
Solving the Multidimensional Knapsack Problem
using a CUDA accelerated PSO

Drahoslav Zan and Jiri Jaros

Abstract— The Multidimensional Knapsack Problem (MKP)
represents an important model having numerous applications
in combinatorial optimisation, decision-making and scheduling
processes, cryptography, etc. Although the MKP is easy to
define and implement, the time complexity of finding a good
solution grows exponentially with the problem size. Therefore,
novel software techniques and hardware platforms are being
developed and employed to reduce the computation time. This
paper addresses the possibility of solving the MKP using a GPU
accelerated Particle Swarm Optimisation (PSO). The goal is
to evaluate the attainable performance benefit when using a
highly optimised GPU code instead of an efficient multi-core
CPU implementation, while preserving the quality of the search
process. The paper shows that a single Nvidia GTX 580 graphics
card can outperform a quad-core CPU by a factor of 3.5 to
9.6, depending on the problem size. As both implementations
are memory bound, these speed-ups directly correspond to the
memory bandwidth ratio between the investigated GPU and
CPU.

I. INTRODUCTION

The Particle Swarm Optimisation (PSO) is a stochastic
technique initially designed for non-linear continuous func-
tion optimisation. The algorithm is inspired by the dynamic
behaviour of bird flocks or fish schools while seeking for
food. It has become a widely applied and adapted optimi-
sation tool since developed by Kennedy and Eberhart in
1995 [1].

The main advantages of the PSO is an extremely simple
algorithm and a low number of control parameters. On the
other hand, many candidate solutions are necessary to be
created and evaluated when optimising complex problems.
Fortunately, the PSO is very easy to parallelise since the
particles do not depend on each other while moving in
the search space. Many approaches thus simulate multiple
particles at a time or propose a multiple swarm versions
of the PSO [2]. The trend over last few years has been to
utilize Graphics Processing Units (GPUs) as general purpose
co-processors. Although originally designed for rasterisation
and widely used in the game industry, their raw arithmetic
power has attracted a lot of researchers [3].

The PSO community has adopted this trend relatively
quickly and a lot of papers have been presented in this area,
e.g. [4], [5], [6]. The main drawback of these and many other
papers is that they investigate the performance only on trivial
numerical benchmarks with no data. Of course, in such a
case the GPU performance will be stunning as no memory
is needed. However, when a real problem is being optimised,

Drahoslav Zan and Jiri Jaros are with Department of Computer Systems,
Brno University of Technology, Bozetechova 2, 612 00 Brno, Czech
Republic (email: {izan, jarosjir}@fit.vutbr.cz).

many issues arise such as how to arrange the benchmark’s
data in memory, how to fully exploit the memory bandwidth
when scatter accesses to memory are necessary, how to
employ cache memories and so on. In many cases, what
originally looked very promising and motivating turns out
to be very difficult to achieve or even disappointing. The
second downside of many performance studies is that only
relative performance comparisons are provided. However,
for predicting the realistic speed-up on different GPUs, the
performance counters have to be investigated to gain some
insight into the algorithm efficiency (what percentage of the
raw performance the code can exploit while utilising a given
fraction of main memory bandwidth).

Therefore, this paper investigates the attainable perfor-
mance of the GPU accelerated PSO when solving a real
world problem with a large dataset, the Multidimensional
Knapsack Problem [7]. The performance is provided in
terms of relative speed-up with respect to a parallel CPU
implementation. The paper also investigates the absolute
performance in terms of GFLOPS and GB/s and states what
fraction of the theoretical performance can be harnessed.
This easily allows to predict the performance on many other
GPUs.

II. MULTIDIMENSIONAL KNAPSACK PROBLEM

The knapsack problem is one of the famous challenges
in combinatorial optimisation. The idea behind it can be
explained by the following example. Suppose a hitch-hiker
needs to fill a knapsack for a trip. There are many items
available to select, however, the capacity of the knapsack is
limited. The hitch-hiker tries to maximise the overall value
(usefulness) of the items in the knapsack while not over-
loading it. Although sounds simple, the standard knapsack
problem represents an NP-hard optimisation problem [8].

There are several generalisations of the standard knapsack
problem, one of which is the Multidimensional Knapsack
Problem (MKP) [9]. The MKP can formally be defined
as follows. There is a set of n items with profits pj and
a set of m resources with capacities Mi. Each item j
consumes an amount wij of each resource i. The variable
xj holds the decision whether or not the item j is selected
for given resources. The goal is to the maximise total profit
by selecting the appropriate subset of all items (1). The
necessary condition is that the selected items must not exceed
resource capacities – knapsack constraint (2).

The typical area of MKP applications is scheduling (man-
ufacturing lines, airports, etc.). A recent review of the MKP
can be found in the literature [7].

2933

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

MKP:

maximise f(~x) =
n∑

j=1

pjxj , (1)

subject to f(~x) =
n∑

j=1

wijxj ≤Mi, Mi > 0, (2)

i = 1, . . . ,m, xj ∈ {0, 1} ,
pj > 0, wij ≥ 0, j = 1, . . . , n.

III. BACKGROUND FOR THE PSO BASED MKP SOLVER

This section describes the background of the CPU (PSO-
C) and the GPU (PSO-G) version of the proposed PSO based
MKP solver. Although both implementations (see section IV)
follow the same algorithm (sec. III-A), the implementations
are tailored to the CPU or GPU needs.

A. The PSO Algorithm

The Particle Swarm Optimization (PSO) [1] is a
population-based stochastic technique for iterative solving
of both continuous and discrete problems. The PSO solves
a given problem by having a population of particles which
represent candidate solutions. These particles are grouped
into a swarm and moved around the problem search space.
The particle movement is influenced by their local best
known positions in the space and by the global best position
of the swarm (which is a common knowledge amongst all
particles). Using these two paradigms, the swarm is expected
to efficiently explore the search space and eventually find the
global optima.

The PSO algorithm can be expressed by the two following
equations:

~v i
k+1 = w~v i

k + ϕ1δ1
(
~p i
k − ~x i

k

)
+ ϕ2δ2

(
~p g
k − ~x

i
k

)
(3)

~x i
k+1 = ~x i

k + ~v i
k+1 (4)

Eq. (3) describes the velocity of each particle i in all dimen-
sions of the search space in the next iteration of the algorithm
(k + 1). The inertia weight factor w makes the particle
movement smoother and add another variability to the system
apart form the stochastic parameters δ{1,2} ∈ [0, 1) [10]. The
actual change in the particle velocity depends on the distance
from the best local ~p i

k and the best global known position
~p g
k , where ~x i

k is the actual position of the particle i. The ratio
between particle nostalgia and enviousness is controlled by
the cognitive and social parameters ϕ1 and ϕ2. Subsequently,
eq. (4) defines the position of each particle ~x i

k+1 in the next
iteration by adding a distance travelled in a unit time. Let
us note that choosing the values of control parameter is not
trivial [11] and is usually done empirically.

1) Discrete version of the PSO: In order to solve the MKP
problem, we need to define a discrete version of the PSO
[12]. Here, the particle position is defined as a vector of
binary values ~x i = (xi1, xi2, . . . , xij , . . . , xin), where n is
the size of the problem (the number of dimensions). The
particle velocity ~v i = (vi1, vi2, . . . , vij , . . . , vin) then holds
the probability of vector ~x i. The particle velocity is updated

by eq. (3), however, since the particle velocity is restricted
to stay within an interval of [0, 1], it has to be normalised
afterwards by a sigmoid transformation function:

S(vij) =
1

1 + e−vij
(5)

The particle position is updated by the following decision
function (δ ∈ [0, 1)):

xij =

{
1 δ ≤ S(vij)
0 otherwise (6)

Let us now describe the flow of the PSO algorithm. At the
beginning, the particles are randomly spread over the search
space, their velocities randomly generated and the local best
and global best positions initialised. After initialisation, the
iterative core of the PSO repeats until termination conditions
are met (e.g. convergence criterion, discovery of a sufficient
solution, number of iterations, etc.). For simplicity, we ter-
minate the PSO after a predefined number of iterations. At
the beginning of every iteration, the particle fitness (quality
of the candidate solution) is evaluated, see section III-B.
Consequently, local best positions are updated if necessary,
and a new leader is voted. Finally, the particle positions and
velocities are updated according to eq. (3) and (4). After
a termination criterion has been met, the best solution is
reported.

B. The MKP Fitness Function

There have been proposed several fitness functions to solve
the MKP problem [13]. We decided to implement the one
shown in eq. (7). The fitness function here is defined as a
linear composition of two components. The first evaluates
the overall profit of the selected items, while the second
one penalises the solution if the knapsack capacity has been
exceeded. The amount of penalisation is proportional to the
level of exceeding further scaled by a parameter P . Some
strategies on how to choose parameter P can be found in
literature [14].

g(~x) =
n∑

j=1

pjxj︸ ︷︷ ︸
profit

−P
m∑
i=1

poslin

 n∑
j=1

wijxj −Mi


︸ ︷︷ ︸

penalty

(7)

The core of the penalisation is the poslin function:

poslin(x) =

{
0 x < 0
x otherwise (8)

IV. IMPLEMENTATION OF THE SOLVERS

Both the PSO-C and PSO-G solvers are based on the same
principles explained in sections III-A and III-B. The main
difference between them lies in the implementation of the
particular sections of the PSO algorithm (initialise swarm,
update swarm, calculate fitness of each particle) as well as
in the swarm encoding.

2934

A. The MKP Data Representation

The MKP is defined by a list of n items, their profits, and
their weights in m different knapsacks (consumed resources).
The item profits are stored in a one-dimensional array while
the weights are organized in a two-dimensional array of a
size of m × n, where a row maintains item weights for a
given knapsack. In the case of the GPU implementation, the
first dimension (the number of items) is padded to the nearest
power of 2.

B. The Swarm Data Representation

A particle swarm is represented by a set of particles, each
of which maintains a scalar fitness value (fit), a vector of
current positions (pos), a vector of current velocities (vel),
and a vector of the local best positions (lbp). Since CPU
and GPU architectures require different data layouts to reach
maximum efficacy, two distinct data representations were
designed (see. Fig. 1).

In the case of CPU, every particle is processed sequentially
dimension by dimension. Here, the best spatial locality is
achieved by an array of structures representation. The data
for each particle is stored together. In Fig. 1a, the size of all
components are given in bits. The symbol d represents the
number of dimensions. Since the positions are represented
as bit arrays, we need to pad the number of dimensions
to a multiple of 8 (full bytes). This extended number of
dimensions is denoted by dc. The particle velocity and the
fitness value are then represented as single precision floating
point values. Finally, symbol p represents the total number
of particles.

On the other hand, GPU processes each particle in parallel.
A block of threads cooperates on evaluating the fitness
value and updating its velocity and position. Therefore, it
is desirable to allow neighbour threads to access neighbour
particle dimensions. This is done by storing the swarm data

fit vel pos lbp
1 32 32×d 1 . . . dc 1 . . . dc
2 32 32×d 1 . . . dc 1 . . . dc
...

...
p 32 32×d 1 . . . dc 1 . . . dc

(a) PSO-C

1 2 . . . dg
pos 8 8 8× (dg − 2) × p
lbp 8 8 8× (dg − 2) × p
vel 32 32 32× (dg − 2) × p
fit 32× p

(b) PSO-G

Fig. 1: Memory layouts of the PSO-C and PSO-G solvers.
The PSO-C uses an array of structures representation while
the PSO-G benefits from a structure of arrays representation.

as a structure of arrays. The particle components are thus
stored together (first all positions, then all best positions,
then all velocities, and all fitness values).

Another difference is in the particle position represen-
tation. Since every thread manipulates a single dimension,
using a bit array would cause a need for mutual exclusion
on the byte level (threads must not modify a single byte
concurrently). Therefore, a single dimension is represented as
a whole byte. In order to make the fitness function calculation
fast, the number of dimensions is padded to a nearest power
of two.

C. The PSO-G Solver Implementation

At the beginning, memory for the swarm (Fig. 1b) is
allocated in the global GPU memory and consequently
initialized by the init kernel. Since the initialization involves
random numbers generation, we use the Random1231 library
to do this task quickly. After the swarm has been initialized,
the MKP memory is allocated and the data copied into the
global GPU memory.

Afterwards, the search for an optimal solution is launched.
Every iteration starts with evaluating of the particle fitness
by the fitness kernel. All p particles are evaluated in parallel,
every particle is processed by a single block of threads.
A given particle is then evaluated in parallel by the threads
inside the block. There are as many threads in the block as
there are dimensions (items) in the MKP instance (dg), thus
one thread processes one dimension.

Each thread first reads its item profit, multiply it by the
value (0 or 1) of the particle position in a given dimension
and stores the result into the shared memory. After a barrier,
the partial profits are summarised using a parallel reduction2.
In order to simplify the implementation, the number of items
(dimension/threads) is ceiled to the nearest power of two.
After another barrier, the threads calculate the level of excess
in particular knapsacks by iterating over them. Then, the
decision whether to penalise the solution fitness is made.
When the new fitness value is known, the local best solution
may be replaced by the new one and the fitness kernel
terminates. Now, a new swarm leader must be established.
This is done by a reduction routine from the library Nvidia
Thrust library3 on the fit array (Fig. 1b).

As soon as the new leader of the swarm has been es-
tablished, the swarm can be updated by the update kernel.
The kernel is divided into p thread blocks, each of which
further divided into d threads. Thus, a single thread updates
one dimension on a given particle using eq. (3). Since the
maximum velocity has to be limited, clamping is used. Un-
fortunately, this introduces some thread divergence. Finally,
the sigmoid function in eq. (5) is calculated. Evaluation of
this function is expensive due to division and exponentiation
involved.

1http://www.deshawresearch.com/resources random123.html
2http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
3https://developer.nvidia.com/Thrust

2935

D. The PSO-C Solver Implementation
The PSO-C solver implementation is more straightforward

than the implementation of the PSO-G. The GPU kernels
are here replaced by simple C functions. These functions are
paralellized with the use of OpenMP4 directives to employ all
available CPU cores. When iterating over the swarm, every
thread processes the particles in quadruplets. This along
with loop unrolling enables easy automatic vectorisation
(SSE/AVX instruction generation) by the compiler.

V. EXPERIMENTAL RESULTS

This section examines the potential of the graphic process-
ing cards in accelerating the PSO algorithm when compared
to a modern multi-core system. The section investigates the
level of acceleration, its stability and scaling with the prob-
lem size and puts the values in the context of the performance
characteristics of the GPU architecture (compute power and
memory bandwidth). The performance measurements are
completed with examination of the solution quality produced
by both solvers.

Both sets of experiments were mostly executed on the Chu
and Beasley’s benchmark set [15]. Unfortunately, the Chu
and Beasley’s benchmark set does not provide known optima
and also does not cover the whole range of instances needed
for a proper performance and quality comparison. Therefore,
Weingartner and Ness [16] MKP instances were used for
tests which required known optima, and a set of randomly
generated MKPs was created and used for fine testing. The
benchmark set used for a given comparison is specified above
particular figures.

A. Benchmark System
The performance of the proposed implementations was

investigated using a single desktop equipped with a quad-
core intel i7-920 (2.66 GHz, 8MB L3 cache) CPU and an
NVIDIA GTX 580 GPU (512 cores, 1.5 GHz, 768 kB L2).
The theoretical peak performance of the CPU is 84 GFLOPS
in single precision while the memory bandwidth is about
25 GB/s. On the other hand, the GPU offers about 1.5
TFLOPS in single precision and a memory bandwidth of 192
GB/s. The attainable speed-up when exploiting the best of
both architectures could sit between 8 and 18, depending on
whether the application is likely to be memory or compute
bound.

B. The MKP Solver Parameters
The PSO algorithm is known to require only a small

number of control parameters. However, the proper choice
of them may improve the search capabilities and the con-
vergence speed by a great deal. Since this paper is mainly
focused on the raw performance comparison, the control
parameters were inspired by a proper literature [11]. More
specifically, the inertia coefficient w was set to 1, the cogni-
tive and social coefficients ϕ1 and ϕ2 to 2, and the maximum
reachable particle velocity to 10. The penalty coefficient P
was set to 5000.

4http://www.openmp.org

C. Performance Analysis

The first set of experiments examines the proposed MKP
solvers from the performance point of view. Fig. 2 compares
the PSO-G and PSO-C performance on a four knapsack
problem with a number of items growing from 64 up to
1024. In the figure, we can see that the speed-up offered by
the PSO-G strongly depends on both the number of particles
and the number of items (dimensionality of the search space).

Generally, the higher number of particles, the higher
speed-up is reached. This is given by the fact that GPUs need
much bigger amount of work to be fully utilised than CPUs
do. It is very likely that with higher numbers of particles than
256, the speed-ups would be even higher. However, as shown
in the literature [14], such high numbers of particles do not
improve the algorithm convergence, yet increase compute
expenses.

The speed-up curves are not smooth but contain several
drops in performance. These drops are a consequence of an
optimisation decision we made in order to make reduction
kernels inside the fitness calculation as fast as possible (work-
ing in a single pass). However, this imposes a restriction on
the number of dimension to be a power of two. Any time
the number of dimensions (items) crosses a power of two,
the particles must be padded to the nearest power of two.
This, of course, introduces unnecessary work to be done on
the GPU and deteriorates the performance benefit compared
to the CPU where no reduction kernels are necessary. We
limited the amount of useless work by running the update
kernels only over the meaningful dimensions.

The reached speed-up is summarised in Table I. The
average speed-up over all problem sizes for a fixed number
of particles varies from 1.9 to 5.2 for the number of particles
from 32 to 256, respectively. The peak speed-ups observed
for the problems of 512 dimensions are significantly higher

MKP: 4 knapsacks, 64–1024 items

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

1

2

3

4

5

6

7

8

9

10

Number of particle dimensions

Sp
ee

d-
up

32 particles
64 particles

128 particles
256 particles

Fig. 2: The variation in speed-up reached by the PSO-G over
the PSO-C with growing number of knapsack items (problem
dimension) and different numbers of particles.

2936

TABLE I: Average and peak speed-up of the PSO-G over the quad-core PSO-C solver along with the performance metrics
for the PSO-G.

MKP: 4 knapsacks, 64–1024 items

GPU Speed-up Absolute performance
Number of particles Average Peak Peak GFLOPS Global memory [GB/s]

32 1.9 3.5 10 41
64 2.7 5.0 29 40
128 3.7 7.0 40 50
256 5.2 9.6 45 51

and reach about twice as high values as the average speed-
ups. The highest speed-up of 9.6 was observed at 512
dimensions and 256 particles. Considering that both PSO
and fitness evaluation of a MKP instnace have linear time
complexities of O(n), the proposed PSO solvers are expected
to be memory bound. This thought is partially confirmed by
the measured global memory bandwidth of almost 50 GB/s
(25 %) of the raw memory bandwidth.

Consequently, the memory bandwidth limits the compute
power of the GPU that can be harnessed to a very low 45
GFLOPS (3 % of the theoretical compute power). Although
this may be seen as a very bad result, the literature [17]
shows that this is a usual value for such a kind of problems.

The same analysis for the CPU shows that the resources
are used with a bit higher efficacy. Assuming the CPU
performance reaches about 10% of the GPU version, we can
conclude the compute performance exploited is about 4.7
GFLOPS and about 5GB/s of available memory bandwidth.
This value is comparable with the performance of many HPC
algorithms.

MKP: 30 knapsacks, 500 dimensions

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

100

200

300

400

500

600

700

Number of particles

Pa
rt

ic
le

s
/

s

PSO-G
PSO-C

Fig. 3: The number of particles calculated per one second
using PSO-C and PSO-G. The performance for PSO-G grows
with increasing numbers of particles, however seems to be
constant for the CPU.

Finally, we investigated the number of particles that can be
calculated per second on a given platform, when the swarm
size is being progressively increased. The results shown in
Fig. 3 say that the CPU performance is almost independent
on the swarm size, however the GPU performance saturates
at 1000 particles and 500 dimensions. More interestingly, the
absolute numbers say that at the peak performance we are
able to evaluate over 600k particles or 3M dimensions per
second using this MKP instance.

D. Analysis of the Solution Quality

In order to verify that the quality of the search process
was not influenced by the implementation, several tests were
performed. During these tests, the number of particles, gener-
ations and different benchmarks were investigated. Generally,
the differences between the solutions produced by the PSO-C
and PSO-G were smaller than one percent. This differences
can be attributed to the stochastic character of the PSO. We
also investigated the deviation from the global known optima
and the best solution produced. Although, we have not tuned
the PSO parameters extensively, the solutions provided by
the MKP solvers are very close to the global optima. A
comparison made on the MKP instance with 2 knapsacks
and 28 dimensions is summarised in Table II.

VI. CONCLUSIONS

During the last few years, Graphical Processing Units
(GPUs) have been used to accelerate a wide range of
compute intensive algorithms. In this work, we focussed
on the Particle Swarm Optimisation and investigated the
potential performance benefit of employing a single GPU in
solving the Multidimensional Knapsack Problem (MKP) on
real world instances. The question we attempted to answer
is how fast we could be if we tailor the MKP solver to the
GPU needs, use a real world benchmark and do not harm
the produced solution quality.

To make our comparison as fair as possible, we first
developed a fine-tuned multi-threaded CPU version of the
code and compared it with the proposed GPU code. The
performance comparison were made on real test cases pro-
posed by Chu and Beasley [15] and by Weingartner and Ness
[16]. The experimental runs have shown that a single Nvidia
GTX 580 can outperform a quad-core Intel CPU running at
2.6 GHz by a factor of 2 to 5 on average. The peak speed-
up observed for large problems starts at 3.5 and closes at

2937

TABLE II: Dependency of the quality of the solution on the particles count.

MKP: 2 knapsacks, 28 dimensions

Particles count Deviation from the
known optimum

Deviation between
PSO-C and PSO-G

32 1.88% 3.8%
64 0.83% < 1%
128 0.40% < 1%
256 0.21% < 1%

almost 10. In other worlds, a single GPU could compete
with a hypothetical 40 core CPU.

Since relative performance comparisons may be mislead-
ing due to the strong dependence on the chosen base line
(the CPU code), we also investigated hardware performance
counters. These showed that only 3 % of the raw theoretical
performance was efficiently used while utilising almost 25 %
of available memory bandwidth. As most of GPU cards on
the market have very similar chip architectures and memory
subsystems, the performance of the proposed code can be
simply predicted. For example, having the best Kepler card
on the market offering 3.95 TFLOPS and 250 GB/s of
memory bandwidth, the code could reach a speed-up of 12
with respect to the quad-core CPU (the code is memory
bound). Putting the results into the context of other memory
bound application (search and sorting algorithms, fast Fourier
transform, etc.), the code is highly competitive [17].

In the future, we would like to improve the performance by
utilising more memory bandwidth, remove some code limits
(the highest number of dimensions to be greater than 1024)
and propose a multi-GPU implementation of the PSO MKP
solver. We would also like to focus on advanced PSO variants
for solving the MKP problem.

ACKNOWLEDGMENT

This work was supported by the IT4Innovations Centre
of Excellence project (CZ.1.05/1.1.00/02.0070), funded by
the European Regional Development Fund and the national
budget of the Czech Republic via the Research and De-
velopment for Innovations Operational Programme, as well
as Czech Ministry of Education, Youth and Sports via
the project Large Research, Development and Innovations
Infrastructures (LM2011033).

This work was also supported by the grant ”Architecture of
parallel and embedded computer systems”, FIT-S-14-2297,
Brno University of Technology, Czech Republic.

REFERENCES

1. J. Kennedy and R. Eberhart, “Particle Swarm Opti-
mization,” in IEEE International Conference on Neural
Networks, vol. 4, 1995, pp. 1942–1948.

2. T. Hendtlass, “WoSP: A Multi-optima Particle Swarm
Algorithm,” in The IEEE Congress on Evolutionary
Computation, vol. 1, 2005, pp. 727–734.

3. D. B. Kirk and W.-m. W. Hwu, Programming Massively
Parallel Processors: A Hands-on Approach. Morgan
Kaufmann,, 2010.

4. D. L. Souza, G. D. Monteiro, T. C. Martins, V. A.
Dmitriev, and O. N. Teixeira, “PSO-GPU: accelerating
particle swarm optimization in CUDA-based graphics
processing units,” in Genetic and Evolutionary
Computation Computation, ser. GECCO ’11. New
York, NY, USA: ACM, 2011, pp. 837–838. [Online].
Available: http://doi.acm.org/10.1145/2001858.2002114

5. Y. Tan and Y. Zhou, “Parallel Particle Swarm
Optimization Algorithm Based on Graphic Processing
Units,” in Handbook of Swarm Intelligence, vol. 8.
Springer Berlin Heidelberg, 2010, pp. 133–154.
[Online]. Available: http://dx.doi.org/10.1007/978-3-
642-17390-5 6

6. L. Mussi, F. Daolio, and S. Cagnoni, “Evaluation of
parallel particle swarm optimization algorithms within
the CUDA architecture,” Information Sciences, vol. 181,
no. 20, pp. 4642 – 4657, 2011.

7. J. Puchinger, G. R. Raidl, and U. Pferschy, “The
multidimensional knapsack problem: Structure and
algorithms,” INFORMS Journal on Computing, vol. 22,
no. 2, pp. 250–265, Apr. 2010. [Online]. Available:
http://dx.doi.org/10.1287/ijoc.1090.0344

8. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms. The MIT Press,
2009.

9. J. Puchinger, G. Raidl, and U. Pferschy,
“The core concept for the multidimensional
knapsack problem,” Evolutionary Computation in
Combinatorial Optimization, 2006. [Online]. Available:
http://link.springer.com/chapter/10.1007/11730095 17

10. J. Bansal, P. Singh, M. Saraswat, A. Verma, S. Jadon,
and A. Abraham, “Inertia Weight strategies in Particle
Swarm Optimization,” in World Congress on Nature and
Biologically Inspired Computing, 2011, pp. 633–640.

11. Z. Qingqing, H. Xingshi, and S. Na, “Convergence
Analysis and Parameter Select on PSO,” in
International Symposium on Information Science
and Engineering. Washington, DC, USA: IEEE
CS, 2009, pp. 144–147. [Online]. Available:
http://dx.doi.org/10.1109/ISISE.2009.27

12. J. Kennedy and R. Eberhart, “A discrete binary version
of the particle swarm algorithm,” in IEEE International
Conference on Systems, Man, and Cybernetics, vol. 5,

2938

1997, pp. 4104–4108 vol.5.
13. A. Olsen, “Penalty functions and the knapsack problem,”

in IEEE World Congress on Computational Intelligence
and Evolutionary Computation, 1994, pp. 554–558 vol.2.

14. D. Ardagna, C. Francalanci, V. Piuri, and F. Scotti, “Evo-
lutionary Design of Information Systems Architectures,”
in Artificial Intelligence and Soft Computing, ser. LNCS,
vol. 3070. Springer, 2004, pp. 1–8.

15. P. C. Chu and J. E. Beasley, “A genetic algorithm
for the multidimensional knapsack problem,” Journal of
Heuristics, vol. 4, no. 1, pp. 63–86, Jun. 1998. [Online].

Available: http://dx.doi.org/10.1023/A:1009642405419
16. H. M. Weingartner and D. N. Ness, “Methods for the so-

lution of the multi-dimensional 0/1 knapsack problem,”
Operations Research, vol. 15, pp. 83–103, 1967.

17. V. W. Lee, P. Hammarlund, R. Singhal, P. Dubey,
and C. Kim, “Debunking the 100X GPU vs.
CPU myth,” in International symposium on
Computer architecture. New York, New York,
USA: ACM Press, 2010, p. 451. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1816021

2939

