed on graphs of different sizes (from 3.5 ·103 to
100 · 103 variables), different sparsity patterns and different
disparity between number of variables and constraints (n and
m). A detailed performance analysis and comparison with

other existing NLS solver implementations was presented
in [11]. Here we highlight some of the achievements. Our
implementation outperforms all the tested implementations
in both batch and incremental mode. The comparison in
batch mode shows speed up of 10% when compared to the
fastest implementation. This is mainly due to the proposed
block matrix scheme, the algorithm being very similar and
the differences in the implementation style cannot cause
large speedups. Furthermore, in incremental mode, where the
system is solved every time a new constraint is integrated,
the efficient matrix operations start paying off, as there
is a larger portion of time spent in updating the system.
The proposed implementation shows speed up of more
than 50%. The implementation is available as open source at
http://sourceforge.net/p/slam-plus-plus/.

6. CONCLUSIONS AND FUTURE WORK
A new implementation for block matrix operations was

proposed in this paper. It implements highly efficient kernels
that are core for nonlinear least squares solvers. We targeted
problems that have a particular block structure, where the size
of the blocks corresponds to the number of degrees of free-
dom of the variables.

The proposed scheme combines the advantages of block-
wise schemes convenient in both, numeric and structural ma-
trix modification and element-wise, which are efficient in
arithmetic operations. It also allows to conveniently restrict
possible block sizes to a defined set (per every instance of ma-
trix operation), at compile time. This leads to further substan-
tial speedup. The advantage of the new scheme was demon-
strated through comparisons with the existing implementa-
tions on a subset of matrices from University of Florida
Sparse Matrix Collection dataset.

Even though the proposed scheme proved to outperform
the state-of-the-art implementations, several improvements
from algorithmic point of view can be applied. Support for
special matrix types, such as diagonal or band-diagonal and
symmetric matrices can be provided. Furthermore, some of
the block matrix operations can be efficiently parallelized.
The block layout was designed with hardware acceleration
in mind. This is important for large problems, which can ef-
ficiently run on wide scale of accelerators, from multicore
CPUs to clusters of GPUs.

7. ACKNOWLEDGEMENTS
The research leading to these results has received fund-

ing from the European Union, 7th Framework Programme
grants 316564-IMPART and 247772-SRS, Artemis JU grant
100233-R3-COP, and the IT4Innovations Centre of Excel-
lence, grant n. CZ.1.05/1.1.00/02.0070, supported by Oper-
ational Programme Research and Development for Innova-
tions funded by Structural Funds of the European Union and

Block Size
1×1 4×4 5×5 8×8 10×10 15×15 16×16

Benchmark Library Mode Time [ms]

Matrix Add
CSparse 0.101 1.497 2.574 7.232 12.081 26.877 31.890

UBlock 0.389 0.896 1.261 2.747 4.048 7.884 8.934
FBS 0.198 0.586 0.939 2.500 3.785 7.438 8.546

Matrix Product
CSparse 0.672 23.079 42.608 144.294 271.700 908.861 1096.108

UBlock 11.601 24.555 37.316 86.752 148.873 421.273 495.385
FBS 3.330 8.440 20.506 31.895 55.363 261.459 242.498

Symmetric Matrix Product UBlock 4.821 12.256 18.360 49.159 85.476 257.207 310.401
FBS 4.966 9.014 15.212 24.284 65.773 146.110 239.969

Matrix Vector Product

CSparse 0.012 0.204 0.357 1.018 1.550 3.237 3.643
Ceres 0.031 0.165 0.247 0.646 0.992 2.083 2.280

UBlock 0.028 0.148 0.238 0.625 0.962 1.890 2.153
FBS 0.016 0.107 0.185 0.556 0.931 1.706 1.999

Compress
CSparse 0.037 0.851 1.490 4.266 6.916 15.001 18.480
Ceres 0.530 0.815 1.049 2.062 2.906 5.494 6.378
UBlock 1.167 1.380 1.487 2.211 2.844 5.152 5.767

Transpose CSparse 0.040 0.787 1.348 4.223 7.080 18.625 24.474
UBlock 0.337 0.639 0.854 1.629 2.497 5.054 5.817

Triangular Solve
CSparse 0.015 0.168 0.279 0.823 1.305 2.976 3.463

UBlock 0.024 0.126 0.190 0.500 0.752 1.661 1.877
FBS 0.014 0.089 0.155 0.455 0.661 1.472 1.763

Table 1. Timing results on a subset of University of Florida Sparse Matrix Collection [12]; the best times are in bold.

the state budget of the Czech Republic.

REFERENCES
[1] T. A. Davis, Direct Methods for Sparse Linear Systems

(Fundamentals of Algorithms 2). Society for Industrial
and Applied Mathematics, 2006.

[2] T. A. Davis and W. W. Hager, “Modifying a sparse
cholesky factorization,” 1997.

[3] Y. Saad, SPARSKIT: A basic tool kit for sparse matrix
computation. Research Institute for Advanced Com-
puter Science, NASA Ames Research Center, 1990.

[4] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, “Ba-
sic linear algebra subprograms for fortran usage,” ACM
Transactions on Mathematical Software (TOMS), vol. 5,
no. 3, pp. 308–323, 1979.

[5] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson,
“An extended set of basic linear algebra subprograms:
model implementation and test programs,” ACM Trans-
actions on Mathematical Software (TOMS), vol. 14,
no. 1, pp. 18–32, 1988.

[6] J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff,
“A set of level 3 basic linear algebra subprograms,”

ACM Transactions on Mathematical Software (TOMS),
vol. 16, no. 1, pp. 1–17, 1990.

[7] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dem-
mel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, et al., LAPACK Users’ guide,
vol. 9. Society for Industrial Mathematics, 1987.

[8] S. Agarwal and K. Mierle, “Ceres solver.” http://
code.google.com/p/ceres-solver/, 2012.

[9] T. Davis, “Csparse.” http://www.cise.ufl.
edu/research/sparse/CSparse/, 2006.

[10] S. Carney, M. Heroux, G. Li, and K. Wu, “A revised
proposal for a sparse blas toolkit,” 1994.

[11] L. Polok, S. V. Ila, M. Solony, P. Zemcik, and P. Smrz,
“Efficient implementation for block matrix operations
for nonlinear least squares problems in robotic applica-
tions,” in Proceedings of the IEEE International Con-
ference on Robotics and Automation, IEEE, 2013.

[12] T. Davis, “The university of florida sparse matrix col-
lection,” in NA digest, Citeseer, 1994.

