

Abstract—Imbalance in data classification is a frequently

discussed problem that is not well handled by classical

classification techniques. We propose a new method that

produces highly accurate and easily understandable

classification model with regards to user-specified set of class

accuracy restrictions. Our method combines logistic regression

with a genetic algorithm optimization and has been successfully

tested on a large real-world data set from our internet security

research. Experiments prove that our method always leads to

better results than usage of logistic regression or genetic

algorithm alone.

Index Terms—Imbalanced data, classification, genetic

algorithm, logistic regression.

I. INTRODUCTION

High emphasis on data collecting and subsequent analysis

leads to discovery of new problems related to processing

various types of data. In this paper we focus on the

imbalanced data learning problem, which has drawn a lot of

attention over past years. We present a new approach to

handle highly imbalanced binary data classification with

accuracy constraints on one of the classes. The example of

such a constraint is reaching 95% accuracy on the minority

class. Our method combines cost-sensitive logistic regression

with the use of genetic algorithm. We provide experiments

and evaluation on highly imbalanced real-world data from

our internet security research. The presented results clearly

show advantages of our proposed method compared to the

using logistic regression and genetic algorithm separately.

Moreover, the resulting model generated by the method is

easily interpretable (compared to, e.g., Neural Network) and

is suitable for very fast prediction.

II. PROBLEM DEFINITION AND RELATED WORK

In the following paragraphs we describe our problem in

greater detail, as well as basic principles and other proposed

methods our work is based on.

A. Imbalanced data classification

When we talk about imbalanced data, we consider data with

a significant disproportion in the occurrence of instances of

each class. Types of data imbalance are widely described in

[1]. Experiments performed on imbalanced data sets have

shown that such type of data may often have negative impact

on the learning phase of most standard classification

algorithms. The algorithm is overwhelmed by the number of

majority class instances which may lead to not discovering

the minority class.

The main problem in dealing with imbalanced data

classification is the default inability of most common

classifiers to recognize the minority class properly. Another

problem is their inability to consider different costs of

misclassification. To solve these problems, many methods

have been proposed. Basically, there are two most popular

approaches that can be used when dealing with imbalanced

data classification.

Sampling is the basic approach we can choose to alter the

data imbalance. There are two types of sampling -

undersampling and oversampling. Majority class

undersampling leads to lower between-class imbalance by

removing a set of majority class examples from the algorithm

training set. The issue here is how to choose the set of

majority class examples for the removal. Approaches differ

from a random selection to more complex informed methods,

which produce generally better results. Minority class

oversampling also leads to lower data imbalance but instead

of decreasing the number of majority class instances, the

minority class occurrence is increased by adding or

generating new minority class examples. Techniques for

oversampling vary from basic copying of existing tuples to

more complex generating methods, like SMOTE [2], which

are able to create new synthetic examples fitting to the

minority class, and widen the decision region for the

classifier. This concept has been explored and extended in

[3]. Different informed methods are also presented in [4], [5].

Sampling can solve the problem of data imbalance from the

point of the actual data distribution, but it still does not take

into account possible costs of misclassification.

Cost-sensitive methods have been proposed to address this

issue and according to various studies focused on certain

specific imbalanced learning domains [6], [7], cost-sensitive

learning is superior to sampling methods. The basic concept

in the context of cost-sensitive learning methodology is the

cost-matrix. The cost-matrix essentially represents a

numerical penalty of misclassifying an example. The main

objective of cost-sensitive methods is to create a model that

minimizes the overall cost on the training set. MetaCost

framework, described in [8], presents a simple and effective

way for existing classifiers to adopt a cost-sensitive learning

approach in a form of cost-sensitive wrapper, which can be

applied onto various data mining systems without prior

knowledge of their structure. Another way of creating a

cost-sensitive classifier may be integrating such functionality

directly inside the classifier itself, or apply misclassification

costs to the data set in a form of dataspace weighting.

However, problems with optimal settings may occur while

using cost-sensitive or sampling methods. Usually, it is

impossible to determine ideal method and its setting for

further unknown data classification. Because of this, building

classifier ensembles has become a popular practice.

Constrained Classification of Large Imbalanced Data by

 Logistic Regression and Genetic Algorithm

Martin Hlosta, Rostislav Stríž, Jan Kupčík, Jaroslav Zendulka, and Tomáš Hruška

Ensembles are essentially groups of classifiers that are

trained on different training sets. These training data sets may

vary in cost-matrix values, or in the data themselves when

using different sampling settings. Unseen data are then

classified by all generated classifiers and the result is decided

either by simple majority voting or by other advanced

methods (e.g., different voting weights). Studies [9], [10]

confirm that classifier ensembles may dramatically improve

classification accuracy.

In contrast to previously mentioned techniques, our

proposed method combines the use of logistic regression with

genetic algorithm. Following sections give an insight on how

both of these techniques work.

B. Logistic Regression

Logistic regression (LR) is a machine learning model for

binary classification. The method can handle both numeric

and categorical variables. Given a learned model, the value of

the output variable is computed by applying the logistic

function to linear combination of attribute values and weight

vector. The function is defined as follows:

i
T xwii

e
wxYP





1

1
),|1((1)

The logistic function converts the input value to

interval []. The result describes a confidence value for a

given case being of the class 1. Typically, threshold

is applied to determine whether an examined example

belongs to class 0 or 1.

In the training phase, the algorithm tries to solve the

unconstrained optimization problem of the following

objective function:





)1log(min

1

n

i

xwy

w

i
T

ieC (2)

where stands for a regularization. L1 (∑ | |

 and L2

(∑

 are two common regularization used in logistic

regression. L1 is usually used when the feature space is

sparse, otherwise the use of L2 is recommended.

The logistic regression can handle imbalanced data in two

ways: a) The threshold moving technique moves the

threshold closer to 0 or 1 resulting in increase of accuracy on

the class to which the threshold is further away from, which is

typically the rarer class. b) The second technique wraps LR

with a cost-sensitive framework. The approach used in [11]

sets different C parameter in Equation (2) for examined

classes. Usually, the greater value of C is set in the case of the

rarer class.

C. Genetic algorithm

Genetic algorithm (GA) is a random optimization method

based on a principle of natural selection and biological

evolution. The examined problem is encoded into a set of

special genome-like structures. These structures are

essentially data strings representing our original binary

encoded data instances. The core part of any genetic

algorithm is a fitness function. Fitness function is able to rank

data genomes, ideally, with regards to the desired result of the

algorithm. The set of genomes is called a population. The

algorithm works iteratively, creating a new altered

population in each step, towards the best (highest ranked by

the fitness function) possible population. However, as the

algorithm is nondeterministic, some kind of stopping

criterion should be implemented.

Generally, genetic algorithm uses selection, crossing and

mutation techniques to produce a new population. Pure

selection enables the algorithm to simply copy excellent

individuals from the old population to the new one. Crossing

usually combines two individuals by splitting those into

(mostly two) parts and joining them together to create

different individuals. Mutation produces new genome by

randomly altering parts of the old one with regards to

alternation constrains (e.g., random new value has to be valid

in the changed attribute’s domain). Crossing and mutation are

applied randomly and probability of their occurrence is often

adjustable by initial algorithm parameters.

Use of the genetic algorithm for data mining has been

proposed in [12]. Potential of this approach lies in the search

performance of the algorithm, which is very easy to

parallelize. There is also no need for dividing data into

training and testing sets as the algorithm trains and tests itself

on the same data set. Nowadays, genetic algorithm is often

used as an optimization technique for other data mining

methods, mostly for feature subset selection [13], in hybrid

decision structures [14], or for rule induction [15], [16].

D. Evaluation metrics

In classification, accuracy and error rate are commonly

used metrics for evaluating classifier. However, for

imbalanced learning, these metrics can be misleading due to

their emphasis on the influence of the majority class. Because

of this, other metrics need to be used. Some of the most used

are AUC (Area under ROC Curve) and Geometric mean

(G-Mean) metric from [18], which is defined as follows:

 √ √

 (3)

where TP, FP, TN and FN are values from the confusion

matrix, i.e. number of True/False Positives and True/False

Negatives. TPR stands for True Positive Rate, or sometimes

called Sensitivity and Recall, and it represents the accuracy

on positive examples. TNR is True Negative Rate or

Specificity, representing the accuracy on negative examples.

III. THE PROPOSED METHOD

Modern approaches already combine genetic algorithm

with logistical regression; however, presented methods use

the genetic algorithm mostly just as an optimization

technique for adjusting costs in cost-matrix, or reduction of

feature space [13], [17]. We propose a different approach

where both methods are used subsequently to achieve better

results than other techniques.

In this section we present the proposed method for

imbalanced classification based on LR and GA. First, the

overall method concept is presented and then both LR and

GA parts are described in more detail.

A. The LR/GA method

Our method consists of several consequential blocks. The

whole concept can be best understood from the method

visualization in Fig. 1. The method processes labeled input

data and returns optimized model satisfying user accuracy

constraints. These constraints can be specified for the

accuracy of one, both, or neither of the classes. If such model,

satisfying all given constraints, doesn’t exist, the method

returns an empty result.

The main task of the LR block is to find a set of logistic

regression models, i.e., attribute weights, bias and a

threshold. These models are found with respect to a given

accuracy constraints and class imbalance in analyzed data.

The GA block utilizes those models and uses them as the

initial candidate solution for the genetic algorithm

optimization task. Using specific fitness function and

mentioned initial candidates, the algorithm starts to find the

global optimum, again with respect to given constraints. The

main advantage of our approach compared to other methods,

described in section II, is speed. We are forced to analyze

millions of records in short time periods with very high

accuracy constraint on the minority class classification;

moreover, the final model application to unseen data has to be

swift and as simple as possible. The required speed and

simplicity of model application is one of the reasons we

didn’t choose to use classifier ensembles. Another huge

advantage of our proposed method is a comprehensible result

model. In comparison with neural networks or SVMs, the

method presents an easy-to-read and understandable model

that can be easily applied to unseen data, or implemented as a

part of another application or system.

Fig. 1 LR/GA Method schema.

B. Logistic regression block

The LR block uses the combination of cost-sensitive LR

learning and threshold moving to find an initial solution for

the GA block. To perform cost-sensitive learning, the block

expects a set of costs for the rarer class to be delivered with

the input data. This set defines interval borders. Inside each

of these intervals, the local maximum of the G-mean metric is

found with respect to specified constraints. This optimization

technique is simple and it expects that the objective function

is convex or concave on the given interval. The goal is not to

find a real maximum but only its rough estimate. Each

interval is binarily split until the maximum value increases by

given difference. The usage of more initial costs, and thus

more intervals where the maximum is searched, allows

dealing with local maxima and in addition the learned models

for GA can vary widely, which helps the optimization.

The value of the G-mean metric for a given cost is

computed as follows: First, the LR model is learned with C

parameter set to the selected cost value. Then, the model is

applied to testing data to get the confidence vector. The

threshold moving technique is then used to find the maximum

G-mean metric value. For each evaluated threshold, the

confusion matrix and G-mean value are computed. The

accuracy constraints can be used to find this solution faster

and the interval is divided to bins with an equal size. The final

models are then sorted by the G-mean value and they are

ready for use in the GA block.

C. Genetic algorithm block

On input, GA block is given models from the LR block and

its main purpose is to make these models more accurate with

regards to given class restrictions. It iteratively creates

populations of genomes that, in our case, represent groups of

differently weighted models. The core part of the GA block is

the fitness function, which ranks all generated models. We

can alter the fitness function in such way it reflects all our

preferences and restrictions. This technique has great impact

on the quality of produced models. Based on our

experiments, described in section IV, all tested regression

models have been improved by the use of genetic algorithm.

Although, GA is based on random data modification, there

are many ways we can alter the optimization process. Custom

heuristics can be easily applied to the mutation and crossing

methods; moreover, it is possible to experiment with sizes of

initial population, crossing and mutation probabilities, or the

number of population cycles.

Our fitness function requires the model to fulfill all required

restriction rules; subsequently we rank our models based on

their overall classifying accuracy while favoring minority

class by applying cost-sensitive accuracy computation.

As we aim to make the algorithm as efficient as possible,

we use massive parallelization – all operations executed over

single genomes are performed in parallel.

IV. EXPERIMENTS

Experiments were performed over a large data set from our

internet security research. Examined data are labeled with

two highly imbalanced classes. Characteristics of analyzed

data are summarized in Table I:

TABLE I: SOURCE DATA CHARACTERISTICS

Data Cases

Attributes

Attribute type

Class ratio

5 000 000 120 Binary 1 : 99

The main goal was to achieve at last 99.0% accuracy when

classifying minority class examples. There were no further

restrictions regarding the majority class, however, there are

no obstacles for defining such restrictions in our method. The

final solution was built to maximize the majority class

accuracy while still satisfying the minority class accuracy

restriction.

Our experiments show the behavior of the proposed method

under several parameter settings and their influence on its

accuracy and run time. Performed experiments were divided

into two parts, examining the properties of the LR block and

GA block separately.

A. The LR block

The main task of the LR block is to provide set of initial

solutions that are good enough as starting models for the

subsequent GA block.

1) Qualitative metrics

In order to provide best candidates for the GA block, both

AUC and G-mean qualitative metrics were examined. For

approximate AUC computation, it is necessary to evaluate

the model using several thresholds. On the other hand,

G-mean is computed only for one threshold. Both AUC and

G-mean of the best threshold for 30 different costs have been

compared. The results show that there is high correlation

(above 99%) between the two, which can be seen in Fig. 2.

Our experiments also showed that the run time for the AUC

computation for given thresholds is considerably longer than

for finding the threshold with maximal G-mean.

Fig. 2 G-mean and AUC values for different costs.

2) LR block results

We examined two candidate model learning strategies for

the LR block. The first one uses constraints, i.e., 99.0%

accuracy on the minority class classification. The second one

only finds the unconstrained maximum of the G-mean metric,

thus making models that don’t have to satisfy given

constraints. For both strategies we used the same initial costs

for the LR learning phase (ranging from 1 to 1000). The final

comparison of both strategies is described by Fig. 3. We can

see that G-mean values are higher for unconstrained

solutions; this is due to the fact that G-mean penalizes

solutions where one class achieves very high accuracy at the

expense of the other.

Additionally, the best three candidate models are listed in

Table II and Table III. These tables reveal that neither of

these models satisfies given constraints; however, all of them

were successfully provided for our GA block.

In all experiments, we used L2 regularization for learning

the model. We also examined L1 regularization with very

similar results but longer learning time.

It’s worth mentioning that besides LR we tried to deploy

similar processes using SVMs (Support Vector Machines) and

neural networks, however, on our examined data set, both

learning algorithms were unable to finish in a reasonable time

frame. In addition, random forest with undersampling and

naive Bayes algorithms were compared to our solution, with

all of them being beaten by cost-sensitive logistic regression.

Fig. 3 G-mean metric comparison for constrained and unconstrained learning

strategy.

 TABLE II: TOP 3 MODELS FOR CONSTRAINED STRATEGY

Cost Threshold TPR TNR G-mean

32 0.90 0.482 0.991 0.696
225 0.70 0.480 0.990 0.689

175 0.75 0.466 0.466 0.680

 TABLE III: TOP 3 MODELS FOR UNCONSTRAINED STRATEGY

Cost Threshold TPR TNR G-mean

13 0.70 0.777 0.881 0.828

25 0.55 0.779 0.872 0.824

33 0.50 0.777 0.874 0.824

B. The GA block

As previously mentioned, our GA block processes input

models generated by the LR block and aims to improve on

them with regards to specified constraints. In all performed

experiments (over 1000), the use of genetic algorithm

improved upon recieved initial models. In Table IV we can

see a few real examples of models whose accuracy has been

improved by the subsequent use of GA block.

TABLE IV: ORIGINAL MODELS COMPARED WITH OPTIMIZED RESULTS

ID
Orig.

TPR

Orig.

TNR

GA Opt.

TPR

GA Opt.

TNR

1 0.479 0.989 0.592 0.990
2 0.783 0.869 0.597 0.990

3 0.480 0.990 0.579 0.990

All optimized models satisfy given minority class accuracy

restriction, i.e., at least 99% classification accuracy. When

presented with LR model with similar TNR, the GA block

always improves both – TNR and TPR values. In the second

showed experiment the TNR value is much lower than

requested so TPR is naturally higher. Our experiments also

confirm the idea from previous section that models generated

by logistic regression with high accuracy constraints may

lead to worse results than models generated without those

restrictions, or with lower constraints.

Regarding the course of the GA itself, introduced to models

from LR block, the population improvements are most

significant at the beginning of the optimization phase, which

70%

75%

80%

85%

90%

95%

0 200 400 600 800 1000

M
e

tr
ic

 v
al

u
e

 [
%

]

Cost

AUC and G-mean comparison

AUC G-mean

60%

65%

70%

75%

80%

85%

90%

0 200 400 600 800 1000

G
-m

e
an

 [
%

]

Cost

G-mean for different strategies

Unconstrained Constrained

is generally expected. With further iterations, the resulting

models converge to their maximum value. An example of

such evolution can be seen in Table V.

TABLE V: GA ALGORITHM EVOLUTION

Population no. TPR TNR

50 0.562 0.990

100 0.573 0.990
200 0.584 0.990

400 0.590 0.990

1000 0.592 0.990

 As we can see, TPR rises dramatically at the beginning of

the optimization process, later on the raise is less and less

significant and after some time we should find a model with

best possible accuracy. We can experimentally determine an

approximate number of repopulation cycles in which there is

the potential of our optimization maxed out.

V. CONCLUSION

In this paper, we proposed a new hybrid method for

classification of large imbalanced data sets in regards to

specified accuracy constraints. The method is based on

cost-sensitive logistic regression for generating initial models

for genetic algorithm optimization. The method was tested on

large and highly imbalanced data with more than 5 million

records and class imbalance ratio 1:99. Performed

experiments showed that proposed method produces better

results than both the logistic regression and genetic algorithm

separately.

In the future work, we would like to focus on applying

different optimization techniques such as Particle Swarm

Optimization. Also, we would like to add the support for

semi-supervised learning, i.e., exploiting data cases with

unknown classes, which could extend the final model and

increase its accuracy.

REFERENCES

[1] H. He and E.A. Garcia, “Learning from Imbalanced data,” IEEE Trans.
on Knowledge and Data Engineering, vol. 21 no.9, pp. 1263-1284,

Sept. 2009.

[2] N.V. Chawla, K.W. Bowyer, L.O. Hall and W.P. Kegelmeyer,
“SMOTE: Synthetic Minority Over-sampling Technique” Journal of

Artificial Intelligence Research, vol. 16, pp. 321-357, 2002.

[3] H.Han, W.-Y. Wang and B.-H. Mao, “Borderline-smote: A new
over-sampling method in imbalanced data sets learning” in Proc. Of

Advances in Intelligent Computing, International Conference on

Intelligent Computing (ICIC ‘05), Hefei, China, 2005, pp. 878-887.
[4] X.-Y. Liu, J. Wu and Z.-H. Zhou, “Exploratory undersampling for

class-imbalance learning” IEEE Trans. on Systems, Man, and

Cybernetics, vol. 21 no.6, pp. 539-550, April 2009.
[5] J. Zhang and I. Mani, “KNN Approach to Unbalanced Data

Distributions: A Case Study Involving Information Extraction” in

Proc. Of the Int'l. Conf. on Machine Learning (ICML ‘03), 2003.
[6] K. McCarthy, B. Zabar and G. Weiss, “Does cost-sensitive learning

beat sampling for classifying rare classes” in Proc. 1st Int'l workshop

on Utility-based data mining, 2005, New York, pp. 69-77.
[7] X.-Y. Liu and Z.-H. Zhou, “The Influence of Class Imbalance on

Cost-Sensitive Learning: An Empirical Study” in Proc. 6th Int'l. Conf.

on Data Mining (ICDM ‘06), Hong Kong, 2006, pp. 970-974.
[8] P. Domingos, “MetaCost: a general method for making classifiers

cost-sensitive” in Proc. 5th Int'l Conf. on Knowledge discovery and

data mining (KDD ‘99), San Diego, 1999, pp. 155-164.
[9] Y.Sun, M.S. Kamel, A.K.C. Wong, Y.Wang, “Cost-Sensitive Boosting

for Classification of Imbalanced Data”, Pattern Recognition, vol. 40

no.12, pp. 3358-3378, Dec. 2007.
[10] T.G. Dietterich, “An experimental comparison of three methods for

constructing ensembles of decision trees”, Machine Learning, vol. 40

no.2, pp. 139-157, Aug. 2000.

[11] D.R. Carvalho and A.A. Freitas, “LIBLINEAR: A Library for Large

Linear Classification” Journal of Machine Learning Research, vol. 9,

pp. 1871-1874, August 2008.
[12] J.S. Tan, W. He and Y.Qing, “Application of Genetic Algorithm in

Data Mining” in Proc. 1st Int'l Workshop on Education Technology

and Comp. Science (ETCS ‘09), 2009, pp. 353-356.
[13] J.Yang and V.G. Honovar, “Feature subset selection using a genetic

algorithm” IEEE Trans. on Intelligent Systems, vol. 13 no.2, pp. 44-49,

March 1998.
[14] D.R. Carvalho and A.A. Freitas, “A hybrid decision tree/genetic

algorithm method for data mining” Information Sciences – Special

issue: Soft computing data mining, vol. 163 no.1-3, pp. 13-35, June
2004.

[15] A.A. Freitas, “A Genetic Programming Framework for Two Data

Mining Tasks: Classification and Generalized Rule Induction” in Proc.
of the 2nd Annual Conf. in Genetic Programming, 1997, pp. 96--101.

[16] A.A. Freitas and H.S. Lopes, “Discovering interesting prediction rules

with a genetic algorithm” in Proc. Congress on Evolutionary
Computation, 1999.

[17] D.R. Carvalho and A.A. Freitas, “A genetic algorithm to select

variables in logistic regression” Journal of the American Medical
Informatics Association, vol. 6, pp. 984-988, 1999.

[18] M. Kubat and S.Matwin, “Addressing the Curse of Imbalanced

Training Sets: One-Sided Selection”, in Proc. of the 14th Intl. Conf. on

Machine Learning, 1997, pp. 179-186.

Martin Hlosta is a third year PhD student. He
received his master's degree in Computer Science in

2010 from Faculty of Information Technology, Brno

University of Technology. Both his bachelor and
master theses were focused on methods of knowledge

discovery in databases. His PhD research focuses on

knowledge discovery from malware detection data
and learning from imbalanced data.

Rostislav Stríž is a first year PhD student. He

received his master's degree in Computer Science in

2012 from Faculty of Information Technology, Brno
University of Technology. His PhD research focuses

on modern data mining systems and real-world data
mining.

Jan Kupčík received his master's degree in

Information Systems from Faculty of Information

Technology, Brno University of Technology in 2007.
He is currently pursuing the PhD degree at the same

university. His research interests include database and

OLAP technologies, data mining and software
engineering.

Jaroslav Zendulka received his M.Sc. degree in

computers and Ph.D. in technical cybernetics at the

Brno University of Technology, Czech Republic. He
is currently an Associate Professor at the Department

of Information Systems at the Brno University of

Technology. He has participated in several projects
and has written tens of papers in international journals

and conference proceedings. He is a PC member of

several international conferences. His research
interests include data and object modeling; database technology and

information systems; data mining.

Tomáš Hruška received his Ing. (MSc.) and CSc.

(PhD) titles from Brno University of Technology,

Czech Republic. Since 1978 he works at the Brno
University of Technology, since 1998 as full

professor. In 1978-1983, he dealt with research in the

area of compiler implementation for simulation
languages. He dealt with an implementation of an

object-oriented database systems as a tool for modern

information systems design and Lissom/Codasip
project now. It is focused on the research of the processor description

language for transformations of processor models.

