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Figure 1: Precise shadows shown in Sponza and sphere scenes. These scenes were used for tests of our proposed algorithms.

Abstract

Silhouette-based shadow volume rendering provides per-sample precise shadow visualization unlike other ap-
proaches, such as shadow maps. In modern hardware, performance of the silhouette-based methods is even com-
parable to those of shadow maps. Traditionally, the shadow volume methods require the scene objects to be closed
watertight 2-manifolds to achieve good performance. Such restriction is not acceptable for many applications,
such as CAD, architecture rendering or other technical applications. The proposed algorithm works with ar-
bitrary triangle meshes. We implemented the algorithm on number of platforms, tested it on variety of graphics
hardware and evaluated which implementation approach is suitable under various circumstances. We also propose
the current hardware improvements to allow for further optimizations.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.3]: Picture/Image
Generation—Display Algorithms Computer Graphics [1.3.7]: Three-Dimensional Graphics and Realism—Color,

shading, shadowing, and texture

1. Introduction

Shadows provide an important visual cue in the virtual scene
visualizations. Shadow volumes [Cro77] and shadow map-
ping [Wil78] are two major approaches for shadow render-
ing used today. A widespread idea exists, that shadow map-
ping is superior in performance over shadow volumes. We
are going to show that this is not true nowadays and that our
shadow volume-based algorithms implemented on the con-
temporary graphics hardware are capable of outperforming
shadow mapping or at least of delivering similar performace
while being more precise and artefact free.

The most important property of shadow volumes is their
capability to deliver per-sample correct visual results while
shadow maps are prone to number of visual artifacts. Per-
sample correctness is nowadays often required in CAD,
technical and architecture visualizations where visual arti-
facts are often not acceptable. Most of the shadow mapping
methods suffer from visual imperfections that might pop up
in some scenes. In game industry, visual artifacts can be su-
pressed by careful design of scenes. But again, this is usu-
ally not an option in some other areas. The correct scene
visualization might be important in these areas while adapt-
ing the scene for the purpose of correct shadow visualization




might be undesirable. Thus, this paper presents the shadow
volume algorithms that provide precise per-sample correct
results while providing similar performance to the shadow
mapping as shown in this paper by the performance mea-
surements.

Shadow volumes were originally proposed by [Cro77].
[Hei91] implemented them on then-new stencil buffer hard-
ware and his approach became known as z-pass method. Be-
cause z-pass approach was not completely robust, [Car(0]
and [BS99] proposed z-fail approach to overcome its limita-
tions. Finally, [EK02] presented robust z-fail algorithm that
should theoretically provide correct visual results for any ar-
bitrary scene.

Shadow mapping [Wil78] was another method for the
shadow computation. With the hardware support [KilO1] it
started to become very popular method as it provided much
better performance than shadow volumes at that time. How-
ever, shadow mapping techniques are prone to visual ar-
tifacts [LIo07]. Tremendous amount of research was done
to eliminate these artifacts, for instance [SD02], [WSP04],
[ZSXL06] and many others. However, the developed tech-
niques often improve the visual result to some extent but
does not avoid the sources of the artifacts themselves.
Erik Sintorn introduced sample-correct method based on
shadow mapping [SEA08]. As he stated, the method is three
times slower than standard shadow mapping with resolution
8192x8192 for the screen resolution 512x512.

As shadow volumes are capable of providing artifact-free
visual results, there were many attempts to optimize them,
focusing especially to reduce rasterization work of large
shadow volume extents. [Len02] and [MHE*03] tried to use
attenuated lights and to use scissor test to clamp render-
ing to only necessary part of the screen. CC Shadow Vol-
umes [LWGMO04] reduce fill-rate by (1) culling shadow cast-
ers that are completely in shadow or whose shadows are not
visible to the eye and (2) they clamp shadow volumes in a
way that the places without shadow receivers does not con-
sume fill-rate. Recently, [SOA11] attempted to implement
shadow volumes hierarchical rasterization on CUDA, get-
ting interesting performance results.

Many researchers exploited the fact that the shadow vol-
ume can be extruded using object’s silhouette edges instead
of extruding each triangle, usually greatly reducing rasteri-
zation work. [Ber86] described algorithm for finding silhou-
ette edges on manifold meshes. [BS03] was the first to show
the silhouette algorithm implemented entirely in graphics
hardware. [MUO4] described how to find silhouette and ex-
trude it entirely in vertex shader using a specially precom-
puted mesh. [vW05] showed optimized silhouette construc-
tion using SSE2 instructions. [SWKO07] implemented silhou-
ette algorithm using then-new geometry shader.

Many silhouette algorithms require 2-manifold triangle
meshes to work correctly. To be able to do the same with
arbitrary model, more general algorithms were proposed.

The one described in [AW04] requires mesh to be orientable
only. [KKTO08] showed algorithm that should work correctly
with any arbitrary mesh. [PSM* 13] discovered that the algo-
rithm suffers from visual artifacts due to limited numerical
precision of both GPU and CPU computing units while he
proposed robust silhouette solution and verified it on several
hardware platforms.

2. Proposed algorithm

Our proposed algorithm is based on silhouette shadow vol-
umes. It constructs a silhouette edge set for each shadow
casting geomeltry. The silhouette edge set is constructed in
the similar way to the one in [KKTOS8]. For each edge, a
plane is constructed using the edge and the light position (or
light direction vector in the case of directional light). The
plane splits the scene into two subspaces. We iterate through
adjacent triangles of the edge and compute the difference in
number of triangles between both subspaces. This number is
called multiplicity. Its absolute value states how many times
the edge should be extruded from the light source and its
sign designates the vertex winding of the extruded quads.
The quads will be called shadow volume (SV) sides in the
paper.

Formally, the edge multiplicity computation is described
in Algorithm 1. The first novel contribution of the paper is
the visibility test performed at the very beginning of the al-
gorithm in conjunction with exploitation of the deterministic
multiplicity calculation.

Data: Edge A, B, A < B, set O of opposite vertices
0, € 9, light position L in homogeneous
coordinates

Result: Multiplicity m

C = (Awa - Lx,AyLw - L)’:Asz - LzzO)T;

D = (BLy — Ly, ByLyy — Ly, BiLyy — L, 0)7;

if UsSideVisible(A,B.C,D,L) then

| return:

end

m =0,

for 0, € © do

if A > O, then

| m=m+CompMultiplicity(O;, A, B,L);
else
if B > O; then
| m=m—CompMultiplicity(A,0;,B,L);
else
| m=m-+CompMultiplicity(A,B,0;,L);
end
end

end
Algorithm 1: Algorithm for multiplicity computation of
edge A, B and set of opposite vertices .

As input, Algorithm 1 takes the edge with ordered start



and end points and the set of opposite vertices that, together
with edge vertices, form the adjacent triangles.

The multiplicity contribution of particular adjacent trian-
gle can be described as in Algorithm 2.

Data: Vertices A, B,C, where A < B < C and light
position L
Result: Multiplicity m for one opposite vertex
N=(C —fi) X (Lx_— ALy, Ly —AyLy,L; —A:Ly);
m=sgn(N-(B—A));
Algorithm 2: Algorithm for multiplicity computation of
reference edge A, C and one opposite vertex B

The visibility test consists of the two parts. The first part
tests all four edges of SV side against the view frustum.
If any edge is visible, the side have to be rendered on the
screen. Otherwise, we proceed to the second step. In the sec-
ond step, we determine if the side is completely outside of
the view frustum or whether it covers the whole screen.

Both parts of the visibility test are performed in clip space
because of number of advantages. First of all, clip space co-
ordinates are available in OpenGL pipeline before passing
the geometry to the rasterizer, thus they are available without
additional computation cost. As the second, visibility tests
can be performed very easily in clip space as will be shown
on the following paragraphs.

A point in clip space P = (P, Py, P;, Py) is visible if sim-
ple conditions 1 are true.

i>*15w

i<Pw
+P, >0 (D
i€ {xyz}

+

A point X(),t € (0,1) on a line segment A, B is given by
the equation 2

Xt)=A+t-(B—-A) 2)

A line segment in clip space is visible if conditions 3 are
true. We can combine conditions 1 and equations 2 to obtain
final conditions for a line segment:

X(t)i>-X(t)w
X1 <X(t)w
+X(1)i +X(t)w >0 3)
i€ {x,y.z}

If the parameter ¢ € (0, 1) exists that makes all conditions
3 true, than the line segment is visible. Algorithm 3 shows
interval determination of parameter ¢ values. It starts with
interval {0,1) and moves its bounds for each condition 3. If

minimal value of parameter ¢ is greater than maximal value
of parameter ¢, a line segment is not visible. This visibility
test is performed on all four edges of a SV side. The visibility
test is depicted in Figure 2.

Clip space

Near Plane

Near Plane

Potential

Volume
Diagonal

Figure 2: The image shows the visibility test. The visibility
test is performed in clip space. It is split into the two parts.
The First part (left) tests visibility of four edges of a SV side.
The second part (right) tests visibility of a SV side if all its
edges are invisible.

The second part of visibility test uses the whole side quad.
None of side quads edges could be visible and still affect the
screen. A side quads could cover the whole screen or some
part of it, see right part of Figure 2. A point X(t,s),t,s €
{0,1) on side quad A,B,C,D in clip space is given by the
equation 4

X(t,5)=E+t-F+s5-G (4)

If a quad is visible but its edges are not visible, there must
exist intersection point of quad and one volume diagonal of
view frustum than lies inside frustum, see right part of Fig-
ure 2. Points on these diagonals have special property - their
components are equal or negative of others, see Figure 2. We
can express this property by the equations 5:

X(t.s)x R =X(1,5)y Ry =X(t,5); R; (3)

Vector R = (Ry, Ry, R;) represents a diagonal, see Figure 2.
There is a simple close form solution for the equations 5 than
finds parameters #,s. The algorithm can be seen in Figure 5.
In order to decrease the number of computations, only one




Data: Edge A, B in clip space
Result: True if the Edge A, B is visible
My = (Ax+Aw, Ay + Aw, Az +Ay);
MZ = (_Ax + Ay, _Ay +Aw, —A; +Aw);
Ni = (Bx+ Bw,By+ By, B; + By);
N> = (—=By+ By, —By + By, —B; +By);
Vi =N —Mi;
Vo =N, — Ma;
Left =0;
Right = 1;
forie {x,y,z} do
for j € (1,2) do
if V;; == 0 then
if M;; < O then
‘ return false;
end
else
if V;; > O then

‘ Left = max(Left, _ff");
g
else
‘ Ri . . —Mj; .
ight = min(Right, v );
end
end

end

end

return Left < Right;
Algorithm 3: Algorithm isEdgeVisible which determines
edge’s position against view frustum

Data: Edge A, B, light position L in homogeneous
coordinates, model view projection matrix M
Result: True if the quad is visible

a= Axyz§
b= Bxyz§
c= Cx)z?

if Diag > 0 then
a[Diag] = —a[Diag]l;
b[Diag] = —b|[Diag]l;
c[Diag] = —c[Diag];

end

i = (ax —ay);

i = (be — by);

6= (cx—cy);

p = (ax —az);

G = (bx —bz);

F=(cx—c);

d=(g-0—n-r);

F— (m-r—p-o) ,
Al S0 ¥

—(m-g—pn),

—

X=A+t-B+I-C;

Algorithm 5: Algorithm isFullVisible which detern

quad’s position against view frustum

=~

Data: Points of quad A, B,C, D, light position L in
homogeneous coordinates, model view project
matrix M

Result: True if the side A, B,C, D is visible

m=0;

diagonal has to be tested. We choose the diagonal and vector A. =M 4
R by using normal vector of SV sides. Algorithm 4 finds a B. =M. B,
diagonal id than can be transform to vector R. Cc=M-C;

D, =M-D;

Data: Points of edge A, B, light position L in
homogeneous coordinates, model view projection
matrix M

Result: Diagonal Id

i=(Bx—Ax,By—Ay,B. —A;)T,

= (Lx—Ax,Ly — Ay, L. — A;)";

n=1uxyv,

return U, + U, -2 —1;
Algorithm 4: Algorithm getDiagonalld for computation
of id of volume diagonal.

The final visibility test can be seen in Algorithm 6.

Next proposed improvement is reduction of number
of render-passes and reusing computation of multiplicity.

Diagonal = getDiagonalld(A,B,L,M);
if isFullVisible(Ac,B. — A¢,Ce — A¢, Diagonal) ther
| return true;

end

R1 = isEdgeVisible(Aq, B:);

R2 = isEdgeVisible(A.,C);

R3 = isEdgeVisible(B.,D.);

R4 = isEdgeVisible(C,,D,);

return R1\V R2V R3V R4,
Algorithm 6: Algorithm isQuadVisible for determina
whether side quad is visible or not.



Diagonals

Figure 3: The image shows volume diagonals of frustum in
clip space and their ids. Each diagonal has its equation.

Sides and caps are usually rendered separately. We pro-
pose method based on geometry shader that renders sides
and caps together. This approach reduces number of passes
and computation of multiplicity can be reused for caps. We
extend a set of opposite vertices for each edge with flags.
A opposite vertex with set flag forms front and back caps.
Front caps can introduce self-shadowing artefacts on some
GPUs. The winding of caps (and sides) has to be sometimes
changed in orderer to guarantee the same orientation of ev-
ery shadow volume in scene. Self-shadowing artefacts are
caused by different rasterization of two identical triangles
with different winding.

We propose method that shifts front cap to to infinity. The
shifting can be seen on figure 2. The shifting ensures that the
front cap always fails the depth test. Let A = (ayx, by, ¢z, dw) is
vertex of front cap in clip space. The shifted vertex B toward
infinity from camera can be computed according to equation
6

B = (bxab}‘abZabW) = (ax,a)‘aa\r»‘aalv) ©)

3. Implementation Details and Issues

We have implemented our algorithm on various platforms.
Vertex shader implementation brought our algorithm to We-
bGL and mobile platforms that supports vertex and fragment
shaders only at the moment. Other platfoms uses mainly
the GPU: geometry shaders, tessellation shaders, compute
shaders, OpenCL. We have also tested CPU.

A potential disadvantage of our approach is the need for
geometry pre-processing because for each edge, opposite
vertices need to be identified and respective information col-
lected and stored in VBOs. However, the preprocess is only
made once at the application start up. This also leads to in-
creased memory consumption. In an extreme cases such as
popular Power Plant model consisting of 12.7M triangles,
the model data might not fit into a conventional graphics

Front Cap

Figure 4: The image shows the visibility test. The visibility
test is done in clip space. It is split into two parts. The first
part (left) tests visibility of four edges of a SV side. The sec-
ond part (right) tests visibility of a SV side if every edge of it
is invisible.

card memory, because about SGB might be required. Fur-
ther optimization would be needed to address the issue. Per-
triangle methods, on the other hand, don’t require prepro-
cessing work, since they don’t need any information about
neighbouring triangles.

We also looked into Intel’s integrated graphics segment,
where OpenGL support is not as good as on dedicated
cards. There were issues with our tessellation method, whose
GLSL program compiled successfully but linking failed on
Intel HD 4600 despite the fact that a simple tessellation pro-
gram worked and the chip and drivers support OpenGL 4.2
and several extensions from 4.3 and 4.4. The problem was
reported to the manufacturer.

4. Experiments

Graphic processors of various manufacturers differ in their
architectures. Even if focusing on particular manufacturer,
the architecture evolve over the time in graphics processor
generations. The different generations have different perfor-
mance characteristics and have different feature set. As a re-
sult, particular implementation of an algorithm might be the
most efficient on one graphics processor while other graph-
ics processors might match better with other algorithm im-
plementations.

In order to properly evaluate performance of our novel
optimizations for silhouette shadow volumes, we devel-
oped number of implementations utilizing various parts of
OpenGL graphics pipeline, starting from geometry shaders
available widely on all Shader Model 4.0 capable graph-
ics cards and finishing with compute shaders of Shader

Back Cap



Model 5.0 and OpenCL implementation. Moreover, we im-
plemented reference cpu implementation and special imple-
mentation for vertex shaders based on ideas of [MU04]. Ver-
tex shader implementation might seem a step back, but it
opens the possibility to use our algorithms on OpenGL ES
2.0 and 3.0 capable mobile platforms.

We made extensive tests of our novel optimizations us-
ing number of our implementations. We selected high-end
cards of various gpu generations of AMD and Nvidia and
integrated solutions found in Intel microprocessors. We ex-
cluded too recent graphics cards and limited ourselves to
graphics processors since introduction of unified shader
pipeline.

For testing, we have chosen three scenes: fly-though Cry-
tek Sponza (400k triangles) as a game-like scene, sphere
scene with increasing number of triangles and sphere scene
with one million triangles but divided to various number of
separate scene objects. The last test stresses the fragmenta-
tion level of the scene, causing increased number of VBOs
to be allocated, more draw calls and high number of small
chuncks of data scheduled for processing on graphics card.

Test setup: Intel Xeon E3-1230V3, 16GiB DDR3, Win-
dows 7 x64, driver version: 14.3 Beta (AMD, HD 5000 and
newer), 13.9 (AMD HD 2900XT and HD 4890), 334.89
(nVidia). For integrated Intel GPUs, we used the same con-
figuration as above except the processor Core 17 4770K for
HD Graphics 4600 and Core 17 2700K for HD Graphics
3000 using 10.18.10.3496 drivers.

Our test suite consists of Lexolights open-source multi-
platform application, based on OpenSceneGraph and
Delta3D libraries and a light-weight testing framework di-
rectly utilizing OpenGL. All tests were carried out in FullHD
(1920x1080) resolution in fullscreen mode. Lexolights, in-
cluding our new optimizations, is available as open-source
at http://sourceforge.net/projects/lexolights.

Our algorithm, as described above, generates and draws as
many quads per edge as is the multiplicity of the edge. This
way, stencil value is incremented/decremented multiplicity-
times. Graphic processors from AMD offer an OpenGL ex-
tensions which can be used to speed up shadow volume
rendering by more sophisticated stencil operations. One of
such extensions is GL_AMD_stencil_operation_extended,
which allows arbitrary stencil value addition, value re-
placement and binary operations. Using this extension,
we do not need to render SV sides multiplicity-times.
Instead, we separate these quads into a set of VBOs
and each is then rendered with different stencil incre-
ment. This greatly reduces fillrate. The second extension,
GL_AMD_shader_stencil_value_export, allows writing ar-
bitrary value to stencil buffer in fragment shader. Compared
to GL_AMD_stencil_operation_extended, there is no need
to separate quads into separate buffers, stencil value addi-
tion is determined in shaders.

Triangles | CPU | PCPU| VS8 GS TS CS | OCL | SM4k| SM8k| CTR | GSTR| TSTR[ GSIM

102000 [ 779 | 69 638 [ 501 [ 679 | 368 145 [ 867 [ 296 [ 135 | 111 168 982
360000 | 259 [ 218 | 203 | 230 | 216 | 214 101 721 | 274 | 41 317 [ 685 560
640000 133 | 131 120 144 [ 135 162 79 530 | 244 | 22 I8.1 | 37.8 393

1000000 [ 7.8 7.8 | 755 [ 964 | 835 | 121 | 53.9 | 384 | 206 2 0.2 | 22.7 259
1400000 [ 6.5 6.8 | 656 [ 915 69 128 [ 60.2 | 353 198 2 75 [ 159 267
1960000 [ 4.9 49 | 115 | 596 | 50.7 81 39.2 | 260 169 2 55 [ 10.8 167

Table 1: Dependence of performance (FPS) on number of
triangles on R290x for different methods for sphere scene.

Triangles | CPU | PCPU[ VS GS TS CS [ OCL | SM4k] SM8K] CTR | GSTR] TSTR] GSIM
102000 [ 881 | 75.2 | 299 | 401 | 454 | 292 117 | 544 [ 295 | 146 | 102 151 [
360000 | 288 [ 275 | 958 [ 170 | 180 146 [ 92.8 | 330 | 242 | 46 | 371 | 723 342
640000 169 | 16.5 54 109 [ 118 | 905 | 749 | 257 | 206 | 26 | 227 | 421 236
1000000 [ 102 | 9.9 | 339 | 70.1 81 58.4 | 587 | 201 172 2 13.7 | 248 163
1400000 [ 7.8 79 | 127 [ 649 | 1.2 | 542 | 56 176 149 2 1.2 | 197 143
1960000 [ 5.9 5.8 58 43 48.9 | 382 | 40.1 149 120 2 7.6 [ 128 99

Table 2: Dependence of performance (FPS) on number of
triangles on GTX780 for different methods for sphere scene.

4.1. Results

In the first test, we compared our algorithms on two most
current graphic cards (Radeon R9 290X, GeForce GTX 780)
in all our methods and several popular test scenes.

bla bla, tabulka/graf

Secondly, we tested dependencies of increasing amount
of geometry while maintaining constant number of objects
in a scene on FPS, and also dependence of increasing num-
ber of scene objects on FPS while keeping triangle amount
constant. We used synthetic Sphere scene for this purpose,
because we can easily configure amount of objects/geometry
in the scene.

Followingly, we selected popular Crytek Sponza scene,
baked into 29 VBOs and without textures, and tested several
GPUs on all our methods. Including classic shadow mapping
with shadow map resolution of 4kx4k and 8kx8k. As can be
seen in tables 5, 6, 8k shadow mapping was outperformed
by non-CPU methods on AMD, taking the fastest method
of each platform into account. Moreover, all our methods
provided better shadow quality than 8k shadow mapping
and also generated omnidirectional shadows from point light
source, whereas shadow mapping was used only from one
direction - in theory, it would be even slower in omnidirec-
tional form and 4K shadow mapping would also lose it’s per-
formance advantage.

Strong point of two latest generations (otazka je ci gen-
eracie, kedze maju rovnaku architekturu) of nVidia chips,
GTX 680 and 780, tak pouzij vyraz family (both Kepler

Objects | CPU | PCPU| VS GS TS CS | OCL | SM4k| SM8k| CTR | GSTR| TSTR| GSIM
1 6 7 89.5 | 128 108 197 [ 972 | 490 [ 254 0.6 3 58 288

16 8.4 82 | 804 | 107 135 103 | 533 | 428 | 218 0.8 3 43 230
100 8.2 8 63.4 TO | 783 | 76.7 | 486 | 284 169 1.1 EN 4 143
625 6.3 6.3 | 49.6 | 43.2 | 483 | 343 0 975 | 353 1.2 4 5 92.3
1250 4.4 5 124 | 141 | 400 [ 158 | 228 | 105 [ 36.2 1.2 4 49 83.4
2500 37 37 10,5 | 9.7 193 | 8.3 13 953 40 07 44 4.7 351
5100 29 2.6 9.1 73 156 | 49 LT | 716 | 317 | 07 5 52 21.4
15600 1.8 1.3 59 28 6.9 1.6 0 348 | 21.2 | 08 6.8 6.4 9.59

Table 3: Dependence of performance (FPS) on number of
objects on R290x for different methods for sphere scene.



Objects | CPU | PCPU[ VS GS TS [&5 OCL | SM4k] SMBK| CTR | GSTR] TSTR| GS2M

1 83 75 [ 33| 105 [ 111 100 [ 133 | 482 | 303 1.1 5.6 5.6 243

16 9.8 95 [ 337 | 763 [ 673 | 795 | 767 | 239 [ 178 1.1 5.1 52 132
100 9.7 9 313 | 493 | 585 | 411 | 412 | 133 | 133 1.2 32 34 93.6
625 7.1 6.2 [ 197 [ 195 [ 21.8 | 17.1 | 117 | 558 | 564 | L1 2.8 27 337
1250 6.1 5.1 16 15 18 127 | 7.3 | 402 | 397 1 2.1 22 242
2500 45 38 79 6.8 75 5 37 284 28 07 19 1.9 123
5100 4 3 84 6 81 4.1 2 212 [ 209 | 06 | 22 2.2 10.6
15600 | 2.9 2 55 29 | 52 1.8 L7 | 157 [ 156 | 09 35 35 75

Table 4: Dependence of performance (FPS) on number of
objects on GTX780 for different methods for sphere scene.

Dependence of performance on number of triangles
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Figure 5: Dependence of performance (FPS) on number of
triangles on R290x for different methods for sphere scene.
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Figure 6: Dependence of performance (FPS) on number of
triangles on GTX780 for different methods for sphere scene.

architecture), is tessellation, whereas for two latest AMD
generations, R9 280X and 290X, compute shader is best
suited, tightly backed by geometry shader implemetation.
CPU implementations were generally slower when rendered
by AMD cards. Contrary to that, on GeForce 8800Ultra, be-
ing the slowest from our nVidia lineup, the CPU implemen-
tation was the fastest.

Vertex shader implementation never provided the fastest
solution on any GPU. It happened to be faster than 8k
shadow mapping, but its targets are embedded GPUs sup-

Dependence of performance on number of objects for 1M triangles
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Figure 7: Dependence of performance (FPS) on number of
objects on R290x for different methods for sphere scene.
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Figure 8: Dependence of performance (FPS) on number of
objects on G780 for different methods for sphere scene.

porting OpenGL ES 2.0. This standard does not support ge-
ometry shader or other new pipeline stages, introduced in
OpenGL 3 or newer.

Next, we tested two top GPUs in synthetic Sphere scene,
where we first increased the amount of triangles per sphere
while keeping their number constant (100 spheres, 10 by 10).
Tables 1, 2 and graphs ??, ?? contains results of this test.
It can be seen that the best method to use on GeForce GTX
780 1s tessellation, no matter the geometry amount. Compute
shaders are practical choice when using latest AMD graphics
hardware.

For comprehension, we measured also per-triangle meth-
ods. Tessellation-based per-triangle method provided the
best results on both tested GPUs, while the CPU-based is
basically the most naive algorithm of shadow volumes im-
plementation, implemented for comparison only and not rec-
ommended for use in real applications.

Provided we have 2-manifold model, we can use faster



2-manifold implementation, which speeds up shadow vol-
ume rendering by XY% on Radeon and XY% in average,
compared to the fastest respective shadow volume method
per test case. We also tested classic shadow mapping, which
keeps the same behaviour as in previous tests. Tables 3, 4
and graphs 7, 8 shows results from test with increasing num-
ber of objects in a scene. This measurement shows different
results - tessellation is no longer domain of GeForce, but of
Radeon. GTX780 does not have a dominant implementation
in this test, but tessellation was still able to be the fastest
in 37.5% of test cases. As mentioned in section 4, we also
wanted to evaluate performance when using AMD’s propri-
etary stencil extensions. Results of this test can be seen in
tables 5 6 and graphs 9, 10. We tested AMD’s extensions on
Sponza scene.

1] Vs
7| 0w GS
2001 1o0gg In GS CULL
163 il GS SIDES+CAPS
| - — I8 GS SIDES+CAPS CULL
150 |- 7&135”8 Iz TS
129, In TS CULL
§ 112 Io Cs
101 (1] CS CULL

100
Iz CS+SOE
[ 1] CS+SOE CULL
il SM8k
50 i SM4k
In SM2k
[[] SMI1k

0

R9-290X

Figure 9: Comparison of methods on Sponza scene with our
new approach - visibility test. Darker columns depict meth-
ods that use visibility test. The measurements were carried
out on R290x. Sides+caps method renders sides and caps
together in one pass using our projection of front cap. Soe is
extension GL_AMD _stencil operation_extended that allows
us to increment stencil buffer by greater numbers.
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Figure 10: Comparison of methods on Sponza scene with
our new approach - visibility test. The measurements were
carried out on GTX 780.

GPU VS GS GSa | GSb | GSab| GSc | GSac | GSbc | GSabc

GFGTX 780 | 66.1 122 121 nfs nfs 124 103 n/s n/s
R9-290X 112 129 135 | 37.9 | 378 138 147 | 364 36.8
R9-280X 67.0 108 110 | 276 | 275 114 119 | 273 27.6
GFGTX 680 | 424 | 909 | 874 n/s n/s nfa 71.5 /s n/s
GFGTX 580 | 483 | 894 | 935 n/s n/s 91.7 | 82.8 /s n/s
GFGTX 4380 | 424 | 78.0 | 811 n/s n/s n/a n/a n/s n/s
R HD 5850 3.9 353 | 326 | 109 | 108 | 36.7 | 39.7 | 109 10.6

Table 5: The performance of new approaches on Sponza
scene. Letters a,b,c stands for visibility test, AMD’s exten-
sion: GL_AMD _shader_stencil value_export and rendering
sides and caps together using shifting of front cap to infinity.

GPU TS TSa | TSh | TSab [ CS CSa | CSd | CSAd| SM8K[ SM4k| SM2k| SMI1k
GFGTX 780 | 126 115 nis nfs ST | 119 /s n's 152 | 251 318 343
R9-290X 130 | 983 | 40.7 | 376 | 142 155 163 175 10 163 190 197
RO-280X 96.2 | 712 | 297 | 274 | 115 123 131 140 34 161 211 228
GF GTX 680 | 97.0 | 838 nfs nfs 514 | 941 nfs nfs 114 198 | 254 278
GF GTX 580 | 76.8 | 532 nfs nfs [ 41.5 | 843 nls nls 113 184 | 239 248
GFGTX 480 | 67.8 | 47.5 nfs nls 374 | 747 nls nfs 957 | 16l 201 215
R HD 5850 20.2 8.1 94 6.3 330 | 365 | 377 | 395 | 22.7 | 524 | 784 89.6

Table 6: The performance of new approaches on Sponza
scene. Letters a,b,d stands for visibility test, AMD’s exten-
sion: GL_AMD_shader_stencil_value_export and AMD'’s
extension: GL_AMD_stencil_operation_extended.

5. Conclusion

We presented a very fast algorithm for rendering hard shad-
ows, impelmented in several pipeline stages and thoroughly
tested on both modern and older hardware.
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