
Cartesian Genetic Programming as Local Optimizer

of Logic Networks

Lukas Sekanina, Ondrej Ptak and Zdenek Vasicek

Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Bozetechova 2, 61266 Brno, Czech Republic

Email: sekanina@fit.vutbr.cz, ondrej.ptak@gmail.com, vasicek@fit.vutbr.cz

Abstract—Logic synthesis and optimization methods work ei-
ther globally on the whole logic network or locally on preselected
subnetworks. Evolutionary design methods have already been
applied to evolve and optimize logic circuits at the global level. In
this paper, we propose a new method based on Cartesian genetic
programming (CGP) as a local area optimizer in combinational
logic networks. First, a subcircuit is extracted from a complex
circuit, then the subcircuit is optimized by CGP and finally the
optimized subcircuit replaces the original one. The procedure is
repeated until a termination criterion is satisfied. We present
a performance comparison of local and global evolutionary
optimization methods with a conventional approach based on
ABC and analyze these methods using differently pre-optimized
benchmark circuits. If a sufficient time is available, the pro-
posed locally optimizing CGP gives better results than other
locally operating methods reported in the literature; however, its
performance is significantly worse than the evolutionary global
optimization.

I. INTRODUCTION

By logic synthesis we understand a process transforming a
behavioral circuit description to a logic network, i.e. network
of gates. This logic network is then optimized in order to
obtain ‘better’ representation (under given criteria) of the
same logic behavior. There are two main classes of synthesis
and optimization methods. While global methods operate on
the whole network, local methods are focused on improving
preselected subnetworks. Local methods are typically capable
of a small reduction of the network size in a very short time.
However, by applying local algorithms many times, the scope
of changes is no longer local [1]. Global and local methods
are combined in commercial logic synthesis systems.

Despite the increasing quality of synthesis and optimization
algorithms, numerous works have shown that these algorithms
generate far from optimum solutions for some types of cir-
cuits [2], [3]. This is valid not only for open academia tools [4],
[5] which are typically used for research purposes, but also for
commercial software. One of the reasons is that all solutions
reachable by the conventional methods are constrained by
a very restrictive set of transformations which are allowed
for a given circuit representation. For example, an expression
y = ab ∨ ab (i.e. a 5 gate circuit) will never be transformed
to an obvious form y = a ⊕ b (i.e. a single gate circuit)
when the Sum-of-Products (SoP) representation is utilized,
because the exclusive-or (⊕) decomposition is not supported
in SoP. On the other hand, the fast processing, good scalability
and theoretical background are the main advantages of the
conventional methods.

In order to perform unconstrained and unbiased circuit
optimization and find more compact circuit implementations,
evolutionary logic synthesis and optimization methods were
introduced in recent years [6], [7], [8]. For the cost of runtime,
evolutionary algorithms were able to improve some results
of conventional synthesis methods. However, their scalability
and time overhead remain a big issue. As these evolutionary
optimization algorithms do not usually distinguish the logic
synthesis from the logic optimization, we will use these terms
interchangeably in this paper.

It is proposed in this paper to apply Cartesian genetic
programming (CGP), a very popular method of the evolution-
ary circuit design [9], as a local optimizer of combinational
logic networks. The method iteratively identifies subcircuits,
which are extracted from a complex circuit. The subcircuits are
then optimized by CGP and the optimized subcircuits replace
the original ones. The main advantage of locally working
CGP would consist in its applicability to very large circuits,
where the global evolutionary optimization might fail. As CGP
is intended to iteratively optimize small, randomly chosen
subcircuits, the scalability problems known from the CGP-
based circuit evolution will be eliminated. This work should
be understood as a complementary approach to the already
existing CGP-based global optimization methods developed for
combinational circuits [7], [10].

We are primarily interested in minimizing the cost (network
nodes count or area) which is an important task not only in the
digital circuit design flow, but also in other applications such as
query optimization. Another issue, which this paper is focused
on, is exploring to what extent the logic optimization process
is influenced by the level of pre-optimization of the original
network. Hence we will compare global and local CGP-
based optimization algorithms using differently pre-optimized
benchmark circuits.

In summary, the main contributions of this paper are as
follows: (1) We propose a new method for local evolutionary
optimization of logic networks. (2) We give a performance
comparison of local and global evolutionary optimization
methods with a conventional approach based on ABC. (3)
We analyze these methods using differently pre-optimized
benchmark circuits.

The rest of the paper is organized as follows. Section II
surveys relevant research. After introducing CGP in Sec-
tion III, the proposed methods are presented in Section IV.
Sections V, VI and VII contain the experimental setup, results
and discussion. Conclusions are given in Section VIII.

II. PREVIOUS WORK

A. Logic Synthesis and Optimization

Various circuit representations such as Sum-of-Products
and Binary Decision Diagrams (BDD) have been utilized in
logic synthesis and optimization algorithms. The current state-
of-the-art (academic) tool for logic synthesis and optimization
is ABC which represents digital circuits using And-Inverter
Graphs (AIG) [4]. An AIG is a network whose node is
either a primary input or a 2-input AND, and any edge can
contain a negation. An AIG is structurally hashed to ensure
uniqueness of the nodes. AIGs are more scalable and uniform
than previous representations and allow applying numerous
optimization and mapping algorithms upon them directly. The
logic synthesis and optimization process has a form of a script
which contains various commands (balance, rewrite, refactor
etc.) that are sequentially applied on the initial structure. In
order to improve the result of optimization, the whole script
can be applied iteratively. Another option is to iteratively
call a subset of commands. As the whole logic network is
being processed, we can speak about global (re)synthesis and
optimization.

B. Rewriting and Local Optimization

On the other hand, local methods operate on a subnetwork
of the whole logic network. By rewriting we mean rule-based
methods which replace certain subnetworks by their optimized
pre-computed versions. These subnetworks are called cuts. A
cut of a node n is a set C of nodes such that any path from a
primary input to n must pass through at least one node in C.
A cut C is K-feasible if |C| ≤ K. A cut C is called K-input
cut if |C| = K. Current implementations utilize 4-input or
5-input cuts [11], [1]. While it is possible to store all 216 pre-
computed solutions (canonical forms and transformations) for
4-input cuts, the space for storing 232 solutions is not available
on a common computer when 5-input cuts are considered.
Hence, for example, a Boolean matcher has to be employed
to calculate corresponding solutions.

The original paper, which introduced 4-input cuts into
ABC, reported 13% (7%, respectively) average area improve-
ment after mapping the network on the standard cells (FPGA
LUTs, respectively) with respect to unoptimized circuits [1].
Adding a new AIG rewriting algorithm which supported 5-
input cuts to the ABC synthesis tool led to 5.57% area reduc-
tion on average for already heavily optimized circuits [11].

The idea of local optimization has been generalized in [12],
[13]. Instead of 4- or 5-input cuts (i.e. single-output networks),
an arbitrary subcircuit is chosen and optimized using a standard
flow for global synthesis and optimization. The result of the
optimization then replaces the original subcircuit. The process
can be iterated for a series of randomly chosen subcircuits. The
authors of [12], [13] proposed two methods for the subcircuit
selection. The Random Extraction algorithm randomly adds
nodes to the initial randomly selected node, while keeping the
selected network connected. The algorithm is parameterized by
the number of gates of the subcircuit. The second algorithm
looks for the most connected subcircuit. It starts by selecting
a pivot node. Then the nodes reachable in a given distance
(radius) from the pivot are connected to the subcircuit. On
a representative collection of benchmark circuits the most

significant average improvement of 9% (w.r.t. circuits heavily
optimized by ABC) was obtained for window sizes of 90% of
the original circuit size. However, if the window size is 15%,
the average improvement is only 2.5%. The best results were
obtained for radii ranging from 5 to 7.

C. Evolutionary Circuit Design

Inspired by a seminal work of Higuchi and his collabora-
tors [14], Miller et al. showed that CGP can be used to evolve
new implementations of adders and multipliers from scratch
and optimize their area [15], [6]. The average improvement of
18% gates was obtained for small (up to 4-bit) multipliers over
conventional implementations. However, the method is not
scalable because it requires testing all possible assignments to
the inputs in each call of the fitness function and searching very
hard search spaces. Despite a considerable effort, as reported,
for example, in [16], [8], [17], no significant improvement in
the scalability has been obtained.

In order to optimize complex circuits, the fitness func-
tion was later redesigned to perform functional equivalence
checking by means of a SAT solver instead of testing all
possible input combinations [7]. This method led to a 25% area
improvement with respect to the circuits heavily optimized by
ABC [10]. As far as we know, no local evolutionary circuit
resynthesis/optimization method has been proposed so far.

III. CARTESIAN GENETIC PROGRAMMING

CGP is a form of genetic programming which has been
intensively studied for digital circuit synthesis and optimiza-
tion. It was shown that CGP can design and optimize various
digital circuits [9] and improve results of conventional circuit
synthesis and optimization tools [10]. In this work, we will
utilize the standard CGP for combinational circuit evolution.

A. Circuit Representation

A candidate circuit is modeled by means of a directed
acyclic graph using an array of processing nodes (gates)
arranged in nc columns and nr rows. A set of functions
implemented by processing nodes will be denoted Γ. The
circuit utilizes ni primary inputs and no primary outputs.

Primary inputs and processing node outputs are labeled
0, 1, . . . , ni−1 and ni, ni+1, . . . , ni+nc.nr−1, respectively.
Each node input can be connected either to the output of a
node placed in previous l columns or to one of the primary
circuit inputs. The l parameter is called the l-back parameter
and influences the level of connectivity in candidate circuits.

A candidate solution consisting of two-input nodes is
represented in the chromosome by nc · nr triplets (x1, x2, ψ)
determining for each processing node its function ψ, and
addresses of nodes x1 and x2 which its inputs are connected
to. The last part of the chromosome contains no integers
specifying the nodes where the primary outputs are connected
to. Figure 1 gives an example.

One important feature of CGP is that not all nodes (gates)
have to be included in the phenotype (see gate 6 in Fig. 1).
The CGP encoding is redundant which, according to some
studies [18], enables to improve the quality of search. Hence
it is useful to support more nodes in the genotype than it

Fig. 1. A candidate circuit represented by CGP with parameters: ni =

4, no = 3, nc = 5, nr = 1, l = 4, Γ = {0AND, 1OR, 2XOR, 3NOT }.
Chromosome: 1, 3, 0; 0, 2, 2; 1, 2, 1; 0, 1, 0; 7, 6, 3; 5, 8, 4.

Algorithm 1: CGP

Input: CGP parameters, fitness function
Output: The highest scored individual p and its fitness

P ← randomly generate parent p and its λ offspring;1

EvaluatePopulation(P);2

while 〈terminating condition not satisfied〉 do3

α← highest-scored-individual(P);4

if fitness(α) ≥ fitness(p) then5

p← α;6

P ← create λ offspring of p using mutation;7

EvaluatePopulation(P);8

return p, fitness(p);9

might be needed for solving a given problem. The redundancy
coefficient ρ quantifies this level of redundancy and ρ · nc

is then the actual node count (because nr = 1 and l = nc

is usually used in order to maximize inter-gate connection
options).

B. Fitness Function

CGP can start either with a randomly generated initial
population or be seeded by fully functional solution(s). In the
former case, the fitness function is a two-phase process. Firstly,
the circuit functionality is determined as f1 = b, where b is
the number of correct output bits obtained as the response
for all possible assignments to the inputs. After reaching a
fully functional solution (b = bmax = no2

ni) or when CGP is
seeded by fully functional designs, the second phase is initiated
in which the circuit size (or other objectives) can be optimized.

Because the evaluation time depends exponentially on
the number of primary inputs, the approach is not scalable.
A method capable of optimizing complex circuits will be
described in Section IV-B.

C. Search Algorithm

CGP employs a (1 + λ) evolution strategy whose pseudo-
code is given in Algorithm 1. This search method is based on
a point mutation operator which modifies h randomly selected
genes (integers) of the parent circuit. Crossover is not utilized
as explained in [9]. The termination criterion depends on a
particular application.

IV. LOCAL AND GLOBAL EVOLUTIONARY OPTIMIZATION

Local and global CGP-based optimization algoritms will
be proposed in this section. Let circuit G be the subject of
optimization. It is supposed that G has already been heavily
optimized by ABC.

Algorithm 2: Subcircuit extraction

Input: Circuit G, maximum (sgmax) and minimum
(sgmin) number of subcircuit gates, maximum
(simax) and minimum (simin) number of
subcircuit inputs

Output: Decomposition of G into a set of subcircuits S

S ← ∅;1

X ← {all single-gate subcircuits of G};2

while |X| > 0 do3

select s ∈ X randomly;4

E ← Expand(s, sgmax, sgmin, simax, simin);5

X ← X\ {all gates of E};6

S ← S ∪ E;7

return S;8

A. Local Optimization

The local optimization is performed over subcircuits of
G which are obtained using Algorithm 2. Once a subcircuit
is extracted, its truth table is computed and used in the
fitness function which evaluates the subcircuit response to
all possible input combinations. CGP attempts to minimize
the number of gates of the subcircuit. When a predefined
number of generations is exhausted, the highest-scored circuit
replaces the original subcircuit in G. This subcircuit selection
and optimization procedure is repeated when a given time or
iteration count is not exhausted.

Algorithm 2 firstly creates a set X of single-gate subcircuits
of G. A randomly chosen subcircuit s ∈ X is then expanded
by the Expand procedure in order to enlarge s as much as
possible. This procedure iteratively includes neighboring gates
of s from X into the subcircuit E. At the same time the Expand
procedure ensures that the number of gates of E will stay
between sgmin and sgmax and the number of inputs between
simin and simax. No constraints are put on the number of
outputs. Gates used in E are then removed from X and if X
is still a nonempty set another iteration is performed. Note that
each gate is assigned just to one subcircuit of G which allows
for a parallel optimization of subcircuits.

Example 1: The basic steps of the proposed local optimiza-
tion procedure are demonstrated on a circuit G (Fig. 2) whose
one of possible decompositions (for parameters sgmax = 8 and
simax = 4) is depicted in Fig. 3. There are three subcircuits
in G, marked blue, green and light grey. The dark grey I/O
blocks represent auxiliary separators of these subcircuits. Fig. 4
shows that the blue subcircuit and the green subcircuit were
later optimized by CGP. The single OR gate subcircuit (light
gray) remains unmodified. Putting the optimized subcircuits
and the single gate subcircuit together forms a new circuit G′

which is functionally equivalent with G. Figure 5 shows next
step of the optimization – a randomly chosen decomposition of
G′ into two subcircuits (light grey and blue). After optimizing
the blue subcircuit by CGP, the resulting circuit is shown in
Fig. 6.

B. Global Optimization

The global CGP optimization method is applied on the
whole circuit. Because it is impossible to evaluate complex

Fig. 2. Example 1-1: Initial circuit G

Fig. 3. Example 1-2: Decomposition of G according to Alg. 2.

Fig. 4. Example 1-3: Subcircuits of G optimized by CGP.

Fig. 5. Example 1-4: Optimized subcircuits are merged and another decom-
position is applied.

Fig. 6. Example 1-5: Resulting circuit.

candidate circuits by applying all possible input combina-
tions, a formal functional equivalence checking algorithm is
employed in order to determine whether a candidate circuit
(created by mutation of the parent circuit) is functionally
equivalent with the original circuit G. Functionally incorrect
candidate circuits are discarded. In the case that the candidate
circuit is fully functional then its fitness value is given by the
number of gates (or the area) and the goal is to minimize the
number of gates (or the area).

Since the satisfiability (SAT) solvers were significantly
improved during last few years, the SAT-based equivalence
checking was included into CGP and implemented in [7]. The
idea is to create an auxiliary circuit H which is composed of
the circuits to be checked (circuit G and candidate circuit) and
a set of XOR gates connected to the corresponding outputs of
the circuits to be checked. By means of the XOR gates it is pos-
sible to identify whether there is an input assignment (circuit
G and candidate circuit share the inputs of H) for which the
corresponding outputs provide different values. Circuit H is
transformed into one Boolean formula in conjunctive normal
form (CNF) and submitted to the SAT solver. The formula
is unsatisfiable if and only if the circuits are functionally
equivalent [19]. The transformation of H to CNF is conducted
gate by gate using the Tseitin’s algorithm [20].

In order to shorten the decision time, various methods can
be applied to reduce the number of clauses for the SAT solver.
Authors of [10] suggest to utilize knowledge of genes which
have been modified by the mutation operator to calculate a
‘difference’ between the parent individual and its offspring,
and to submit only the ‘difference’ to the SAT solver.

V. EXPERIMENTAL SETUP

A. Common settings

The basic setting of CGP parameters which is valid for
both local as well as global optimization is as follows: Γ =
{NOT, AND,OR,XOR,NAND,NOR,XNOR}, l = Ng ,
nc = ρ.Ng and nr = 1, where Ng is the number of gates
of G (global optimization) or a subcircuit (local optimization).
The role of other parameters will further be investigated in
Section VI-A.

In order to reflect different implementation costs of gates at
the transistor level, we will report the relative area which will
be computed using weighted costs of gates. Table I shows the
weights of gates with respect to the weight of a single NAND
gate (according to [21]).

TABLE I. RELATIVE IMPLEMENTATION COST W.R.T. THE NAND GATE

Gate Weight

NAND, NOR 1.00

AND, OR 1.33

XNOR 1.66

XOR 2.00

NOT 0.67

The MiniSAT 2 (version 070721) [22] was used as a SAT
solver in the CGP implementation which calls the functional
equivalence checking algorithm in the fitness function.

The experiments were carried out on a cluster consisting
of Intel Xeon X5670@2.4 GHz processors and AMD FX-
8120@2.8G processors.

B. Benchmark circuits

The proposed evolutionary optimization methods will be
applied on 15 circuits from the LGSynth93 benchmark set.
In order to show that the methods can improve results of a
conventional approach, the benchmark circuits (.pla files) were
pre-optimized. Firstly, 100 iterations of the following ABC
script (according to [12]) were performed on each circuit to
obtain the first benchmark set (BSA):
fraig store; resyn
fraig store; resyn2
fraig store; resyn2rs
fraig store; share
fraig store; fraig restore
map
The second benchmark set (BSB) contains the same circuits
as BSA, but the quality of optimization was intentionally set
lower just by removing the share command from the previous
script. By means of BSB we will investigate the impact of
using far from optimum circuits on the overall quality of the
local as well as global optimization. Table II shows the number
of primary inputs (PI) and outputs (PO) and the relative area
of the benchmark circuits. The average area increment of BSB
with respect to BSA is 40%.

VI. RESULTS

This section deals with experimental searching for the
most suitable parameters of the local CGP optimizer. The
proposed local as well as global optimization algorithms are
then evaluated using the most suitable setting on benchmark
sets BSA and BSB. If not explicitly stated, all results will be
given for BSA circuits in this sections.

For the sake of clarity we have to emphasize that by CGP
run we mean a single run of CGP on a particular subcircuit
and by LO run we mean a single run of the whole local
optimizer which can internally call multiple CGP runs for
different subcircuits.

A. Initial Tests of Local Optimization

Using several circuits and multiple LO runs, we statistically
analyzed the impact of parameters λ (the number of offspring),
h (the number of mutations) and the subcircuit size on the
overall performance. Setting ρ = 2.5 was fixed after several
experiments (not discussed in the paper). Because of the page

Fig. 7. Total area reduction obtained with various ‘lambda’ (λ) for apex2.

Fig. 8. Total area reduction obtained with a given number of mutations h for
apex2.

limit we will present just selected results, mainly for apex2
circuit.

Figure 7 shows that in the case of apex2, the most
significant total area reduction is achieved when λ = 1.
These results were obtained from 50 independent 30-min.
LO runs with parameters h = 1, ρ = 2.5, sgmin = 8,
sgmax = 20, simin = 1 and simax = 10. Only 1 CGP run
with gmax = 2 · 105 generations was allowed for a subcircuit.

In another experiment, two mutations per chromosome
(h = 2) were identified as the most advantageous setting of
CGP (Fig. 8) when λ = 1, gmax = 15 · 104 (5 CGP runs
allowed per a subcircuit), ρ = 2.5, sgmin = 8, sgmax = 20,
simin = 3 and simax = 9 are kept unmodified in the
experiments.

Then we analyzed the trade off between the number of CGP
runs and generation count when a given time is available for
the optimization of a single subcircuit. Three scenarios were
statistically evaluated for four circuits (sqrt8, apex2, misex2
and cps):

• 16R: 16 runs, 105 generations each

Fig. 9. Total area reduction obtained for four circuits using various settings
of the number of independent CGP runs and generation counts

• 16G: 1 run, 16 · 105 generations

• 4G4R: 4 runs, 4 · 105 generations each

Fig. 9 indicates that the scenarios give very similar per-
formance. These results were obtained from twenty 1-hour
independent LO runs working with parameters λ = 1, h = 2,
sgmin = 8, sgmax = 40, simin = 3 and simax = 10.

Logic networks optimized by the locally working CGP
have to be relatively small in order to ensure a reasonable
time of evolution. Hence we set the maximum subcircuit size
sgmax to be 50 gates and allowed simin = 1. Figure 10 shows
the impact of two key parameters of subcircuits, the minimum
number of gates sgmin and the maximum number of inputs
simax, on the total area reduction of apex2. On average the
most useful setting for apex2 is simax = 10 and sgmin = 15.
These values were computed from 25 independent 1-hour LO
runs, where λ = 1, h = 2 and gmax = 5.105 (1 CGP run
allowed for a subcircuit).

B. Local Optimization

The proposed locally optimizing CGP was tested on both
benchmark sets. We used the setup which was identified as
the most advantageous during the initial experiments: λ = 1,
h = 2, ρ = 2.5, 1 CGP run with gmax = 106 for a subcircuit,
sgmin = 10, sgmax = 50, simin = 1, and simax = 10. As
we prefer the quality of results over the time of optimization
and we are interested in limits of the optimization methods,
we allowed 12-hour LO runs, which is also a typical setup
used for the global optimization in [10], [21]. Each experiment
was repeated 5 times. Table II summarizes the average area
reduction obtained by the local CGP-based optimization for
both benchmark sets. A typical progress of additional 35
independent LO runs is given for apex2 in Fig. 11.

C. Global Optimization

The global resynthesis and optimization was implemented
according to [10], [21] and executed using suggested parame-
ters, i.e. λ = 2, l = nc = Ng.ρ, h = 2, ρ = 1 and nr = 1. The
average area reduction obtained from ten 12-hour CGP runs
is given and compared with the local optimizer in Table II.
Convergence curves are shown for apex2 circuit in Fig. 12.

Fig. 10. Total area reduction obtained with various settings of subcircuit
parameters (y-axis: simax sgmin) for apex2.

Fig. 11. Local optimization: apex2 convergence curves.

TABLE II. AVERAGE RELATIVE AREA REDUCTION FOR BENCHMARK

SETS (BSA AND BSB) AND GLOBAL AND LOCAL CGP OPTIMIZER

Area Area reduct. [%] Area Area reduct. [%]

Circuit PI PO BSA Global Local BSB Global Local

alu4 14 8 866.0 85.8 2.7 1113.7 89.4 2.7

apex1 45 45 1710.7 27.9 1.7 2125.3 22.3 2.4

apex2 39 3 208.0 28.4 10.4 273.3 47.5 13.4

apex3 54 50 1646.0 22.3 1.3 1795.7 21.1 0.9

apex5 117 88 763.3 3.5 8.3 889.3 6.4 5.6

b12 15 9 63.0 18.1 19.0 62.7 8.1 16.4

cordic 23 2 55.0 12.2 21.7 59.7 20.2 23.5

duke2 22 29 333.0 12.8 7.0 531.0 27.0 13.5

e64 65 65 374.7 22.2 25.4 532.7 37.1 20.9

misex3c 14 14 522.3 24.3 3.1 607.3 29.4 2.7

pdc 16 40 548.3 46.3 6.6 762.3 52.3 7.1

spla 16 46 554.0 47.6 5.6 868.0 60.2 6.8

t481 16 1 25.0 2.4 5.3 64.3 62.4 63.2

table5 17 15 1017.3 22.4 4.4 1505.7 35.9 2.9

vg2 25 8 96.7 16.9 20.2 165.0 38.4 49.5

Average 585.6 26.2% 9.5% 757.1 37.2% 15.4%

Fig. 12. Global optimization: apex2 convergence curves.

Contrasted to the local optimizer, a very fast and significant
progress can be seen in the first two minutes.

VII. DISCUSSION

The proposed local CGP-based optimizer led to a 9.5%
area reduction on average in comparison with the conventional
(global) optimization employing 100 iterations of ABC. The
minimum and maximum reduction was 1.3% (apex3) and
25.4% (e64). Only a small reduction of 2.7% was obtained for
the alu4 benchmark while the global CGP-based optimization
algorithm achieved 85.8%. It seems that the local method is
insufficient for optimizing classic hard-to-synthesize circuits
such as alu4. Fig 11 shows that even 12 hour runs are not
enough to ensure stable results.

The authors of [13] reported a 9% average reduction for
subcircuit size of 90% of the original circuit size (and stable
results ensured by 5000 iterations of their algorithm). In our
case, the maximum subcircuit size was 50 gates (28% of the
original circuit size on average). However, for this subcircuit
size, the authors of [13] obtained only a 6% area reduction on
average. This comparison could be influenced by the fact that
the authors of [13] utilized a more comprehensive benchmark
set and optimized the number of gates instead of relative area.

Both the proposed method and paper [13] give better results
(the area reduction) than a common rewriting [11], [1].

Within the same time budget, we obtained significantly
better results (26.2% average area reduction) using globally
optimizing CGP which corresponds with results of previous
studies [10], [21]. It is interesting to observe that subcircuit
sizes 90–100% (which is, in fact, a global optimization!) led
to almost a zero area reduction in the local optimizer from [13].
However, in 6 cases, the local CGP optimizer provided better
average results than the global one.

The level of (pre)optimization of a circuit entering the pro-
posed optimization methods significantly influences the quality
of result. In order to illustratively present and summarize all
results, we compared relations between the areas of original
circuits (BSA, BSB) and circuits optimized by the proposed
methods. Figure 13 shows the average area increment of
circuits taken from the benchmark sets or resulting from the
optimization process in comparison with the most compact
implementations (which could be considered as an ‘optimum’
solution in this paper) that we have obtained from all the
reported experiments. While circuits optimized by the globally
working CGP seeded by BSA are 7% larger on average than
the ‘optimal’ solutions, a 121% increment was obtained for
locally optimizing CGP over BSB circuits. On the other hand,
the locally optimizing CGP was still able to improve results
of the globally working conventional ABC system.

Figure 13 also shows that a 14% improvement in area
can be obtained when the global CGP optimizer is seeded
by smaller benchmarks (BSA). In other words, the results
differ only in 14% for considered seeding circuits and both
results are relatively close to the ‘optimal solution’. The local
optimization is far more sensitive to the quality of the initial
circuits. A 49% improvement in area can be observed for
seeding the local CGP optimizer by BSA contrasted to BSB.
Only a 15% improvement in area was obtained when the local
CGP is applied on well pre-optimized circuits, which suggests
that the local method is more useful when the original circuits
are not pre-optimized.

Although the globally working CGP with the SAT solver
in the fitness function provided the best results, it would
be hardly applicable for really complex problem instances
consisting of millions of gates because of the scalability limits
of current SAT solvers. We expect that the proposed local
method could be useful even for these complex instances
because the optimization is always performed on very small
subcircuits.

VIII. CONCLUSIONS

In this paper, we analyzed the impact of local and global
evolutionary optimization on the area of combinational circuits
under very relaxed optimization time constraints and without
considering other circuit parameters. We also experimentally
found the most useful setting of the parameters of the local
CGP-based optimizer. The proposed locally optimizing CGP
gives better results than relevant approaches from the litera-
ture. Globally optimizing CGP outperformed (on average) any
local optimizer under our constraints; however, the local CGP
optimizer was able to provide better results (on average) for 6
benchmark circuits.

Fig. 13. Relative average area increment in comparison with the most compact
implementation

Our future work will primarily be devoted to reducing
the computational requirements of the proposed methods,
considering more design objectives and evaluating the results
on more comprehensive sets of circuits.

ACKNOWLEDGMENT

This work was supported by the Czech science foundation
project 14-04197S – Advanced Methods for Evolutionary
Design of Complex Digital Circuits.

REFERENCES

[1] A. Mishchenko, S. Chatterjee, and R. Brayton, “Dag-aware AIG rewrit-
ing a fresh look at combinational logic synthesis,” in Proceedings of

the 43rd annual Design Automation Conference, ser. DAC ’06. ACM,
2006, pp. 532–535.

[2] P. Fiser and J. Schmidt, “Small but nasty logic synthesis examples,” in
Proc. 8th Int. Workshop on Boolean Problems, 2008, pp. 183–190.

[3] J. Cong and K. Minkovich, “Optimality Study of Logic Synthesis for
LUT-Based FPGAs,” IEEE Transactions on Computer-aided Design of

Integrated Circuits and Systems, vol. 26, no. 2, pp. 230–239, 2007.

[4] A. Mishchenko, “ABC: A system for sequential synthesis and
verification, Berkley logic synthesis and verification group,” 2012.
[Online]. Available: http://www.eecs.berkeley.edu/˜ alanmi/abc/

[5] E. M. Sentovich, “Sis: A system for sequential circuit synthesis,
University of California, Berkeley,” 1992.

[6] V. Vassilev, D. Job, and J. F. Miller, “Towards the Automatic Design
of More Efficient Digital Circuits,” in Proc. of the 2nd NASA/DoD

Workshop on Evolvable Hardware. IEEE, 2000, pp. 151–160.

[7] Z. Vasicek and L. Sekanina, “Formal verification of candidate solutions
for post-synthesis evolutionary optimization in evolvable hardware,”
Genetic Programming and Evolvable Machines, vol. 12, no. 3, pp. 305–
327, 2011.

[8] A. P. Shanthi and R. Parthasarathi, “Practical and scalable evolution of
digital circuits,” Applied Soft Computing, vol. 9, no. 2, pp. 618–624,
2009.

[9] J. F. Miller, Cartesian Genetic Programming. Springer-Verlag, 2011.

[10] Z. Vasicek and L. Sekanina, “A global postsynthesis optimization
method for combinational circuits,” in Proc. of the Design, Automation

and Test in Europe, DATE. EDAA, 2011, pp. 1525–1528.

[11] N. Li and E. Dubrova, “AIG rewriting using 5-input cuts,” in Pro-

ceedings of the 2011 IEEE 29th International Conference on Computer

Design, ser. ICCD ’11. IEEE Computer Society, 2011, pp. 429–430.

[12] P. Fiser and J. Schmidt, “It is better to run iterative resynthesis on parts
of the circuit,” in Proc. of the 19th International Workshop on Logic

and Synthesis. University of California Irvine, 2010, pp. 17–24.

[13] ——, “Improving the iterative power of resynthesis,” in Proc. of the

15th IEEE Int. Symp. on Design and Diagnostics of Electronic Circuits

Systems (DDECS). IEEE, 2012, pp. 30–33.

[14] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and T. Furuya,
“Evolving Hardware with Genetic Learning: A First Step Towards
Building a Darwin Machine,” in Proc. of the 2nd International Confer-

ence on Simulated Adaptive Behaviour. MIT Press, 1993, pp. 417–424.

[15] J. F. Miller, D. Job, and V. K. Vassilev, “Principles in the Evolutionary
Design of Digital Circuits – Part I,” Genetic Programming and Evolv-

able Machines, vol. 1, no. 1, pp. 8–35, 2000.

[16] E. Stomeo, T. Kalganova, and C. Lambert, “Generalized disjunction
decomposition for evolvable hardware,” IEEE Transaction Systems,

Man and Cybernetics, Part B, vol. 36, no. 5, pp. 1024–1043, 2006.

[17] T. Aoki, N. Homma, and T. Higuchi, “Evolutionary Synthesis of
Arithmetic Circuit Structures,” Artificial Intelligence Review, vol. 20,
no. 3–4, pp. 199–232, 2003.

[18] J. F. Miller and S. L. Smith, “Redundancy and Computational Efficiency
in Cartesian Genetic Programming,” IEEE Transactions on Evolutionary

Computation, vol. 10, no. 2, pp. 167–174, 2006.

[19] E. Goldberg, M. Prasad, and R. Brayton, “Using SAT for combinational
equivalence checking,” in DATE ’01: Proceedings of the conference on

Design, automation and test in Europe. Piscataway, NJ, USA: IEEE
Press, 2001, pp. 114–121.

[20] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” in Studies in Constructive Mathematics and Mathematical Logic,

Part II, 1968, pp. 115–125.

[21] Z. Vasicek and L. Sekanina, “On area minimization of complex com-
binational circuits using cartesian genetic programming,” in 2012 IEEE

World Congress on Computational Intelligence, WCCI-CEC. IEEE,
2012, pp. 2379–2386.

[22] N. Een and N. Sorensson, “An extensible SAT-solver,” in Theory and

Applications of Satisfiability Testing, 2004, pp. 333–336. [Online].
Available: http://minisat.se

