MEDIAN 2014
March 28th, 2014 - Dresden, Germany

A Complex Control System for Testing Fault-Tolerance

Methodologies

Jakub Podivinsky - Marcela Simkova -

Abstract The aim of this paper is to present a new
platform for estimating the fault-tolerance quality of
electro-mechanical (EM) applications based on FPGAs.
We demonstrate one working example of such EM ap-
plication: the mechanical robot and its electronic con-
troller in an FPGA. Different building blocks of the
electronic robot controller design allow to model differ-
ent effects of faults on the whole mission of the robot
(searching a path in a maze). The mechanical robot is
simulated in the Player/Stage simulation environment,
where the effects of faults injected into its controller
can be seen. In this way, it is possible to differentiate
between the fault that causes the failure of the system
and the fault that only decreases its performance.

Keywords FPGA - robot controller - fault-tolerance -
electro-mechanical application

1 Introduction

Field Programmable Gate Arrays (FPGASs) present many
advantages from the industrial point of view because
they can compute many problems hundreds times faster
than modern processors while their reconfigurability al-
lows almost the same flexibility as processors.

The problem is that FPGAs are quite sensitive to
faults caused by charged particles [1]. These particles
can induce an inversion of a bit in the configuration
memory of an FPGA and this may lead to a change in
its behavior. This event is called the Single Event Upset
(SEU). Sensitivity to these faults is one of the reasons
why so many fault-tolerance methodologies inclined to
FPGAs have been developed and new ones are under
investigation [2],[6].

FIT, Brno University of Technology, Czech Republic
Tel.: +420 54114-1361, Fax: +420 54114-1270
E-mail: {ipodivinsky,isimkova,kotasek }@fit.vutbr.cz

Zdenek Kotasek

Nevertheless, we have identified two areas in the re-
search of fault-tolerant FPGA-based systems that should
be improved or at least explored in more detail.

The first one is that methodologies are validated
and demonstrated only on simple electronic circuits im-
plemented in FPGAs. For instance, methodologies that
focus on simple memories in [5] are validated without
the additional logic around. In [4], the fault-tolerance
technique is presented only on a two-input multiplexer,
one simple adder and one counter. Other methodology
dedicated to harden finite state machines [3] is applied
only on a simple finite state machine.

Of course, for the demonstration purpose such cir-
cuits are satisfactory. However, in real FPGA systems,
different types of blocks must be protected against faults
simultaneously and must communicate with each other.
Therefore, a new evaluation platform for testing, analy-
sis and comparison of more complex systems is needed,
where alone-working or cooperating fault-tolerance me-
thodologies can be tested.

As for the second area of the research and the main
contribution of our work, we feel that it must be possi-
ble to check the reactions of the mechanical part of the
system if the functionality of its electronic controller is
corrupted by faults. It can be either done in simulation
or in a physical realisation.

The paper is organised as follows. The interconnec-
tion scheme of our platform can be found in Section 2.
The architecture of the robot controller is described
in Section 3. Section 4 presents ideas about the future
work and Section 5 concludes the paper.

2 The Evaluation Platform
On the basis of the identified problems we have de-

veloped a new evaluation platform for checking the re-
silience of complex electro-mechanical applications aga-

24

inst faults. Under the term electro-mechanical applica-
tion we understand a mechanical device and its elec-
tronic controller implemented in an FPGA. In our work-
ing example, they are represented by a robot device and
its controller.

The evaluation platform is composed of three basic
components:

— the Virtexb5 FPGA board, where the robot controller
is implemented,

— the simulation environment Player/Stage for check-
ing responses of the mechanical device to instruc-
tions from the robot controller (Figure 1),

— the external fault injector (PC) which inserts faults
into the robot controller [7].

Fig. 1 The robot in a maze.

Figure 2 shows the overall connection of the PC and
the FPGA board in our platform. Note that there are
two FITkits [8]in both directions, from the PC to the
FPGA and vice versa. FITkits represent a communica-
tion layer and serve as a debugging point for communi-
cation between the PC and the FPGA board. The SEU
injector runs on the PC and is connected through the
JTAG interface directly to the main FPGA board where
the robot controller is situated. Via the connection be-
tween the SEU injector and the simulation environment
(as shown in Figure 2), we are able to control the SEU
injection process into the robot controller for every mis-
sion and to see effects of faults directly in simulation.

3 Design of the Robot Controller

The proposed electronic controller was constructed as
an exemplary FPGA system that includes various as-
pects of the digital system design (contains sequential
and combinational circuits, a bus, different types of
memories, etc.). We wish to point out, that the con-
troller will be used for the demonstration and testing
of various methodologies aimed at these specific com-
ponents and on the whole, for designing fault-tolerant
systems based on the FPGA technology.

PC

simulation

FITkit

FPGA board

robot
controller

Fig. 2 The interconnection scheme.

The Structure of the Controller

Figure 3 shows the block diagram of the robot con-
troller. The control unit is connected to the remote sim-
ulation environment PC (SEPC) via the SEPC Inter-
face Block. Through this block, data from SEPC are re-
ceived (information about barriers, distances from con-
trol points, target positions) and in the other direction,
instructions about the movement of the robot are sent
(direction and speed).

Position Evaluation Unit (PEU) acquires the dis-
tance from the control points, which are located in the
fixed positions in the maze. From these, the position
of the robot in the maze is calculated and provided
to other units as coordinates x and y. The situation is
shown in Figure 4, where you can see the position of
the robot (APP_X, APP_Y) which is calculated from
the distances from the three control points A, B and C
(DIST-A, DIST_B, DIST_C).

The position of the robot can be calculated using
the Pythagorean Theorem. One can deduce that this
block utilises the sequential arithmetic operations such
as addition, multiplication, and division. It is an exam-
ple of the sequential circuit formed by combinational
logic and registers, both of which are very interesting
from the fault-tolerance point of view.

Barrier Detection Unit (BDU) uses four sensors,
each located on one side of the robot (cubical robot)
and provides information about the distance to the sur-
rounding barriers. The output is a four-bit vector that
represents the four-neighbourhood of the robot and in-
forms about barriers in this area (0 = no barrier, 1 =
a barrier). The purpose of this unit consists of com-
paring the barrier distance with the reference value to
determine whether the barrier is located at the neigh-

25

Map Memory
Unit
(MMU)
Engine Control Path Flhdmg Map Unit
Module Unit
| (MU)
| (ECM) (PFU)
MASTER
w
>
Simulation SEPC ;,
Environment Interface = Wishbone BUS
(SEPC) Block E
<
=
SLAVE SLAVE
Position Barrier
Evaluation Unit Detection Unit
(PEU) (BDU)

Fig. 3 The block diagram of the robot controller.

AA

DIST_A

APP_Y

DIST B DIST_C

»
>

B APF.LX C
Fig. 4 The position of the robot in the maze.

bour coordinate or outside the four-neighbourhood. It
represents a pure combinational circuit.

Map updating provided by the Map Unit (MU) is
based on the information about the position of the
robot obtained from the PEU and the information about
the occurrence of barriers in a four-neighbourhood pro-
vided by BDU.

This unit transforms the inputs (position, barriers)
into the relevant addresses of five memory locations
(four neighbourhood and robot position) and sets their
values according to the presence of barriers.

Map Memory Unit (MMU) stores information about
the up-to-date map. Each coordinate in the map is
represented by a four-bit vector. The first bit informs
about the presence of barriers on this position (see Fig-
ure 5), the second bit holds information about the up-
to-datedness of the stored data and other two bits are
reserved for the future extension. MMU is realised by
the block memory (BRAM) available in the FPGA.

Memories (without any fault tolerance mechanism)
are in general quite susceptible to faults and the mem-
ory used in the robot controller allows us to test specific
fault-tolerance methodologies related to memories, e. g.
error correction/detection codes, parity or redundancy.
From the perspective of fault-tolerance, also the connec-
tion between the memory and other system components
requires increased attention.

===~

0
1

[e e e e e
—lo|lo|lo|o|lo|o|~
—l=|=|o|~|loc|o|~
—|o|~|lo|lolo|lo|~
—lo|=|rlr~|=|o|~
—lo|lo|lo|lo|lo|o|~
e e N I TS T) S

Fig. 5 An example of a map and its bit representation.

The most important block that manages the activity
of other blocks in the robot controller is Path Finding
Unit (PFU). PFU implements the simple iteration al-
gorithm for finding a path through the maze according
to the information about the current and the desired
target position. PFU has a direct access to the mem-
ory where the information about barriers is stored. The
output of this block is a list of positions that the robot
has to route along in the next step. With the movement
of the robot the map is updated by MU.

PFU is a complex block that implements a sequen-
tial algorithm. During the evaluation of the path search-
ing algorithm, an extensive communication through the
bus and with the memory is performed. This involves
some specific steps in ensuring fault-tolerance. Alter-

26

natively, it could be interesting to implement the path
searching algorithm in the processor embedded into the
FPGA, such as PicoBlaze or MicroBlaze, which are
provided by Xilinx. This step would require additional
mechanisms, which target other specific types of faults.

The mechanical robot is driven by the setting of
the speed in the required direction of the movement by
the Engine Control Module (ECM). The distance the
robot should travel determines the time during which
the robot is in motion. The list of the fields in the maze
that the robot needs to route along is the input of ECU.
According to this list, the speed and the direction of the
movement of the robot are continuously adjusted. Fault
resilience of this block is very important as it directly
controls the robot and an accidental fault may cause an
incorrect management or even a collision.

The central block of the robot controller is a bus
through which the communication to other blocks is
accomplished. Using the bus can facilitate the future
extension of the robot controller by additional units,
e.g. an advanced path searching algorithm. Figure 3
shows how each block is related to the bus, if it is mas-
ter, slave, or master and slave at the same time. From
the fault-tolerance perspective, the bus is a very critical
block as it is located in the centre of the whole system
and its failure will undermine the correctness of every
traffic flow going through it. The use of the bus in the
robot controller is convenient not only from the per-
spective of future extensibility but also the possibility
of a suitable methodology for testing bus resistance.

4 The Future Work

In our future experimental work we plan to focus on
testing, analysis and comparison of different fault tol-
erance methodologies applied to the electronic part of
the system (the robot controller). Simultaneously, we
will monitor the behaviour of its mechanical counter-
part (the robot device) in the simulation environment
after the faults are injected into the controller.

In the first experiment we will inject faults into
every bit of the bitstream (configuration data for the
FPGA) which corresponds to the robot controller. No
fault-tolerance mechanisms will be applied to the con-
troller at this stage. After the bit-flip of one bit of the
bitstream, the FPGA will be reconfigured. The aim of
this experiment is to check if such bit-flip has or has
not the impact to the functionality of the robot con-
troller and if the robot is still able to fulfil its mission.
According to this experiment we will be able to identify
the most critical parts of the robot controller.

In the following experiments we will incrementally
harden the critical parts of the controller against faults.
We plan to apply different methodologies to specific

logic blocks and to repeat the procedure described in
the first experiment. Thanks to the simulation we will
see if the fault-tolerance mechanisms increase the reli-
ability of the robot or not. Other possible use case is
the selection of proper mechanisms with respect to con-
sumed resources, performance, or power consumption.

5 Conclusions

This paper introduced a new evaluation platform for
analysis and comparison of different fault-tolerance me-
thodologies targeted to electro-mechanical FPGA sys-
tems. The platform consists of three main components:
the FPGA board with the electronic benchmark circuit
(the robot controller) and the PC with the simulated
mechanical counterpart (the robot) and the SEU injec-
tor. The main contribution of this work is in designing
the robot controller in the way it allows to apply differ-
ent kinds of fault-tolerance methodologies targeted to
specific design components. Thanks to the simulation
environment we can receive a visual feedback about the
movements of the robot in the maze and therefore, to
directly see the effects of faults on the behaviour of the
robot and its outputs.

Acknowledgements This work was supported by the fol-
lowing projects: National COST LD12036, research project
No.MSM 0021630528, project [T4Innovations Centre of Ex-
cellence (ED1.1.00/02.0070), COST Action project MEDIAN,
and internal grant "FIT-S-11-17.

References

1. Ceschia, M., Violante, M., Reorda, M., Paccagnella, A.,
Bernardi, P., Rebaudengo, M., Bortolato, D., Bellato, M.,
Zambolin, P.; Candelori, A.: Identification and classifica-
tion of single-event upsets in the configuration memory
of SRAM-based FPGAs. Nuclear Science, IEEE Transac-
tions on 50(6), 2088-2094 (2003)

2. Cheatham, J.A., Emmert, J.M., Baumgart, S.: A Survey
of Fault Tolerant Methodologies for FPGAs. pp. 501-533.
ACM, New York, NY, USA (2006)

3. Frigerio, L., Salice, F.: RAM-based fault tolerant state ma-
chines for FPGAs. In: DFT °07., pp. 312-320 (2007)

4. Naseer, M., Sharma, P., Kshirsagar, R.: Fault tolerance in
FPGA architecture using hardware controller - a design
approach. In: ARTCom ’09., pp. 906-908 (2009)

5. Rollins, N.; Fuller, M., Wirthlin, M.: A comparison of
fault-tolerant memories in SRAM-based FPGAs. In:
Aerospace Conference, 2010 IEEE, pp. 1-12 (2010)

6. Sterpone, L., Aguirre, M., Tombs, J., Guzman-Miranda,
H.: On the Design of Tunable Fault Tolerant Circuits on
SRAM-based FPGAs for Safety Critical Applications. In:
DATE ’08, pp. 336-341. ACM, New York, NY, USA (2008)

7. Straka, M., Kastil, J., Kotasek, Z.: SEU simulation frame-
work for xilinx FPGA: First step towards testing fault tol-
erant systems. In: 14th EUROMICRO DSD, pp. 223-230.
IEEE Computer Society (2011)

8. Vasicek, Z.: FITkit (2013). URL www.fit.vutbr.cz/FITkit

27

