
 

 

 

 

Abstract—Imbalance in data classification is a frequently 

discussed problem that is not well handled by classical 

classification techniques. We propose a new method that 

produces highly accurate and easily understandable 

classification model with regards to user-specified set of class 

accuracy restrictions. Our method combines logistic regression 

with a genetic algorithm optimization and has been successfully 

tested on a large real-world data set from our internet security 

research. Experiments prove that our method always leads to 

better results than usage of logistic regression or genetic 

algorithm alone.  

 
Index Terms—Imbalanced data, classification, genetic 

algorithm, logistic regression.  

 

I. INTRODUCTION 

High emphasis on data collecting and subsequent analysis 

leads to discovery of new problems related to processing 

various types of data. In this paper we focus on the 

imbalanced data learning problem, which has drawn a lot of 

attention over past years. We present a new approach to 

handle highly imbalanced binary data classification with 

accuracy constraints on one of the classes. The example of 

such a constraint is reaching 95% accuracy on the minority 

class. Our method combines cost-sensitive logistic regression 

with the use of genetic algorithm. We provide experiments 

and evaluation on highly imbalanced real-world data from 

our internet security research. The presented results clearly 

show advantages of our proposed method compared to the 

using logistic regression and genetic algorithm separately. 

Moreover, the resulting model generated by the method is 

easily interpretable (compared to, e.g., Neural Network) and 

is suitable for very fast prediction. 

 

II. PROBLEM DEFINITION AND RELATED WORK 

In the following paragraphs we describe our problem in 

greater detail, as well as basic principles and other proposed 

methods our work is based on.  

A. Imbalanced data classification 

When we talk about imbalanced data, we consider data with 

a significant disproportion in the occurrence of instances of 

each class. Types of data imbalance are widely described in 

[1]. Experiments performed on imbalanced data sets have 

shown that such type of data may often have negative impact 

on the learning phase of most standard classification 

algorithms. The algorithm is overwhelmed by the number of 

majority class instances which may lead to not discovering 

the minority class.  

The main problem in dealing with imbalanced data 

classification is the default inability of most common 

classifiers to recognize the minority class properly. Another 

problem is their inability to consider different costs of 

misclassification. To solve these problems, many methods 

have been proposed. Basically, there are two most popular 

approaches that can be used when dealing with imbalanced 

data classification.  

Sampling is the basic approach we can choose to alter the 

data imbalance. There are two types of sampling - 

undersampling and oversampling. Majority class 

undersampling leads to lower between-class imbalance by 

removing a set of majority class examples from the algorithm 

training set. The issue here is how to choose the set of 

majority class examples for the removal. Approaches differ 

from a random selection to more complex informed methods, 

which produce generally better results. Minority class 

oversampling also leads to lower data imbalance but instead 

of decreasing the number of majority class instances, the 

minority class occurrence is increased by adding or 

generating new minority class examples. Techniques for 

oversampling vary from basic copying of existing tuples to 

more complex generating methods, like SMOTE [2], which 

are able to create new synthetic examples fitting to the 

minority class, and widen the decision region for the 

classifier. This concept has been explored and extended in 

[3]. Different informed methods are also presented in [4], [5].  

Sampling can solve the problem of data imbalance from the 

point of the actual data distribution, but it still does not take 

into account possible costs of misclassification. 

Cost-sensitive methods have been proposed to address this 

issue and according to various studies focused on certain 

specific imbalanced learning domains [6], [7], cost-sensitive 

learning is superior to sampling methods. The basic concept 

in the context of cost-sensitive learning methodology is the 

cost-matrix. The cost-matrix essentially represents a 

numerical penalty of misclassifying an example. The main 

objective of cost-sensitive methods is to create a model that 

minimizes the overall cost on the training set. MetaCost 

framework, described in [8], presents a simple and effective 

way for existing classifiers to adopt a cost-sensitive learning 

approach in a form of cost-sensitive wrapper, which can be 

applied onto various data mining systems without prior 

knowledge of their structure. Another way of creating a 

cost-sensitive classifier may be integrating such functionality 

directly inside the classifier itself, or apply misclassification 

costs to the data set in a form of dataspace weighting.  

However, problems with optimal settings may occur while 

using cost-sensitive or sampling methods. Usually, it is 

impossible to determine ideal method and its setting for 

further unknown data classification. Because of this, building 

classifier ensembles has become a popular practice. 
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Ensembles are essentially groups of classifiers that are 

trained on different training sets. These training data sets may 

vary in cost-matrix values, or in the data themselves when 

using different sampling settings. Unseen data are then 

classified by all generated classifiers and the result is decided 

either by simple majority voting or by other advanced 

methods (e.g., different voting weights). Studies [9], [10] 

confirm that classifier ensembles may dramatically improve 

classification accuracy.  

In contrast to previously mentioned techniques, our 

proposed method combines the use of logistic regression with 

genetic algorithm. Following sections give an insight on how 

both of these techniques work. 

B. Logistic Regression 

Logistic regression (LR) is a machine learning model for 

binary classification. The method can handle both numeric 

and categorical variables. Given a learned model, the value of 

the output variable is computed by applying the logistic 

function to linear combination of attribute values and weight 

vector. The function is defined as follows: 
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The logistic function converts the input value to 

interval [   ]. The result describes a confidence value for a 

given case being of the class 1. Typically, threshold       

is applied to determine whether an examined example 

belongs to class 0 or 1.  

In the training phase, the algorithm tries to solve the 

unconstrained optimization problem of the following 

objective function:  
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    are two common regularization used in logistic 

regression. L1 is usually used when the feature space is 

sparse, otherwise the use of L2 is recommended. 

The logistic regression can handle imbalanced data in two 

ways: a) The threshold moving technique moves the 

threshold closer to 0 or 1 resulting in increase of accuracy on 

the class to which the threshold is further away from, which is 

typically the rarer class. b) The second technique wraps LR 

with a cost-sensitive framework. The approach used in [11] 

sets different C parameter in Equation (2) for examined 

classes. Usually, the greater value of C is set in the case of the 

rarer class.  

C. Genetic algorithm 

Genetic algorithm (GA) is a random optimization method 

based on a principle of natural selection and biological 

evolution. The examined problem is encoded into a set of 

special genome-like structures. These structures are 

essentially data strings representing our original binary 

encoded data instances. The core part of any genetic 

algorithm is a fitness function. Fitness function is able to rank 

data genomes, ideally, with regards to the desired result of the 

algorithm. The set of genomes is called a population. The 

algorithm works iteratively, creating a new altered 

population in each step, towards the best (highest ranked by 

the fitness function) possible population. However, as the 

algorithm is nondeterministic, some kind of stopping 

criterion should be implemented.   

Generally, genetic algorithm uses selection, crossing and 

mutation techniques to produce a new population. Pure 

selection enables the algorithm to simply copy excellent 

individuals from the old population to the new one. Crossing 

usually combines two individuals by splitting those into 

(mostly two) parts and joining them together to create 

different individuals. Mutation produces new genome by 

randomly altering parts of the old one with regards to 

alternation constrains (e.g., random new value has to be valid 

in the changed attribute’s domain). Crossing and mutation are 

applied randomly and probability of their occurrence is often 

adjustable by initial algorithm parameters.  

Use of the genetic algorithm for data mining has been 

proposed in [12]. Potential of this approach lies in the search 

performance of the algorithm, which is very easy to 

parallelize. There is also no need for dividing data into 

training and testing sets as the algorithm trains and tests itself 

on the same data set. Nowadays, genetic algorithm is often 

used as an optimization technique for other data mining 

methods, mostly for feature subset selection [13], in hybrid 

decision structures [14], or for rule induction [15], [16]. 

D. Evaluation metrics 

In classification, accuracy and error rate are commonly 

used metrics for evaluating classifier. However, for 

imbalanced learning, these metrics can be misleading due to 

their emphasis on the influence of the majority class. Because 

of this, other metrics need to be used. Some of the most used 

are AUC (Area under ROC Curve) and Geometric mean 

(G-Mean) metric from [18], which is defined as follows: 
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where TP, FP, TN and FN are values from the confusion 

matrix, i.e. number of True/False Positives and True/False 

Negatives. TPR stands for True Positive Rate, or sometimes 

called Sensitivity and Recall, and it represents the accuracy 

on positive examples. TNR is True Negative Rate or 

Specificity, representing the accuracy on negative examples. 

III. THE PROPOSED METHOD 

Modern approaches already combine genetic algorithm 

with logistical regression; however, presented methods use 

the genetic algorithm mostly just as an optimization 

technique for adjusting costs in cost-matrix, or reduction of 

feature space [13], [17]. We propose a different approach 

where both methods are used subsequently to achieve better 

results than other techniques.  

In this section we present the proposed method for 

imbalanced classification based on LR and GA. First, the 

overall method concept is presented and then both LR and 

GA parts are described in more detail. 

A. The LR/GA method 

Our method consists of several consequential blocks. The 

whole concept can be best understood from the method 

visualization in Fig. 1. The method processes labeled input 

data and returns optimized model satisfying user accuracy 

constraints. These constraints can be specified for the 

accuracy of one, both, or neither of the classes. If such model, 

satisfying all given constraints, doesn’t exist, the method 



 

 

 

returns an empty result. 

The main task of the LR block is to find a set of logistic 

regression models, i.e., attribute weights, bias and a 

threshold. These models are found with respect to a given 

accuracy constraints and class imbalance in analyzed data. 

The GA block utilizes those models and uses them as the 

initial candidate solution for the genetic algorithm 

optimization task. Using specific fitness function and 

mentioned initial candidates, the algorithm starts to find the 

global optimum, again with respect to given constraints. The 

main advantage of our approach compared to other methods, 

described in section II, is speed. We are forced to analyze 

millions of records in short time periods with very high 

accuracy constraint on the minority class classification; 

moreover, the final model application to unseen data has to be 

swift and as simple as possible. The required speed and 

simplicity of model application is one of the reasons we 

didn’t choose to use classifier ensembles. Another huge 

advantage of our proposed method is a comprehensible result 

model. In comparison with neural networks or SVMs, the 

method presents an easy-to-read and understandable model 

that can be easily applied to unseen data, or implemented as a 

part of another application or system.  

 
Fig. 1 LR/GA Method schema. 

 

B. Logistic regression block 

The LR block uses the combination of cost-sensitive LR 

learning and threshold moving to find an initial solution for 

the GA block. To perform cost-sensitive learning, the block 

expects a set of costs for the rarer class to be delivered with 

the input data.  This set defines interval borders. Inside each 

of these intervals, the local maximum of the G-mean metric is 

found with respect to specified constraints. This optimization 

technique is simple and it expects that the objective function 

is convex or concave on the given interval. The goal is not to 

find a real maximum but only its rough estimate. Each 

interval is binarily split until the maximum value increases by 

given difference. The usage of more initial costs, and thus 

more intervals where the maximum is searched, allows 

dealing with local maxima and in addition the learned models 

for GA can vary widely, which helps the optimization.  

The value of the G-mean metric for a given cost is 

computed as follows: First, the LR model is learned with C 

parameter set to the selected cost value. Then, the model is 

applied to testing data to get the confidence vector. The 

threshold moving technique is then used to find the maximum 

G-mean metric value. For each evaluated threshold, the 

confusion matrix and G-mean value are computed. The 

accuracy constraints can be used to find this solution faster 

and the interval is divided to bins with an equal size. The final 

models are then sorted by the G-mean value and they are 

ready for use in the GA block. 

C. Genetic algorithm block 

On input, GA block is given models from the LR block and 

its main purpose is to make these models more accurate with 

regards to given class restrictions. It iteratively creates 

populations of genomes that, in our case, represent groups of 

differently weighted models. The core part of the GA block is 

the fitness function, which ranks all generated models. We 

can alter the fitness function in such way it reflects all our 

preferences and restrictions. This technique has great impact 

on the quality of produced models. Based on our 

experiments, described in section IV, all tested regression 

models have been improved by the use of genetic algorithm. 

Although, GA is based on random data modification, there 

are many ways we can alter the optimization process. Custom 

heuristics can be easily applied to the mutation and crossing 

methods; moreover, it is possible to experiment with sizes of 

initial population, crossing and mutation probabilities, or the 

number of population cycles.  

Our fitness function requires the model to fulfill all required 

restriction rules; subsequently we rank our models based on 

their overall classifying accuracy while favoring minority 

class by applying cost-sensitive accuracy computation.  

As we aim to make the algorithm as efficient as possible, 

we use massive parallelization – all operations executed over 

single genomes are performed in parallel.  

 

IV. EXPERIMENTS 

Experiments were performed over a large data set from our 

internet security research. Examined data are labeled with 

two highly imbalanced classes. Characteristics of analyzed 

data are summarized in Table I: 
 

TABLE I: SOURCE DATA CHARACTERISTICS 

 

Data Cases 

 

Attributes 

 

Attribute type 

 

Class ratio 

5 000 000 120 Binary 1 : 99 

 

The main goal was to achieve at last 99.0% accuracy when 

classifying minority class examples. There were no further 

restrictions regarding the majority class, however, there are 

no obstacles for defining such restrictions in our method. The 

final solution was built to maximize the majority class 

accuracy while still satisfying the minority class accuracy 

restriction.  

Our experiments show the behavior of the proposed method 



 

 

 

under several parameter settings and their influence on its 

accuracy and run time. Performed experiments were divided 

into two parts, examining the properties of the LR block and 

GA block separately. 

A. The LR block 

The main task of the LR block is to provide set of initial 

solutions that are good enough as starting models for the 

subsequent GA block.  

 

1) Qualitative metrics 

In order to provide best candidates for the GA block, both 

AUC and G-mean qualitative metrics were examined. For 

approximate AUC computation, it is necessary to evaluate 

the model using several thresholds. On the other hand, 

G-mean is computed only for one threshold. Both AUC and 

G-mean of the best threshold for 30 different costs have been 

compared. The results show that there is high correlation 

(above 99%) between the two, which can be seen in Fig. 2. 

Our experiments also showed that the run time for the AUC 

computation for given thresholds is considerably longer than 

for finding the threshold with maximal G-mean. 

 

  
Fig. 2 G-mean and AUC values for different costs. 

 

 

2) LR block results 

We examined two candidate model learning strategies for 

the LR block. The first one uses constraints, i.e., 99.0% 

accuracy on the minority class classification. The second one 

only finds the unconstrained maximum of the G-mean metric, 

thus making models that don’t have to satisfy given 

constraints. For both strategies we used the same initial costs 

for the LR learning phase (ranging from 1 to 1000). The final 

comparison of both strategies is described by Fig. 3. We can 

see that G-mean values are higher for unconstrained 

solutions; this is due to the fact that G-mean penalizes 

solutions where one class achieves very high accuracy at the 

expense of the other.  

Additionally, the best three candidate models are listed in 

Table II and Table III. These tables reveal that neither of 

these models satisfies given constraints; however, all of them 

were successfully provided for our GA block. 

In all experiments, we used L2 regularization for learning 

the model. We also examined L1 regularization with very 

similar results but longer learning time. 

It’s worth mentioning that besides LR we tried to deploy 

similar processes using SVMs (Support Vector Machines) and 

neural networks, however, on our examined data set, both 

learning algorithms were unable to finish in a reasonable time 

frame. In addition, random forest with undersampling and 

naive Bayes algorithms were compared to our solution, with 

all of them being beaten by cost-sensitive logistic regression.  

 

 
Fig. 3 G-mean metric comparison for constrained and unconstrained learning 

strategy. 

 
  TABLE II: TOP 3 MODELS FOR CONSTRAINED STRATEGY 

Cost Threshold TPR TNR G-mean 

32 0.90 0.482 0.991 0.696 
225 0.70 0.480 0.990 0.689 

175 0.75 0.466 0.466 0.680 

 
  TABLE III: TOP 3 MODELS FOR UNCONSTRAINED STRATEGY 

Cost Threshold TPR TNR G-mean 

13 0.70 0.777 0.881 0.828 

25 0.55 0.779 0.872 0.824 

33 0.50 0.777 0.874 0.824 

 

B. The GA block 

As previously mentioned, our GA block processes input 

models generated by the LR block and aims to improve on 

them with regards to specified constraints. In all performed 

experiments (over 1000), the use of genetic algorithm 

improved upon recieved initial models. In Table IV we can 

see a few real examples of models whose accuracy has been 

improved by the subsequent use of GA block.  

 
TABLE IV: ORIGINAL MODELS COMPARED WITH OPTIMIZED RESULTS 

ID 
Orig. 

TPR 

Orig.  

TNR 

GA Opt. 

TPR 

GA Opt. 

TNR 

1 0.479 0.989 0.592 0.990 
2 0.783 0.869 0.597 0.990 

3 0.480 0.990 0.579 0.990 

 

All optimized models satisfy given minority class accuracy 

restriction, i.e., at least 99% classification accuracy. When 

presented with LR model with similar TNR, the GA block 

always improves both – TNR and TPR values. In the second 

showed experiment the TNR value is much lower than 

requested so TPR is naturally higher. Our experiments also 

confirm the idea from previous section that models generated 

by logistic regression with high accuracy constraints may 

lead to worse results than models generated without those 

restrictions, or with lower constraints. 

Regarding the course of the GA itself, introduced to models 

from LR block, the population improvements are most 

significant at the beginning of the optimization phase, which 
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is generally expected. With further iterations, the resulting 

models converge to their maximum value. An example of 

such evolution can be seen in Table V. 

 
TABLE V: GA ALGORITHM EVOLUTION 

Population no. TPR TNR 

50 0.562 0.990 

100 0.573 0.990 
200 0.584 0.990 

400 0.590 0.990 

1000 0.592 0.990 

 

 As we can see, TPR rises dramatically at the beginning of 

the optimization process, later on the raise is less and less 

significant and after some time we should find a model with 

best possible accuracy. We can experimentally determine an 

approximate number of repopulation cycles in which there is 

the potential of our optimization maxed out.  

 

V. CONCLUSION 

In this paper, we proposed a new hybrid method for 

classification of large imbalanced data sets in regards to 

specified accuracy constraints. The method is based on 

cost-sensitive logistic regression for generating initial models 

for genetic algorithm optimization. The method was tested on 

large and highly imbalanced data with more than 5 million 

records and class imbalance ratio 1:99. Performed 

experiments showed that proposed method produces better 

results than both the logistic regression and genetic algorithm 

separately. 

In the future work, we would like to focus on applying 

different optimization techniques such as Particle Swarm 

Optimization. Also, we would like to add the support for 

semi-supervised learning, i.e., exploiting data cases with 

unknown classes, which could extend the final model and 

increase its accuracy. 
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