
VTApi: an Efficient Framework for Computer
Vision Data Management and Analytics

Petr Chmelar2, Martin Pesek2, Tomas Volf2,
Jaroslav Zendulka1,2, and Vojtech Froml2

1 IT4Innovations Centre of Excellence,
2 Faculty of Information Technology, Brno University of Technology

Bozetechova 1/2, 612 66 Brno, Czech Republic
{chmelarp,ipesek,ivolf,zendulka}@fit.vutbr.cz,xfroml00@stud.fit.vutbr.cz

Abstract. VTApi is an open source application programming interface
designed to fulfill the needs of specific distributed computer vision data
and metadata management and analytic systems and to unify and ac-
celerate their development. It is oriented towards processing and effi-
cient management of image and video data and related metadata for
their retrieval, analysis and mining with the special emphasis on their
spatio-temporal nature in real-world conditions. VTApi is a free extensi-
ble framework based on progressive and scalable open source software as
OpenCV for high- performance computer vision and data mining, Post-
greSQL for efficient data management, indexing and retrieval extended
by similarity search and integrated with geography/spatio-temporal data
manipulation.

Keywords: VTApi, computer vision, data management, similarity search,
clustering, API, methodology, spatio-temporal.

1 Introduction

Ever expanding multimedia content necessitates the research of new technolo-
gies for content understanding and the development of a wide variety of aca-
demic, commerce and government applications [10]. The main objective of the
VideoTerror (the Ministry of the Interior) project is to create a prototype of
a system warehousing image and video accomplished with computer vision and
video analytics for preventing and protecting against illegal activities and natu-
ral or industrial disasters affecting citizens, organizations or infrastructure. The
basic requirements include image and video feature extraction, storage and in-
dexing to enable (content-based) retrieval, summarization and data mining in
the meaning of object detection and activity recognition in an interactive and
iterative process.

In addition to the technology, we also target usual aspects of the research –
to unify and accelerate it by choosing an appropriate design methodology and
architectural framework for the composition of domain and application specific
tools focusing on open source software. In particular, we propose a solution

that will enable the development and adaptation of a complex computer vision
application at a reduced cost in terms of time and money. We target this goal by
(re)using and integrating tool chains of (CV) methods and (multimedia) data
and metadata in an arbitrary combination as simple and versatile as possible.

The VT methodology is based on the fact, that most methods of the same
purpose have similar types of inputs and outputs, so there may be chains of them.
Moreover, the input of a process (a running instance of a method) can be seen
as another process’s output (e.g., annotation, feature extraction, classification)
including media data creation as illustrated in Figure 1. The VT project is not
limited to specific methods or data - they are created by users of (VideoTerror
API) VTApi.

Fig. 1. The illustration of VTApi and the concept of methods’ chaining.

In this paper, we present the most general part of the system and methodol-
ogy – VTApi1, open source C++ and Python code. At the moment, VTApi
is technologically based on a (remote) file-system media storage (with mul-
timedia scraping capability) and PostgreSQL database for metadata manage-
ment extended by our vector-based simililarity search (distance) metrics, origi-
naly developed for efficient local (invariant) features search (pgDistance). We
have integrated GEOS and PostGIS to be able of multi-dimensional index-
ing of the geography/spatio-temporal nature of real-world multimedia data ac-
quired by (phones’ and surveillance) cameras and appearing objects (trajecto-
ries). OpenCV is used as the primary vision framework. In the future, we plan
to integrate other technologies and databases (SQLite at the moment) and a
NoSQL storage.

1 http://gitorious.org/vtapi, http://vidte.fit.vutbr.cz/ in Czech

2 State of the Art

In the past decade multimedia technology has become ubiquitous. There is an in-
stantly growing tendency of multimedia data produced by many applications in
today’s world. It requires to organize and manage this data and to provide sup-
port for its processing. First, image processing and data management have been
a great challenge for researchers. So far, OpenCV supports only (XML/YAML)
file storages, which are flexible, but not really efficient. Content-based image
retrieval (CBIR) emerged as an important area in computer vision and informa-
tion retrieval. Later, the video database management systems were supported by
the SQL/MM standard. Its Part 5 Still Image provides structured user-defined
types both for still images and their features that allow to store images into
a database, retrieve them, modify them and to locate them by applying various
“visual” predicates [9]. These data types are implemented in several commercial
database products, e.g., in Oracle Multimedia and IBM DB2 Image Extender.
There are also some extensions to open source database products to facilitate
CBIR system development. For example, PostgreSQL-IE [1] extends the archi-
tecture of PostgreSQL.

MPEG-7 standard (Multimedia Content Description Interface [8]) published
in 2002 has brought a standard model of multimedia content. However, most
of XML-enabled and native XML databases ignore management of time inter-
vals, vectors and matrix data types, which MPEG-7 defines as the extent to
the XML. The MPEG-7 model has been adopted or supported by several mul-
timedia database management systems, for example, BilVideo-7 [3]. It supports
multimodal queries, video indexing and retrieval and spatio-temporal queries.
MPEG-7 Multimedia Database System (MPEG-7 MMDB) [6] is another exam-
ple. It is based on extensibility services of Oracle 10g. It maps MPEG-7 schema
types to database types and introduces new indexing and querying of similarity.
Cortina [2] is another CBIR system based on MySQL. Besides image search, re-
trieval, classification and duplicate detection, it offers the face detection, image
annotation and relevance feedback. Another example of a CBIR system is our
TRECVid Search 2009 Demo (http://minerva3.fit.vutbr.cz:8080/).

3 Concepts and Specifications

The VTApi framework is based on the following fundamental concepts that grow
from both computer vision and data management:

– Dataset is a named set of (multimedia) data along with metadata (descrip-
tive data). Datasets can be organized hierarchically, i.e., one may be based
on several others. Each dataset contains sequences.

– Sequence is a named ordered set of frames. There are two types of sequences
- Video and Images. The ordering of frames in video is time-based. There
can be intervals defined for a sequence.

– Interval is any subsequence of Video or Images whose elements share the
same metadata (and thus may define their order). Naturally, it can be a video

shot or any sequence of frames containing the monitored object in the video
or scene. Metadata of an interval are created by a process.

– Process (task or operation) is a named run of a method. Method defines the
custom algorithm and the structure of metadata consumed and produced by
its processes. Such a way, processes represent all activities of a VTApi-based
application related to video and image data processing. Implementation of
a specific method may or may not be included in VTAPI, it is created by
developers, who can share the code using VTCli.

– Tag is a term representing an ontology class (in hierarchy). Tags are assigned
to the multimedia data as descriptor or annotation of a scene, object or
action.

– Selection is a set of logically related metadata specified by developers as
means of doing operations on metadata effectively and making it possible
to chain processes. This concept is related to the effective implementation
and access to metadata in the database. A common example of a Selection
is Interval.

– Key-Value is the basic way of metadata organization in VTApi. It is a generic
data structure (associative array) that allows to store data as <key, value>
pairs, so changes in data definition do not imply changes of the VTApi code.

In VTApi, all these concepts are mapped to classes as it is shown in Figure 2.
Our approach is not based directly on MPEG-7 XML descriptors and description
schemes, because they do not provide the flexibility for efficient streaming and
database storage and they are tree structured. Thus, we focus more on the
BiM (Binary Format for MPEG-7 [8]). We generally support all structures of
descriptors including operations as the first order temporal interpolation, spatial
transformation and coordinate mapping, including their indexing using GiST
and GIN [7]. The same states about MPEG-A (Multimedia application format)
Part 10: Surveillance application format.

3.1 Data Model

The simplified class diagram of VTApi is illustrated in Figure 2. It follows
the concepts given in the previous section and operations that logically belong
to. Most classes inherit from the class KeyValues that provides the basic oper-
ations needed to manage key-value pairs, on which the VTApi model is based.
The KeyValues class is crucial to ensure the functionality and generality of the
framework by the main function next(), which includes not only navigation over
data structures, but also executes database queries, commits changes made by
setter methods and commits new data added by adder methods. It uses the lazy
approach – accessing objects only when they are needed by using caches and
batches where possible.

Classes derived from KeyValues contain only functionality related to the
consistency of data and to make some operations easier for VTApi users and
factory methods. For instance, getLocation() returns the physical data location
(e.g., a dataset or a directory with pictures). The method newSequence() of the

Fig. 2. The simplified class diagram of VTApi.

Dataset class object is an example of a factory method. It creates a new object
of the class Sequence, with all necessary parameters. So, then it is possible to
access all the current dataset’s sequences identified by getName() by calling the
next() method. This is illustrated in the sample code in Section 4.1.

VTApi is strongly typed. The following description uses notation of X re-
ferring to any data type implemented as integers, floating points, strings, 4D
geometry points, lines and polygons and their structures, vectors, arrays and
(OpenCV) matrices. For instance, getX (k) or setX (k,v) operates key k and its
value v of type X.

The entry point to the application is the VTApi class based on a configuration
file and command-line arguments. This class is used to implement the additional
command line interface (VTCli1), which can give you an insight into the managed
data and metadata.

There are several other important classes, some of them nested in the class
KeyValues (shown as its attributes) in Figure 2:

– Commons class provides a very basic functions such as loading configuration
file and command line parameters. It provides a connection to the database
(PostgreSQL), a data storage (remote file system) and provides some cen-
tralized services, as error processing and logging.

– Select class is used to construct queries that as a part of the first call of the
function next() retrieves the required data from the database. There are spe-
cial functions to simplify the construction of queries available. Other func-
tions simplify the work with selections, keys and their values to filter queries,
use functions and indexes.

– Insert class provides insertion of data by the function addX (k,v) into the
database. There are two possible ways of inserting – immediate (addExe-
cute()) or batch (implicitly) by calling next().

– Update class allows modification of the current element using the typed
family of functions setX (k,v). The approach is similar to the one described
in the Insert class.

A Selection can be either a relational table or a storage in a non-SQL database
(using modified KeyValues class) for storing data as image features, trajectories
or tags. The database schema is available at the project page1.

4 Use Cases

We have chosen three simple use-cases demonstrating the use of VTApi for com-
mon tasks based on TRECVid evaluations and an object trajectory extraction
and transformation experiment. The first use-case is a simple CBIR and the sec-
ond presents trajectory clustering. It is followed by a performance experiment.
The fourth example is the TRECVid Surveillance Event Detection task software.

4.1 Content-Based Image Retrieval

The OpenCV library provides powerful feature extraction and classification tech-
niques. However, it doesn’t have capabilities to store the data to be efficiently
searched and processed further. This is especially useful for tools like Google
Image Search or developed within TRECVid [10], where the retrieval is based
on multiple types of (low to high-level, local and global) features related to any
object together with annotations (tags).

Thus, we have implemented various similarity-based distance functions. The
pgDistance extension (included in the VTApi code) performs the similarity
queries measuring distances of feature vectors in PostgreSQL database, e.g., Co-
sine or Euclidean distance. So that we can employ the feature-based similarity
search supported by efficient indexing techniques (SP-)GiST and GIN [7] using
Heap and Bitmap indexes, Quad-Tree, KD-Tree, R-Tree, Inverted Document In-
dex and other general indexing structures, supporting containment and nearest
neighbor search on vectors (using @> and <-> operators). However, the example
in Figure 3 is quite simple. Assume you have a large dataset of images called
“search” already populated in the database, and we want to perform MPEG-7
Color layout descriptor based CBIR.

4.2 Object tracking, trajectory querying and analysis

In the surveillance video, it is important to be able to track moving objects and
to extract their visual and spatio-temporal features. Such extracted metadata
then should be cleaned, stored and indexed to be able to query and analyze.

// VTApi entry point, using Dataset "search"

VTApi* vtapi = new VTApi(argc, argv);

Dataset* dataset = vtapi->newDataset("search");

dataset->next();

// code of the ColorLayout Method, using Selection "image"

Image* image = new Image(&dataset, "image");

while (image->next()) {

int[32] color = colorLayout(image->getDataLocation());

image->setIntA("color", color, 32);

}

// retrieve Image(s) according to their similarity to "Q.jpg"

Image* nearest = new Image(&dataset);

nearest->select->from("image", "distance_square_int4(color, "

+ toString(colorLayout("Q.jpg")) + ")");

nearest->select->orderby("distance_square_int4");

nearest->next(); // is the most similar image

Fig. 3. A simple CBIR code example

Object tracking is a complex task, especially in crowded scenes. We created a
tracker based on OpenCV blobtrack demo that we extended with feature extrac-
tion as in [5]. The outputs of such methods include spatio-temporal locations in
the form of trajectories, blobs and other features of moving objects.

The features might be used and searched for similarity by VTApi. A trajec-
tory query may relate either to relationships between moving objects or a spe-
cific spatio-temporal region. Such an analysis can be performed both on VTApi
clients and server, because we have adopted the OpenGIS GEOS library, that
has been adopted by PostGIS. In order to perform these operations efficiently,
VTApi adds a binary access to geometry types and n-dimensional cubes that
are used as spatio-temporal minimum bounding boxes of (moving) objects.

Data mining and machine learning techniques can be performed on moving
objects metadata. Such an analysis may involve trajectory clustering, classifi-
cation, object recognition, outliers detection and so on. The following example
shows a clustering of trajectories using VTApi and an OpenCV implementation
of Expectation-maximization (EM) algorithm, which estimates parameters of
a Gaussian mixture model (GMM) [4]. First, feature vectors representing tra-
jectories are read from the database and training samples for the EM algorithm
are prepared (see Figure 4). Suppose that trajectories are stored in selection
“tracks” in this example. Second, GMM is trained by the EM algorithm and
appropriate cluster labels are stored in the database.

We performed the trajectory clustering on a set of trajectories extracted from
the second dataset of videos forming the i-LIDS dataset used for NIST evalu-
ations (http://www.homeoffice.gov.uk/science-research/hosdb/i-lids/) it comes
from five cameras at the LGW airport. An example of visualization of some
obtained results is shown in Figure 5. There is a result of clustering trajectories
from the first camera using the EM algorithm mentioned above. Different col-
ors of trajectories refer to different clusters. We have prepared also an outliers
analysis within the VideoTerror project.

Mat samples; // cv::Mat of training feature vectors

VTApi* vtapi = new VTApi(argc, argv);

Dataset* dataset = vtapi->newDataset("train");

dataset->next();

Sequence* sequence = dataset->newSequence();

while (sequence->next()) { // for each video

Interval* track = new Interval(*sequence, "tracks");

while (track->next()) { // for each trajectory

Mat sample; // cv::Mat for feature vector of trajectory

float feature = track->getFloat("feature");

// ... read features and fill feature vector

samples.push_back(sample);

}

}

CvEM model, labels; // GMM-EM model and cluster labels

CvEMParams params; // EM parameters

// ... set EM parameters including number of clusters

model.train(samples, Mat(), params, labels);

// ... choose dataset and sequences according to code above

while (track->next()) {

Mat sample;

// ... read features and fill feature vector

int cluster = (int)model.predict(sample); //get cluster label

track->setInt("cluster", cluster); // store cluster label

}

Fig. 4. Sample code reading trajectories and preparing training samples (first block),
training GMM and storing cluster labels (second block).

4.3 Real-time tracking and trajectory indexing

Because processing trajectories often relates to the real-time, we have performed
experiments focused on how much time and resources are needed for the tra-
jectory management. In the experiment (see Table 1), we transformed tracked
trajectories, we stored them in the database as vectors capable of the first order
temporal interpolation even stored as discrete points, and we index them using
3D bounding-cube and GiST (bitmap index), so that they can be retrieved very
efficiently. The similarity query was performed by the containment operator (@>)
returning 4 trajectories contained in a spatio-temporal bounding box (selected
randomly).

Table 1. A simple performance test of insertion and querying trajectory data.

insert/update (7269) select (7269) find similar (4) total network data

(a) local 220 ± 1 s 43 ± 1 s 0.1 s 0
(b) remote 220 ± 5 s 74 ± 1 s 0.2 s 334 MB

Fig. 5. Examples of trajectory clustering results obtained by EM algorithm on trajec-
tories from the first camera (left) and by k-means algorithm on trajectories from the
third camera (right).

At this simple demonstration we dealt with 7269 trajectories, tracked of about
4 hours of video (49:17 minutes by 5 cameras in parallel) in a very crowdy airport
traffic of the i-LIDS dataset. According to the table, we show that this system
can eventually run in real-time both on: (a) 13” notebook (dual 1.4 GHz ULV
processor, 2 GB RAM, 128 GB SSD) including both the trajectory processing
part and the local database and (b) the same machine connected using Ethernet
network to a remote VTApi database server, where the network delivery time
must be taken into consideration in favor of the server hardware.

4.4 TRECVid Surveillance Event Detection

The main goal of NIST TRECVid (TREC Video Retrieval Evaluation) is to
promote progress in content-based analysis and retrieval from digital video via
open, metrics-based evaluation that attempts to model real world situations or
significant component tasks involved in such situations [10]. The goal of the 2012
Interactive Surveillance Event Detection (SED) evaluation track is to support
the development of interactive (i.e., human in the loop) technologies to detect
visual events (people engaged in particular activities) in a large collection of
streaming video data.

The Surveillance Network Augmented by Retrieval (SUNAR) Event Detec-
tion system, inherits the single-camera functionality of SUNAR - an informa-
tion retrieval based wide area (video) surveillance system [5] being developed at
FIT, Brno University of Technology. It contains both standard and experimen-
tal techniques evaluated at the AVSS 2009/10 Multi-Camera Tracking Challenge
and TRECVid 2012 (SED pilot). We have deployed active learning functional-
ity based on moving objects’ trajectory statistics and shape classification using
VTApi, which proved the acceleration of the the intelligent vision applications
development by the factor of 4 (each person-month work was done within a
single week).

Fig. 6. SED12 Annotator in the automatic mode at the Round 2 of the active learning
process – a human annotator is supposed press ”1” if the object highlighted is running.

You can get the open SUNAR-ED system including its source codes at
http://sourceforge.net/projects/sunar-ed, VTApi at http://gitorious.org/vtapi1.

5 Conclusion

In the paper, we present an innovative open source computer vision data and
metadata management framework we offer to the public. The main advantages
of the proposed API is the reduction of effort and time to produce high-quality
distributed intelligent vision and mining applications by unified and reusable
methods and multimedia data and metadata sets on all levels. Above that, we
offer novel data and methods interfaces and methodology to be used by re-
searchers and developers of both academic and commercial sectors to collaborate
and chain their efforts.

We have selected, integrated and extended a set of progressive and robust
open source tools to be efficient for multimedia data and related metadata stor-
age, indexing, retrieval and analysis. The system uses the best from (post)rela-
tional databases, it offers alternative storages and data structures we need to
manage (e.g. vectors or matrices) to make the data access more efficient, espe-
cially for rapidly changing geography/spatio-temporal data of a very complex
nature in the binary form that can be now processed both on VTApi clients and
in the database.

Also, we plan to extend VTApi with the MPEG-7 Library to provide a stan-
dardized framework for methods’ performance evaluation, followed by the KALDI

audio and speech processing framework and some others to enable further mul-
timedia analysis and mining.

Acknowledgment This work was partially supported by the research plan
MSM0021630528, the specific research grant FIT-S-11-2, the VG20102015006
grant of the Ministry of the Interior of the Czech Republic and the IT4Innovations
Centre of Excellence CZ.1.05/1.1.00/02.0070.

References

1. Guliato et al., D.: POSTGRESQL-IE: An image-handling extension for
postgreSQL. Journal of Digital Imaging 22, 149–165 (2009)

2. Gelasca et al., E.D.: CORTINA: Searching a 10 million + images database. Tech.
rep. (Sep 2007),
http://vision.ece.ucsb.edu/publications/elisa_VLDB_2007.pdf

3. Bastan et al., M.: BilVideo-7: An MPEG-7- compatible video indexing and
retrieval system. IEEE Multimedia 17, 62–73 (2010)

4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Singapore
(2006)

5. Chmelar, P., Lanik, A., Mlich, J.: SUNAR: Surveillance network augmented by
retrieval. In: Advanced Concepts for Intelligent Vision Systems, LNCS, vol. 6475,
pp. 155–166. Springer Berlin/Heidelberg (2010)

6. Döller, M., Kosch, H.: The MPEG-7 multimedia database system (MPEG-7
MMDB). J. Syst. Softw. 81(9), 1559–1580 (Sep 2008)

7. Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized search trees for
database systems. In: VLDB’95, Zurich, Switzerland. pp. 562–573. Morgan
Kaufmann (1995)

8. Kosch, H.: Distributed Multimedia Database Technologies: Supported MPEG-7
and by MPEG-21. CRC Press, Boca Raton (2004)

9. Melton, J., Eisenberg, A.: SQL multimedia and application packages (SQL/MM).
SIGMOD Rec. 30(4), 97–102 (Dec 2001)

10. Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: MIR
’06: Proc. of the 8th ACM Int. Workshop on Multimedia Information Retrieval.
pp. 321–330. ACM Press, New York, NY, USA (2006)

