
Handbook of Research
on Architectural Trends
in Service-Driven
Computing

Raja Ramanathan
Independent Researcher, USA

Kirtana Raja
IBM, USA

A volume in the Advances in Systems Analysis,
Software Engineering, and High Performance
Computing (ASASEHPC) Book Series

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2014 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
			 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.�

Handbook of research on architectural trends in service-driven computing / Raja Ramanathan and Kirtana Raja, editors.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-1-4666-6178-3 (hardcover) -- ISBN 978-1-4666-6179-0 (ebook) -- ISBN 978-1-4666-6181-3 (print & perpetu-
al access) 1. Service-oriented architecture (Computer science) 2. Computer network architectures. 3. Enterprise applica-
tion integration (Computer systems) I. Ramanathan, Raja, 1958- editor. II. Raja, Kirtana, 1987- editor.
 TK5105.5828.H356 2014
 004.6’54--dc23
 2014013829

This book is published in the IGI Global book series Advances in Systems Analysis, Software Engineering, and High Perfor-
mance Computing (ASASEHPC) (ISSN: 2327-3453; eISSN: 2327-3461)

Managing Director:
Production Editor:
Development Editor:
Acquisitions Editor:
Typesetter:
Cover Design:

Lindsay Johnston
Jennifer Yoder
Erin O’Dea
Kayla Wolfe
Kaitlyn Kulp
Jason Mull

26

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

Dynamically Reconfigurable
Architectures:

An Evaluation of Approaches for
Preventing Architectural Violations

ABSTRACT

Dynamic aspects of behavior of software systems in dynamically reconfigurable runtime architectures
can result in significant architectural violations during runtime. In such cases, a system’s architecture
evolves during the runtime according to the actual state of the system’s environment, and consequently,
runtime reconfigurations may eventually lead to incorrect architecture configurations that were not
considered during the system’s design phases. These architectural violations are known as architectural
erosion or architectural drift, and they contribute to an increasing brittleness of the system, or a lack of
its coherence and clarity of its form. This chapter describes and compares possible measures to prevent
architectural violations in dynamic service and component models. The aim of this chapter is to evaluate
the applicability of those measures in combination with advanced features of reconfigurable runtime
architectures such as ad hoc reconfiguration, service or component mobility, composition hierarchy
preservation, and architectural aspects.

Marek Rychly
Brno University of Technology, Czech Republic

DOI: 10.4018/978-1-4666-6178-3.ch002

27

Dynamically Reconfigurable Architectures
﻿

INTRODUCTION

Current information systems tend to be designed
as component-based systems and often utilize
Service Oriented Architecture (SOA) and Web
service technology. The service orientation en-
ables decomposition of a complex software system
into a collection of cooperating and autonomous
components known as services. These services
cooperate with each other to provide a particular
functionality of the implemented software system
with defined quality.

Loose binding between the services, which
represent individual components of a system,
enables runtime reconfigurations of the system
architectures. In other words, it enables creat-
ing, destroying, and updating the services, and
establishing and destroying their interconnections
dynamically at runtime, on demand, and according
to various aspects to move the services into differ-
ent contexts and to different providers (i.e., service
mobility). Eventually, a series of reconfigurations
contributing to the evolution of the architecture,
of a supposedly well-designed system may lead
to incorrect architecture configurations that were
not considered during the system’s design phase.
These incorrect configurations are commonly
known as architectural violations.

This chapter describes and compares possible
measures to prevent the architectural violations,
as they are used in the current state-of-the-art
approaches. The goal is to evaluate applicabil-
ity of those measures in combination with the
advanced features of dynamic architecture such
as ad hoc reconfiguration, service or component
mobility, composition hierarchy preservation, and
architectural aspects.1 Specific objectives include
an introduction to the problems of dynamically
reconfigurable runtime architectures, an analysis
of the state-of-the-art approaches in this field

with focus on the advanced features of dynamic
architectures, and the methods to prevent archi-
tectural violations.

The chapter is organized as follows. The next
section deals with software architecture in general
and introduces component-based development
and service-oriented architecture with concepts of
dynamically reconfigurable runtime architectures.
We also describe several important state-of-the-art
works dealing with component-based development
and component models supporting features of dy-
namic and mobile architectures. In the following
section, we discuss existing problems relating to
the support of dynamic and mobile architectures
that cause architectural violations in component-
based or service-oriented systems.

Then, we outline possible strategic improve-
ments and introduce approaches to prevent the ar-
chitectural violations in general, and also describe
their applications in the current state-of-the-art
related works. The next part of the chapter deals
with the evaluation of the previously described
approaches for preventing architectural violations.
More specifically, we analyze compatibility of
the approaches with the advanced features of
dynamically reconfigurable runtime architectures.
Finally, we discuss future research directions such
as possibilities of utilization of the advanced
features of dynamically reconfigurable runtime
architectures including previously described
methods of preventing architectural violations in
implementations of service-oriented architectures.

BACKGROUND

According to IEEE (2000), software architecture
is defined as the fundamental organization of a
system, embodied in its components, their rela-
tionships to each other and the environment, and

28

Dynamically Reconfigurable Architectures
﻿

the principles governing its design and evolution.
Another definition by Bass et al. (2003) adds that
the architecture describes only externally visible
properties of components, i.e., it is an abstraction
of a system that suppresses details of components,
except for services published by interfaces, rela-
tionships to environment of the components, and
their externally observable behavior.

Oquendo (2004) distinguished three types of
software architectures according to their evolution
which depends on changes to their environment:
static architecture, dynamic architecture, and
mobile architecture. The last one is also known
as a fully dynamic architecture.

Architecture of a software system is the static
architecture if there are no changes to the system’s
structure during runtime. After initialization of the
system, there are no new connections between the
system’s components and existing connections
are not destroyed.

In the dynamic architecture, there exist rules
of evolution for a software system in time (also
called “dynamics”). The system’s components
and connections are created and destroyed during
runtime according to the rules from design-time.

Finally, the mobile architecture is a dynamic
architecture of a system where the system’s com-
ponents can change their context in the system’s
logical structure during its execution (also called
“component mobility”) according to rules from
design-time and functional requirements.

Component-Based Development
and Service-Oriented Architecture

Component-based development (CBD) is a soft-
ware development methodology, which is strongly
oriented to composition and reusability in a soft-
ware system’s architecture (Szyperski, 2002). In
CBD, a component-based system is composed
of components, which are self-contained entities

accessible through well-defined interfaces. A con-
nection of compatible interfaces of cooperating
components is realized via their bindings (also
known as connectors). Actual organization of in-
terconnected components is called configuration.

Service-oriented architecture (SOA) (Erl,
2005) represents a model in which functionality
is decomposed into small distinct components,
known as services, which can be distributed over
a network and can be combined together and
reused to create business applications. Services
are defined as autonomous platform-independent
entities enabling access to their capabilities via
their provided interfaces.

CBD and SOA are based on the similar prin-
ciples. Component-based and service-oriented
systems are composed of components and ser-
vices, respectively, which are interconnected into
configurations and which can be further decom-
posed. However, while service design in SOA is
business-oriented based on business processes
which are realized by the services, components
in CBD are implementation-oriented and usually
need not respect any business rules or aims.

Service-oriented systems are defined by ser-
vices, their interfaces, implementations, orches-
trations, and resulting choreography. Component-
based systems are defined only by their initial
configuration, component hierarchy (composition
where composite component encapsulates another
composite or atomic indecomposable component),
and component behavior.

Reconfiguration in Dynamic
and Mobile Architectures

For both CBD and SOA, a static architecture has
only one way to connect components or services
and their connectors or binding into a resulting
system, i.e., there is only one configuration.
Dynamic and mobile architectures enable soft-

29

Dynamically Reconfigurable Architectures
﻿

ware systems to change their architecture during
runtime; in other words, a reconfiguration, or a
runtime modification of the configuration.

Especially in the case of SOA, loose binding
between the services, which represent individual
components of a service-driven system, allows
runtime reconfigurations of the system’s archi-
tecture. This is the ability to create, destroy, and
update the services, and to establish and destroy
their interconnections dynamically at runtime, on
demand, and according to various aspects; and to
move the services into different contexts and to
different providers (i.e., service mobility).

As it was mentioned in the introduction, a
series of reconfigurations, which represent an
incremental evolution of a system’s architecture,
may eventually lead to incorrect architecture
configurations that were not considered during
the design phase of a supposedly well-designed
system.

The problem of evolving architectures was
introduced by Perry & Wolf (1992) and is known
as the problem of architectural drift and archi-
tectural erosion. Architectural drift is defined
as insensitivity about a system’s architecture
that, with increasing evolution, leads to its in-
adaptability and a lack of coherence and clar-
ity of form. Architectural erosion is defined as
violations of a system’s architecture that lead to
significant problems in the system and contribute
to its increasing brittleness. It may be caused by
the unrestrained evolution of the architecture as
well as violations of an architecture, which has
become obscured due to architectural drift. In
this chapter, architectural drift and architectural
erosion are collectively referred to by the single
term, architectural violations.

State of the Art in Dynamic
and Mobile Architectures

Component-based systems can be modeled as
component models or described in architecture
description languages. Component models are

specific meta-models of software architectures
supporting the component-based development.
According to Lau and Wang (2005), the compo-
nent models should define syntax, semantics, and
composition of components. They are systems of
rules for components, connectors, and configura-
tions, and are the rules for changes according to
the dynamic architecture (rules for reconfigura-
tions). Architecture description languages (ADLs)
(Vestal, 1993), are languages for describing
software system architectures. They focus on
high-level structures of overall applications rather
than implementation details of specific source
modules. The ADLs can be parts of component
models, where they are used for description of
a software system’s architecture in terms of the
component models. Alternatively, ADLs can be
realized without the component models, based
directly on general principles of component-based
development.

In the next part of this chapter, we will refer
to several component models and architecture
description languages with support for advanced
features of dynamic or mobile architectures. In the
case of component models, we will deal mainly
with: Darwin by Magee et al. (1995), SOFA by
Plasil et al. (1998), SOFA 2.0 by Bures et al.
(2006), Koala by van Ommering et al. (2000),
ArchJava by Aldrich et al. (2002), and Fractal by
Bruneton et al. (2004). For architecture description
languages without component models, we will
refer to ArchWare ADL by Balasubramaniam et
al. (2005).

The component models and ADLs above can
be used to describe service-oriented architectures,
with or without some limitations. Basically, the
models and languages often allow describing
the service-oriented architectures as component-
based systems (e.g., by means of “utility interface”
pattern in SOFA 2.0). However, in the next part of
the chapter, we will refer also directly to service-
oriented architecture, as the architecture of services
respecting SOA principles described by Erl (2005).
These principles such as loose coupling, stateless-

30

Dynamically Reconfigurable Architectures
﻿

ness, or reusability, allow easy runtime modifica-
tions of a composed service-oriented system by
changing its particular components/services as
described by Karastoyanova et al. (2005).

Desired Features of Modern
Software Architectures

Modern software architectures, such as service-
oriented architectures (SOAs), are increasingly
dynamic. Software systems utilizing such ar-
chitectures require the ability to reconfigure the
architectures with flexibility and extensibility both
at design-time and runtime to be able to cope with
fluctuating execution context and constrained re-
sources (Malek et al., 2010). This can be achieved
by the advanced features of dynamic architectures
extending architectural reconfiguration and repre-
senting abilities of architecture evolution.

In this chapter, the four key features of dynamic
software architectures will be addressed and evalu-
ated in connection with presented approaches to
preventing architectural violations:

•	 Ad Hoc Reconfiguration: The ability of
software systems to perform runtime re-
configurations that cannot be completely
predefined at the system’s design-time and
are decided at runtime according to ad hoc
needs. Ad hoc reconfigurations are neces-
sary whenever a software system should
adapt to its fluctuating execution context
and to unexpected modifications of deploy-
ment architecture (e.g., moving the sys-
tem’s components from highly distributed
to almost centralized architecture and vice
versa, for example, due to scalability).

•	 Service or Component Mobility: The
ability of software systems to move their
state-less as well as state-full components
into different architectural contexts at
runtime to achieve desired architectural
configurations. By means of mobility of

service or components, a software system
can adapt its logical and deployment archi-
tecture to better utilize available resources.
For example, a service’s latency can be im-
proved if a system is deployed such that the
most frequent and voluminous interactions
among the components involved in deliv-
ering the service occur either locally or
over reliable and capacious network links
(Malek et al., 2010).

•	 Composition Hierarchy Preservation:
The ability of software systems to preserve
specific hierarchical compositions of their
components during runtime reconfigura-
tions as they were predefined at design-
time. For example, in SOA, orchestrat-
ing services are logically “composed of”
orchestrated services and the component
hierarchy preservation in SOA means the
preservation of service orchestrations
which forms service hierarchy, which may
be critical for a coupling of business pro-
cesses to services.

•	 Architectural Aspects: The ability to de-
scribe and control runtime architectural
reconfigurations of software systems at
design-time by globally-defined concerns
that cut across architectural entities, such
as individual components as well as their
hierarchy, interfaces, and connectors, with-
out links to individual architectural entities
(Garcia et al., 2006).

The next section will delve into the details of
the various approaches to prevent architectural
violations.

APPROACHES TO PREVENTING
ARCHITECTURAL VIOLATIONS

The architectural violations of component-based
systems with dynamic architectures usually result

31

Dynamically Reconfigurable Architectures
﻿

from unrestrained runtime reconfigurations, as
described before. After a series of consequent
runtime reconfigurations, an initially well-defined
architecture may become unmaintainable and er-
roneous, and eventually, the reconfigurations may
cause architectural drift or architectural erosion.
To prevent these architectural violations, different
measures can be taken.

Current approaches to dynamic architectures
address the problems of architectural violations
and their prevention in different ways. Basi-
cally, the approaches prevent a system from the
architectural violations by means of predefined
design-time rules and specific runtime restrictions.
Generally, these measures often result in limited
reconfiguration possibilities, which may interfere
with advanced features of dynamic architectures.

The following sections discuss possible usage
of static architecture, static binding, predefined re-
configurations, reconfiguration patterns, restricted
reconfiguration controllers, and formalized re-
configurations and invariants, as the measures for
prevention of architectural violations.

Static Architecture

The most trivial solution to avoiding architectural
violations is to prohibit runtime reconfigurations
and to describe the only possible configuration of
a component-based or service-oriented system at
its design-time. In this case, the system will have
a static architecture. Potential variants of the sys-
tem can be handled at its design-time only, e.g.,
by means of product line techniques where the
component-based or service-oriented system is
a member of a product family or a set of product
variations (Clements et al., 2001).

Due to the forbidden runtime reconfigurations,
architectural violations are not possible in the case
of static architecture. This solution is suitable
only for software systems deployed into well-
understood and strictly defined environments.

Static Binding

In this case, runtime reconfigurations of a system
are limited by its inability to reconnect its compo-
nents or services. The resulting architecture does
not need to be static (e.g., dynamic instantiation
of components or services is allowed); however,
bindings of the components and services are static.
With the static bindings, all runtime reconfigura-
tions respect a predefined architectural style, which
is defined at the design-time and describes (static)
interconnections of components or services into
(static) structure of a component-based or service-
oriented system, respectively.

Due to the static bindings, the architecture
is limited in its runtime evolution and architec-
tural violations are not possible. An example
of a component model with static bindings and
runtime reconfigurations is SOFA with support
for dynamic update of its components, which was
introduced by Plasil et al. (1998).

Predefined Reconfigurations

Runtime reconfigurations of a component-based
system can be predefined at the system’s design-
time. In this case, all possible runtime reconfigu-
rations of a system are described in its design
specification as a list of permitted configurations
of the system’s architecture to provide its particular
functionalities. Contrary to the previous cases, this
architecture is fully dynamic and components or
services can be integrated into different contexts.
Nevertheless, all future runtime configurations of
the architecture have to be considered at design-
time, so architectural violations are not possible
even in this case.

For example, in service-oriented architecture,
a system is composed of individual services
that are interconnected at the system’s runtime
according to their predefined choreography to
implement particular business processes. The

32

Dynamically Reconfigurable Architectures
﻿

business processes and the attached service cho-
reographies are described at the system’s design-
time. Another example is the component model
Koala introduced by van Ommering et al. (2000),
where runtime reconfigurations are restricted to
switching between given components according
to the rules predefined at a system’s design-time.

Reconfiguration Patterns

Reconfiguration patterns allow controlling the
evolution of dynamic architectures by limiting
their runtime reconfigurations to be compliant
with well-defined patterns. These patterns are
usually defined as abstractions for a particular
component model where they address specific re-
configuration actions (e.g., a dynamic component
instantiation and component removal, referring
and dynamic binding of component interfaces,
etc.). The permitted reconfiguration actions are
defined including prescribed conditions for archi-
tecture configurations before and after the actions
(i.e., pre- and post-conditions for the process of
reconfiguration). Then, in a component-based or
service-oriented system, a reconfiguration pattern
is applied to a group of components or services,
respectively, to define their roles in the system’s
runtime reconfiguration.

A dynamic architecture described by its initial
configuration and with applied reconfiguration
patterns can evolve in predefined ways only.
However, to prevent architectural violations, it
is necessary to provide well-defined reconfigu-
ration patterns fitting the needs of a particular
component model.

For example, component model SOFA 2.0 by
Bures et al. (2006) defines three reconfiguration
patterns for runtime reconfigurations: nested fac-
tory (creating a new component and its integra-
tion), component removal (vice versa), and utility
interface patterns (a component may define utility

interfaces that can be freely passed among other
components and used later to establish new con-
nections independently of the component’s level
in the architecture hierarchy).

Another example of a component system with
reconfiguration patterns is ArchJava by Aldrich et
al. (2002), where possible connections of a new
component are restricted by connection patterns
defining permitted types of connectible interfaces
and connectible components.

Restricted Reconfiguration
Controllers

Runtime reconfigurations of a system’s architec-
ture are complex processes which themselves can
be implemented by specialized composite com-
ponents or orchestrating services. In such cases,
a component-based or service-oriented system
contains two types of components or services:
the components/services that implement the
system’s basic functionality and the components/
services that control its runtime reconfigurations,
i.e., the reconfiguration controllers. Besides the
reconfiguration controllers, a component-based
or service-oriented system may also contain other
types of controllers, e.g., related to a life-cycle of
its components or services, respectively. Moreover,
each reconfiguration controller, as a component
or service of the component-based or service-
oriented system, respectively, can be the subject
of further runtime reconfigurations realized by
other reconfiguration controllers. Eventually, these
runtime reconfigurations may result in serious
architectural violations.

To avoid these architectural violations, com-
ponent models can restrict the architecture of the
reconfiguration controllers. Typically, the control-
lers need to be restricted to have strictly static
and non-hierarchical architecture, which must be
described at a design-time and cannot be a subject

33

Dynamically Reconfigurable Architectures
﻿

of future runtime reconfigurations. Moreover,
bindings between interfaces of reconfiguration
controllers and interfaces of other components
or services have to be limited to events triggering
only allowed runtime reconfigurations.

For example, Bures et al. (2006) described
SOFA 2.0 reconfiguration controllers which must
be realized as so-called micro-components, i.e.,
primitive components without controller parts.
Similarly, Fractal components by Bruneton et al.
(2004) contain simple content-controller interfaces
to introspect and reconfigure their subcomponents
and internal bindings.

Formalized Reconfigurations
and Invariants

Another possibility to avoid architectural viola-
tions is to define a formal system for description
of permitted runtime reconfigurations. Runtime
reconfigurations of a component-based or service-
oriented system can be described at its design-time
as the system’s behavior or as a set of invariants
of its architecture configurations.

Moreover, the formal description can be used
for model checking of a system’s behavioral prop-
erties during reconfigurations of its architecture
and for formal verification of the invariants in
resulting configurations at the system’s runtime.
The model checking and formal verification ensure
that an evolving architecture meets its design-
time requirements, i.e., they prevent architectural
violations.

Several component models use formal archi-
tecture description languages with behavioral
description of modeled component-based systems.
These are namely: component model Darwin with
Tracta approach to formally describe behavior of
its components by Giannakopoulou et al. (1999),
the previously mentioned SOFA with behavior

protocols by Plasil and Visnovsky (2002), and
Fractal with behavior formally described by means
of parameterized networks of communicating
automata by Barros (2005).

Other formal approaches are based on gram-
mars and automata. For example, in graph gram-
mars (Hirsch et al., 1998), hyper-edges represent
components, nodes linked to the hyper-edges
represent communication ports of the components,
and rules in the grammars generating graphs de-
scribe possible connections of hyper-edges, via
nodes representing possible communication pat-
terns of multiple components through their ports.

EVALUATION OF THE APPROACHES

The approaches for prevention of architectural
violations, which have been described in the previ-
ous section, result in limited reconfiguration pos-
sibilities. Therefore, the measures proposed by the
approaches may interfere with advanced features
of dynamic architecture in current component-
based or service-oriented systems.

The following sections evaluate compatibility
of the measures with the advanced features of
dynamic architecture, such as ad-hoc reconfigura-
tions, component mobility, component hierarchy
preservation, and architectural aspects.

Ad Hoc Reconfigurations

The ad hoc reconfigurations represent the ability
of a system to perform runtime reconfigurations
that cannot be predefined at the system’s design-
time. Typically, during the design-time of a sys-
tem which enables evolution of its architecture,
a system architect does not have the correct or
complete knowledge of all possible runtime re-
configurations of the system’s architecture and

34

Dynamically Reconfigurable Architectures
﻿

the reconfigurations can be defined only by their
assumed properties.

For obvious reasons, the ad-hoc reconfigura-
tions are not supported by the static architecture,
static binding, and predefined reconfigurations
approaches. These approaches do not allow run-
time reconfigurations at all or permit only those
runtime reconfigurations which are known at
design-time. Also the reconfiguration patterns
approach does not enable the ad hoc reconfigura-
tions because each future runtime reconfiguration
is an application of a specific pattern described
at design-time.

Contrary to the previous approaches, ad hoc
reconfigurations are supported by the restricted
reconfiguration controllers and the formalized re-
configurations and invariants approaches. Both of
these approaches do not refer to particular runtime
reconfigurations, but define generally applicable
restrictions at design-time.

Ad hoc reconfigurations are not common in
service-oriented architecture (SOA). In SOA,
service orchestration and choreography, which
determine configuration of the resulting archi-
tecture, are driven by business processes, in the
case of business services, or by a composition
hierarchy and technical needs in the cases of
controller and utility services, respectively, the
types of services that were defined by Erl (2005).
However, ad hoc reconfigurations of SOA may
be required in the cases of systems adapting
automatically to changing business processes or
to a varying deployment environment. In these
cases, the restricted reconfiguration controllers
approach can be utilized with specific services
implementing the reconfiguration controllers.
The formalized reconfigurations and invariants
approach requires the ability to describe a service-
oriented architecture and its evolution formally, for

example, by application of a component model or
an architecture description language with support
for SOA, e.g., SOFA 2.0 by Bures et al. (2006).

Component Mobility

Component mobility (or service mobility, as ser-
vices can be considered as components) enables
components to be instantiated and connected, or
reconnected in the case of existing components,
at runtime into different contexts in a system’s
architecture. Component mobility can be an es-
sential feature of dynamic architectures with reus-
ability of components, i.e., for service-oriented
architecture (SOA). Analogously to the ad hoc
reconfigurations, component mobility is also not
supported by the static architecture and the static
binding approaches, which do not allow runtime
reconfigurations.

Component mobility is supported by the pre-
defined reconfigurations approach where compo-
nents can change their contexts at a system’s run-
time according to the reconfigurations predefined
at its design-time (SOA was also mentioned as
one of the examples in the section describing pre-
defined reconfigurations). Moreover, component
mobility is supported also by the reconfiguration
patterns, the restricted reconfiguration controllers,
and the formalized reconfigurations and invariants
approaches. In the cases of the reconfiguration
patterns and the restricted reconfiguration con-
trollers, a particular realization of the component
mobility depends on the design of specific patterns
or controller restrictions. These are, for example,
“nested factory” and “utility interface” patterns
in SOFA 2.0 described by Bures et al. (2006). In
the case of the formalized reconfigurations and
invariants approach, the component mobility de-
pends on a utilized formalism for description of

35

Dynamically Reconfigurable Architectures
﻿

reconfiguration processes or their invariants, for
example, the π-calculus formalism described by
Oquendo (2004) in the ArchWare project.

Component Hierarchy Preservation

The component hierarchy preservation is the
ability of an approach to preserve, during runtime
reconfigurations, a specific hierarchical composi-
tion of components predefined at system design-
time. The component hierarchy preservation can
be an important feature of hierarchical component
models to prevent an architectural drift which may
cause further architectural violations. Neverthe-
less, it can also be an insuperable obstacle to
advanced features of dynamic architectures such
as component mobility.

A component hierarchy is always preserved by
the static architecture and the static binding ap-
proaches because missing runtime reconfiguration
features do not allow for any possible changes in
the component hierarchy. In the case of the pre-
defined reconfigurations, the component hierarchy
preservation is determined by a system architect
who defines the reconfigurations. Analogously,
in the cases of the reconfiguration patterns, the
restricted reconfiguration controllers, and the
formalized reconfigurations and invariants ap-
proaches, the component hierarchy preservation
can be effectively implemented if needed; how-
ever, it may not be necessary, e.g., as in the case
of graph grammars by Hirsch et al. (1998). For
example, the previously mentioned SOFA 2.0
“nested factory” pattern described by Bures et al.
(2006) allows inserting a new component into a
predefined context only, thus, with respect to a
component hierarchy. On the contrary, component
model Fractal by Bruneton et al. (2004) partially
breaks a tree-like component hierarchy by intro-

ducing shared components as sub-components
nested in several components at the same time.

From a structural point of view, service-
oriented architecture (SOA) is a flat model where
“composite” orchestrating services do not enclose
their “internal” orchestrated services participating
in the orchestrations. The flat model provides better
reusability of services, because the context of each
service is defined only by its provided and required
interfaces, which are the same for all use cases of
the service, not by its position in the hierarchy,
which may vary in the use cases. Without the flat
model, the SOA principles described by Erl (2005)
would be violated. However, from a logical point
of view, orchestrating services are “composed of”
orchestrated services and the component hierarchy
preservation means the preservation of service
orchestrations which forms the service hierarchy.

Therefore, violations of the component hier-
archy preservation are caused by changes in the
service orchestrations, e.g., because of adapta-
tion to changing business processes which drive
service choreography or because of changes in
realization of the services due to an unstable
deployment environment with service providers
of varying quality.

Architectural Aspects

The architectural aspects have been introduced
by Garcia et al. (2006) as a representation of
crosscutting concerns at the architectural level,
i.e., the concerns that cut across architectural
entities such as individual components as well
as their hierarchy, interfaces, and connectors.
The architectural aspects enable a designer of a
system to describe properties of its architecture
without links to individual architectural entities.
These aspects can be defined globally, at a system’s

36

Dynamically Reconfigurable Architectures
﻿

design-time, and for all its architectural entities
that meet predefined conditions in its current
configuration and future runtime reconfigurations.

A measure preventing architectural violations
should be, ideally, describable as an architectural
aspect. Then, it is able to persist through unex-
pected changes in a system’s architecture caused
by future design-time decisions as well as runtime
reconfigurations that cannot be foreseen at the
system’s design-time.

In the static architecture approach, correspond-
ing measures are defined for the whole architecture
and no architectural aspects are needed. The static
binding approach has strictly localized measures
related to updateable components only, which
do not define crosscutting concerns typical for
the aspects orientation. Similarly, the predefined
reconfigurations in their approach cannot be rec-
ognized as the crosscutting concerns. In the case
of reconfiguration patterns approach, the patterns
are just abstractions applied in component-models
and component-based or service-oriented systems
locally on specific sets of their components or
services, respectively; therefore they cannot be
considered as architectural aspects, although they
are defined as crosscutting concerns at a general
architectural level.

In the restricted reconfiguration controllers
and formalized reconfigurations and invariants
approaches, specific restrictions of controllers
or specific formal descriptions of reconfigura-
tion processes and their invariants can be defined
universally for all affected entities of a system’s
architecture. At the system’s architectural level,
these restrictions or descriptions represent cross-
cutting concerns, or the architectural aspects.

Also the principles of service-oriented archi-
tecture (SOA), which were defined by Erl (2005),
as well as potential global limitations set by Quality
of Service (QoS) requirements, can be informally
considered as architectural aspects. In the cases
of implementations of restricted reconfiguration
controllers and formalized reconfigurations and
invariants approaches, the SOA principles and
QoS requirements have to be respected by these
implementations.

Summary

The results of the evaluation are summarized in
Table 1. The most compatible approaches for
preventing the architecture violations are the re-
stricted reconfiguration controllers approach and
the formalized reconfigurations and invariants

Table 1. Compatibility of the approaches to prevent architectural violations

Ad Hoc
Reconfigurations

Component
Mobility

Hierarchy
Preservation

Architectural
Aspects

Static Architecture No No Yes N/A

Static Bindings No No Yes No

Predefined Reconfigurations No Yes Yes/No No

Reconfiguration Patterns No Yes Yes/No No

Restricted Reconfiguration Controllers Yes Yes Yes/No Yes

Formalized Reconfiguration,
Invariants

Yes Yes Yes/No Yes

37

Dynamically Reconfigurable Architectures
﻿

approach. These approaches are compatible with
all considered features of dynamic architecture.
Nevertheless, both mentioned approaches propose
measures that are restrictive or require an advanced
knowledge of utilized formalisms (in the case of
the formalized reconfigurations). More suitable
predefined reconfigurations and reconfiguration
patterns approaches can be recommended for
dynamic architectures without ad hoc reconfigura-
tions and usage of architectural aspects.

All advanced features of dynamic architectures
discussed above, which are ad hoc reconfigura-
tions, component mobility, component hierarchy
preservation, and architectural aspects, can be
utilized in service-oriented architecture (SOA).
However, according to the presented evaluation,
some of the approaches to preventing the archi-
tectural violations which are possible in SOA
may preclude the usage of some of the discussed
features. For example, a typical service-oriented
system with services discovered and bounded at
runtime from service repositories (e.g., from UDDI
registries) implements the predefined reconfigura-
tions approach and it can utilize service mobility
(i.e., the component mobility feature) but cannot
make ad hoc reconfigurations.

FUTURE RESEARCH DIRECTIONS

New approaches to preventing the architectural
violations in dynamically reconfigurable archi-
tectures should be compatible with all mentioned
advanced features of dynamic architectures, easily
integrated into existing modeling tools utilizing
existing skills of architects, and supported by
well-established implementation technologies
and frameworks.

Current research approaches and future re-
search directions mostly address problems of
component and service mobility and adaptability
of service-oriented architectures with services
implementing volatile business processes. Fu-
ture research is expected to focus on component
models and architecture description languages for
supporting the latest architectural concepts, such
as service-oriented architectures with advanced
features and Cloud computing. This research work
should be complemented by work in supporting
implementation technologies for the architectural
concepts, such as implementation frameworks or
middleware for component-based systems with
mobile and context-aware components.

Very promising research has been ongoing in
component and service mobility with research
approaches in the above mentioned research ar-
eas. For example, multi-agent system approaches
JADE described by Bellifemine et al. (2003),
Mobile-C by Chen et al. (2006), and AgentScape
by Wijngaards et al. (2002), all provide middle-
ware for mobile agents in distributed systems, and
the service-oriented approach MobiGo by Song
and Ramachandran (2007) provides middleware
for seamless mobility of service based on user
needs. To prevent the architectural violations and
support desired advanced architectural features,
these approaches have to implement appropriate
techniques for preventing architectural violations
as described in this chapter (e.g., agent-based
mobility can utilize a formal description of agent-
oriented system and implement the formalized
reconfigurations and invariants approach).

Future research should also address approaches
that are based on planning techniques, e.g., (Barnes
et al., 2013). These approaches describe an evolv-
ing architecture by its initial and final (planned)

38

Dynamically Reconfigurable Architectures
﻿

configurations, while the best series of reconfigu-
ration leading from the initial configuration to the
final configuration, i.e., the best evolution, is to be
found with respect to given criteria (by a metric
and its preferred value). These approaches are very
similar to the previously mentioned agent-based
approaches as they do not describe or particularly
limit reconfigurations, but operate with evolution
goals. Contrary to the agent-based approaches,
in the approaches based on planning techniques,
the resulting architecture/configuration is known
(which is not for the agent-based approaches
where the resulting architecture is derived, for
example, by beliefs, desires, and intentions of
individual agents).

Other promising approaches are related to
evolution of business processes and adaptation
of underlying workflows and service-oriented ar-
chitectures implementing process choreographies.
Currently, most of the research work in this area
addresses just the evolution of business processes
and workflows and does not consider the impact of
such changes on the underlying implementations.

CONCLUSION

In this chapter, we addressed the problem of ar-
chitectural violations in the dynamic architectures
with advances features such as ad hoc reconfigura-
tion, service or component mobility, composition
hierarchy preservation, and architectural aspects.
The evaluation of several approaches to prevent-
ing the architectural violations was performed to
check compatibility of the approaches with the

features of dynamic architectures. We focused
on service-oriented architectures which are con-
sidered to be a special case of component-based
system architecture.

All advanced features of dynamic architec-
tures discussed in this chapter can be utilized
in a service-oriented architecture. However, the
evaluation indicated that some of the approaches
for preventing architectural violations which are
possible to implement in SOA may preclude the
usage of some of the discussed features. The most
compatible approaches for preventing the architec-
ture violations are the restricted reconfiguration
controllers approach and the formalized reconfigu-
rations and invariants approach supporting all the
advanced architectural features. The predefined
reconfigurations and reconfiguration patterns
approaches can be recommended for dynamic
architectures without ad hoc reconfigurations and
without usage of architectural aspects.

We intentionally did not discuss performance
and scalability (and many other) issues of the
presented approaches as these usually depend on
particular implementations; however, they also
need to be also considered for implementation
(e.g., verification of invariants and model checking
in the formalized reconfigurations and invariants
approach can be expensive in practice).

The results of the evaluation presented in this
chapter can be used by architects or developers of
component-based and service-oriented software
systems with presented features of dynamic archi-
tectures, as guidance for further analysis of utilized
techniques to control architectural evolution.

39

Dynamically Reconfigurable Architectures
﻿

REFERENCES

Aldrich, J., Chambers, C., & Notkin, D. (2002).
ArchJava: Connecting software architecture to
implementation. In Proceedings of the 24rd In-
ternational Conference on Software Engineering,
(pp. 187–197). Academic Press.

Balasubramaniam, D., Morrison, R., Oquendo,
F., Robertson, I., & Warboys, B. (2005). Second
release of ArchWare ADL (Technical Report D1.7b
[and D1.1b]). ArchWare Project IST-2001-32360.

Barnes, J. M., Pandey, A., & Garlan, D. (2013).
Automated Planning for Software Architecture
Evolution. In Proceedings of the IEEE/ACM In-
ternational Conference on Automated Software
Engineering. IEEE/ACM.

Barros, T. (2005). Formal specification and
verification of distributed component systems.
(PhD thesis). Universite de Nice, INRIA Sophia
Antipolis.

Bass, L., Clements, P., & Kazman, R. (2003).
Software Architecture in Practice (2nd ed.). Ad-
dison Wesley Professional.

Bellifemine, F., Caire, G., Poggi, A., & Rimassa,
G. (2003). JADE: A white paper. EXP in Search
of Innovation, 3(3), 6–19.

Bruneton, E., Coupaye, T., & Stefani, J.-B. (2004).
The fractal component model, draft of specifica-
tion version 2.0-3. The ObjectWeb Consortium.

Bures, T., Hnetynka, P., & Plasil, F. (2006). SOFA
2.0: Balancing advanced features in a hierarchical
component model. In Proceedings of SERA. Se-
attle, WA: IEEE Computer Society. doi:10.1109/
SERA.2006.62

Chen, B., Cheng, H. H., & Palen, J. (2006). Mobile-
C: A mobile agent platform for mobile C-C++
agents. Software, Practice & Experience, 36(15),
1711–1733. doi:10.1002/spe.742

Clements, P., & Northrop, L. (2001). Software
Product Lines: Practices and Patterns. Addison
Wesley.

Erl, T. (2005). Service-Oriented Architecture:
Concepts, Technology, and Design. Upper Saddle
River, NJ: Prentice Hall PTR.

Garcia, A., Chavez, C., Batista, T., Santanna, C.,
Kulesza, U., Rashid, A., & Lucena, C. (2006). On
the modular representation of architectural aspects.
In Proceedings of the Third European Conference
on Software Architecture. Berlin: Springer-Verlag.
doi:10.1007/11966104_7

Giannakopoulou, D., Kramer, J., & Cheung,
S. C. (1999). Behaviour analysis of distrib-
uted systems using the Tracta approach. Au-
tomated Software Engineering, 6(1), 7–35.
doi:10.1023/A:1008645800955

Hirsch, D., Inverardi, P., & Montanari, U. (1998).
Graph grammars and constraint solving for soft-
ware architecture styles. In Proceedings of the
Third International Workshop on Software. New
York, NY: ACM. doi:10.1145/288408.288426

IEEE. (2000). Recommended practice for archi-
tectural description of software intensive systems
(Technical Report IEEE P1471–2000). The Ar-
chitecture Working Group of the Software Engi-
neering Committee, Standards Department, IEEE.

Karastoyanova, D., Houspanossian, A., Cilia, M.,
Leymann, F., & Buchmann, A. (2005). Extending
BPEL for runtime adaptability. In Proceedings
of Ninth IEEE International EDOC Enterprise
Computing Conference, (pp. 15–26). IEEE.
doi:10.1109/EDOC.2005.14

Lau, K.-K., & Wang, Z. (2005). A taxonomy of
software component models. In Proceedings of
the 31st EUROMICRO Conference on Software
Engineering and Advanced Applications, (pp.
88–95). IEEE Computer Society.

40

Dynamically Reconfigurable Architectures
﻿

Magee, J., Dulay, N., Eisenbach, S., & Kramer,
J. (1995). Specifying distributed software ar-
chitectures. In Proceedings of the 5th European
Software Engineering Conference. London, UK:
Springer-Verlag.

Malek, S., Edwards, G., Brun, Y., Tajalli, H.,
Garcia, J., & Krka, I. et al. (2010). An architec-
ture-driven software mobility framework. Jour-
nal of Systems and Software, 83(6), 972–989.
doi:10.1016/j.jss.2009.11.003

Oquendo, F. (2004). π-ADL: An architecture
description language based on the higher-order
typed π-calculus for specifying dynamic and
mobile software architectures. ACM SIGSOFT
Software Engineering Notes, 29(3), 1–14.
doi:10.1145/986710.986728

Perry, D. E., & Wolf, A. L. (1992). Foundations
for the study of software architecture. SIGSOFT
Software Engineering Notes, 17(4), 40–52.
doi:10.1145/141874.141884

Plasil, F., Bilek, D., & Janecek, R. (1998). SOFA/
DCUP: Architecture for component trading and
dynamic updating. In Proceedings of 4th Inter-
national Conference on Configurable Distributed
Systems. Los Alamitos, CA: IEEE Computer
Society. doi:10.1109/CDS.1998.675757

Plasil, F., & Visnovsky, S. (2002). Behavior proto-
cols for software components. IEEE Transactions
on Software Engineering, 28(11), 1056–1076.
doi:10.1109/TSE.2002.1049404

Song, X., & Ramachandran, U. (2007). Mobigo:
A middleware for seamless mobility. In Proceed-
ings of 13th IEEE International Conference on
Embedded and Real-Time Computing Systems
and Applications, (pp. 249–256). IEEE.

Szyperski, C. (2002). Component Software: Be-
yond Object-oriented Programming (2nd ed.).
Addison Wesley Professional.

van Ommering, R., van der Linden, F., Kramer, J.,
& Magee, J. (2000). The Koala component model
for consumer electronics software. Computer,
33(3), 78–85. doi:10.1109/2.825699

Vestal, S. (1993). A cursory overview and com-
parison of four architecture description languages
(Technical Report). Honeywell Technology
Center.

Wijngaards, N. J. E., Overeinder, B. J., van Steen,
M., & Brazier, F. M. T. (2002). Supporting internet-
scale multi-agent systems. Data & Knowledge
Engineering, 41(2-3), 229–245. doi:10.1016/
S0169-023X(02)00042-3

ADDITIONAL READING

Aguirre, N., & Maibaum, T. (2002). A temporal
logic approach to the specification of reconfigu-
rable component-based systems. In Proceedings
of the 17th IEEE International Conference on
Automated Software Engineering, Los Alami-
tos, CA, pp. 271–274. IEEE Computer Society.
doi:10.1109/ASE.2002.1115028

Arbab, F. (1999). Reo: A channel-based coordi-
nation model for component composition. Math-
ematical Structures in Computer Science, 14(3),
329–366. doi:10.1017/S0960129504004153

Attiogbe, C. (2009). Can component/service-
based systems be proved correct? Lecture Notes in
Computer Science, 5404, 3–18. doi:10.1007/978-
3-540-95891-8_2

41

Dynamically Reconfigurable Architectures
﻿

Barros, T., Cansado, A., Madelaine, E., & Rivera,
M. (2006). Model-checking distributed compo-
nents: The Vercors platform. In F.S. de Boer &
V. Mencl (Eds.), Preliminary Proceedings of the
Third International Workshop on Formal Aspects
of Component Software, number 344 in UNU-
IIST Report.

Baude, F., Caromel, D., & Morel, M. (2003). In
R. Meersman, Z. Tari, & D. C. Schmidt (Eds.),
From distributed objects to hierarchical grid
components (Vol. 2888, pp. 1226–1242). Lecture
Notes in Computer Science Springer-Verlag.
doi:10.1007/978-3-540-39964-3_78

Breivold, H. P., Crnkovic, I., & Larsson, M.
(2012). A systematic review of software ar-
chitecture evolution research. Information and
Software Technology, 54(1), 16–40. doi:10.1016/j.
infsof.2011.06.002

Bruneton, E., Coupaye, T., & Stefani, J.-B. (2002).
Recursive and dynamic software composition with
sharing. In Proceedings of the 7th International
Workshop on Component-Oriented Programming,
Malaga, Spain.

Bruni, R., Bucchiarone, A., Gnesi, S., Hirsch, D.,
& Lafuente, A. L. (2008). Graph-Based Design
and Analysis of Dynamic Software Architectures.
In P. Degano, R. Nicola, & J. Meseguer (Eds.),
Lecture Notes in Computer Science: Vol. 5065.
Concurrency, Graphs and Models (pp. 37–56).
doi:10.1007/978-3-540-68679-8_4

Bruni, R., Bucchiarone, A., Gnesi, S., & Melgratti,
H. (2008). Modelling Dynamic Software Archi-
tectures using Typed Graph Grammars. Electronic
Notes in Theoretical Computer Science, 213(1),
39–53. doi:10.1016/j.entcs.2008.04.073

Bruni, R., Corradini, A., Gadducci, F., Lluch
Lafuente, A., & Vandin, A. (2012). A concep-
tual framework for adaptation. Fundamental
Approaches to Software Engineering. Lecture
Notes in Computer Science, 7212, 240–254.
doi:10.1007/978-3-642-28872-2_17

Bucchiarone, A., Marconi, A., Pistore, M.,
& Raik, H. (2012). Dynamic Adaptation of
Fragment-Based and Context-Aware Business
Processes. In IEEE 19th International Conference
on Web Services (ICWS), pp. 33–41. doi:10.1109/
ICWS.2012.56

Causevic, A., & Vulgarakis, A. (2009). Towards
a unified behavioral model for component-based
and service-oriented systems. In Proceedings
of the 33rd Annual IEEE International Com-
puter Software and Applications Conference, pp.
497–503. IEEE Computer Society. doi:10.1109/
COMPSAC.2009.182

Chappell, D. (2007). Introducing SCA. White
paper. Chappell & Associates.

Collet, P., Coupaye, T., Chang, H., Seinturier, L.,
& Dufrene, G. (2007). Components and services:
A marriage of reason. Technical Report ISRN I3S/
RR-2007-17-FR. Project RAINBOW.

Crnkovic, I., Chaudron, M., & Larsson, S.
(2006). Component-based development process
and component lifecycle. In Proceedings of the
International Conference on Software Engineer-
ing Advances, Tahiti, French Polynesia. IEEE.

Diakov, N. K., & Arbab, F. (2004). Compositional
construction of Web Services using Reo. In S.
Bevinakoppa & J. Hu (Eds.), Proceedings of the
International Workshop on Web Services: Model-
ing, Architecture and Infrastructure (pp. 49–58).
INSTICC Press.

Ehrig, H., Ermel, C., Runge, O., Bucchiarone,
A., & Pelliccione, P. (2010). Formal Analysis and
Verification of Self-Healing Systems. Fundamen-
tal Approaches to Software Engineering. Lecture
Notes in Computer Science, 6016, 139–153.
doi:10.1007/978-3-642-12029-9_10

Ellis, C., Keddara, K., & Rozenberg, G. (1995).
Dynamic change within workflow systems. In
Proceedings of conference on Organizational
computing systems, New York, NY, pp. 10–21.
ACM. doi:10.1145/224019.224021

42

Dynamically Reconfigurable Architectures
﻿

Fielding, R. T. (2000). Architectural styles and the
design of network-based software architectures.
PhD thesis. University of California, Irvine.

Garlan, D., Monroe, R. T., & Wile, D. (2000).
ACME: Architectural description of component-
based systems. In G. T. Leavens, & M. Sitara-
man (Eds.), Foundations of Component-Based
Systems (pp. 47–68). New York, NY: Cambridge
University Press.

Hatebur, D., Heisel, M., & Souquieres, J. (2006). A
method for component-based software and system
development. In Proceedings of the 32nd EURO-
MICRO Conference on Software Engineering and
Advanced Applications, pp. 72–80. IEEE Com-
puter Society. doi:10.1109/EUROMICRO.2006.9

Hnetynka, P., & Plasil, F. (2006). Lecture Notes
in Computer Science: Vol. 4063. Dynamic recon-
figuration and access to services in hierarchical
component models (pp. 352–359). Springer.
doi:10.1007/11783565_27

Kazzaz, M. M., & Rychly, M. (2013). A web
service migration framework. In Proceedings of
the Eighth International Conference on Internet
and Web Applications and Services, pp. 58–62.
IARIA.

Kral, J., & Zemlicka, M. (2000). Lecture Notes
in Computer Science: Vol. 1963. Autonomous
components (pp. 375–383). Springer.

Lane, S., Bucchiarone, A., & Richardson, I.
(2012). SOAdapt: A process reference model for
developing adaptable service-based applications.
Information and Software Technology, 54(3),
299–316. doi:10.1016/j.infsof.2011.10.003

Lanese, I., Bucchiarone, A., & Montesi, F. (2010).
A framework for rule-based dynamic adaptation.
In Proceedings of the 5th international conference
on Trustworthly global computing), pp. 284–300.
doi:10.1007/978-3-642-15640-3_19

Lau, K.-K., & Wang, Z. (2006). A survey of
software component models (2nd Ed.). Pre-print
CSPP-38. The University of Manchester, School
of Computer Science.

Lins, F., Damasceno, J., Souza, A., Silva, B.,
Aragao, D., Medeiros, R., & Rosa, N. (2012).
Towards automation of SOA-based business
processes. International Journal of Computer
Science, Engineering and Applications, 2(2).

Medvidovic, N., & Taylor, R. N. (2000). A clas-
sification and comparison framework for software
architecture description languages. IEEE Trans-
actions on Software Engineering, 26(1), 70–93.
doi:10.1109/32.825767

Mencl, V., & Bures, T. (2005). Microcomponent-
based component controllers: A foundation for
component aspects. In Proceedings of 12th Asia-
Pacific Software Engineering Conference (APSEC
2005), Taipei, Taiwan, pp. 729–737. IEEE Com-
puter Society Press. doi:10.1109/APSEC.2005.78

Open SOA Collaboration. (2007a). SCA service
component architecture: Assembly model speci-
fication. Technical Report SCA version 1.00.

Open SOA Collaboration. (2007b). SCA service
component architecture: Web Service binding
specification. Technical Report SCA version 1.00.

43

Dynamically Reconfigurable Architectures
﻿

Open, S. O. A. Collaboration. (2008). Service
Component Architecture specifications. Retrieved
from http://www.osoa.org/display/Main/Service+
Component+Architecture+Specifications

Rychly, M. (2009a). (Manuscript submitted for
publication). A case study on behavioural mod-
elling of service-oriented architectures. [AGH
University Press.]. Software Engineering Tech-
niques, 79–92.

Rychly, M. (2009b). A component model with
support of mobile architectures and formal de-
scription. e-Informatica. Software Engineering
Journal, 3(1), 9–25.

Visnovsky, S. (2002). Modeling software com-
ponents using behavior protocols. PhD thesis.
Department of Software Engineering, Charles
University, Prague.

KEY TERMS AND DEFINITIONS

Architectural Drift: Insensitivity to a system’s
architecture that, with increasing evolution, leads
to its in-adaptability and a lack of coherence and
clarity of form.

Architectural Erosion: Violations of a
system’s architecture that leads to significant
problems in the system and contributes to its
increasing brittleness.

Architectural Violations: Violations of a
system’s architecture, usually an architectural
drift or architectural erosion.

Component or Service Mobility: An ability
of a software system to move its components or
services into different contexts and to different
deployment nodes or service providers at the
system’s runtime; a specific type of runtime
reconfiguration.

Configuration of Architecture: A particular
way in which a system’s components or services
and their connectors or bindings are composed
and built into the resulting system.

Dynamic (Software) Architecture: Software
architecture of a software system with rules of evo-
lution of its structure/architecture during runtime.
The system’s components and connections can be
created and destroyed during runtime according
to the rules from design-time.

Mobile (Software) Architecture: A dynamic
architecture of software with component or service
mobility features.

Reconfiguration of Architecture: A modi-
fication of the configuration of a system’s archi-
tecture.

Runtime Reconfiguration of Architecture:
An ability of a software system to perform re-
configuration of its architecture at runtime, e.g.,
to create, destroy, and update the services, and
to establish and destroy their interconnections
dynamically at the runtime, on demand, and ac-
cording to various aspects to move the services
into different contexts and to different providers.

Static (Software) Architecture: A software
architecture without ability to be modified during
runtime. After initialization of the system, there
are no new connections between the system’s
components and existing connections cannot be
destroyed.

ENDNOTES

1	 This work was supported by the research pro-
gram MSM 0021630528 “Security-Oriented
Research in Information Technology” and
the BUT FIT grant FIT-S-11-2.

