
Session 5B (Student Session) Digital

175978-1-4799-4558-0/14/$31.00 ©2014 IEEE

Low Latency Book Handling in FPGA for High
Frequency Trading

Milan Dvořák, Jan Kořenek
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno, 612 66, Czech Republic
idvorakmilan@fit.vutbr.cz, korenek@fit.vutbr.cz

Abstract—Recent growth in algorithmic trading has caused
a demand for lowering the latency of systems for electronic
trading. FPGA cards are widely used to reduce latency and
accelerate market data processing. To create a low latency trading
system, it is crucial to effectively build a representation of
the market state (book) in hardware. Thus, we have designed
a new hardware architecture, which updates the book with the
best bid/offer prices based on the incoming messages from the
exchange. For each message a corresponding financial instrument
needs to be looked up and its record needs to be updated.
Proposed architecture is utilizing cuckoo hashing for the book
handling, which enables low latency symbol lookup and high
memory utilization. In this paper we discuss a trade-off between
lookup latency and memory utilization. With average latency
of 253 ns the proposed architecture is able to handle 119 275
instruments while using only 144 Mbit QDR SRAM.

I. INTRODUCTION

Financial exchanges today prefer electronic trading, which
currently accounts for more that 90 % of all trades. This de-
velopment gave rise to algorithmic trading and high frequency
trading (HFT). Traders no longer focus on specific trades,
but rather on tweaking parameters of algorithm, which is
responsible for the trading itself.

Important aspect of the HFT systems is the latency of
reaction on the change in the market, because the exchange
executes only the first incoming order. Moreover, the trading
algorithms require the most recent market data. Thus, it is
important to achieve very low latency of the system reaction
for every message received from the exchange.

Pure software solutions became obsolete in this area be-
cause of high and nondeterministic latency, which is in the
order of tens of microseconds [1]. First efforts were focused
on latency of data transfers from network interface to the
processor using designated acceleration cards. The transfers
were bypassing the kernel to directly access the memory space
of user application.

Further reduction of the latency was achieved by acceler-
ating the decoding of messages coming from the exchange.
To speed up this time critical operation, a high-performance
FPGA card is typically used (e.g. Celoxica AMDC [2]). The
ASIC technology is not suitable in this area, as the format of
incoming messages is often changing. Majority of published
approaches to decoding are limited to a design of application
specific processor implemented in the FPGA [3] [4]. Overview

of different existing approaches and a proposal of complete
application for trading in FPGA is presented by Lockwood
[1]. For the algorithmic trading, however, it is important not
only to decode the messages, but also to create a representation
of the state of the market (book).

Therefore we present a hardware architecture, which en-
ables book handling with latency only 253 ns while processing
a large number of financial instruments. The proposed architec-
ture is utilizing cuckoo hashing to address a trade-off between
memory utilization and lookup latency. The architecture was
synthesized for Virtex-5 technology running at 150 MHz. With
two modules of QDR SRAM with total capacity of 144 Mbit,
it is possible to store the book for 119 275 instruments, which
is sufficient for majority of trading systems.

II. PROBLEM STATEMENT

Financial exchanges provide information about the state
of the market in multicast data streams, which are often
called market data feeds. The feeds consist of messages, each
message is describing a single financial instrument. There
are several types of messages providing information about
a specific event on the market, for example price changes,
executed trades, status information etc.

The number of instruments in a feed depends on the type
of traded assets. The stock exchange, for example, contains
few thousands of instruments. The number of instruments in
options market can reach up to hundreds of thousands. The
whole options universe is usually divided into several feeds
and size of each feed does not exceed 100 000 instruments.

Market data feeds can be used to create the book. The book
can be described as a large table, which contains information
about orders on each instrument, especially the prices and the
quantities at which each instrument can be traded. The book
always has two sides, the bid (buy) side and the offer (sell)
side.

The complete order book contains all orders that were put
on each instrument. More orders can have the same price
from different traders. Processing these orders (for example,
determining the best bid and ask price) is a complex and
resource consuming task. Therefore, the complete order book
is usually used only for stock.

Information about options is provided in a simpler way.
Exchange groups orders with the same price, thereby creating

Session 5B (Student Session) Digital

176

an aggregated book. The aggregated book consists of several
price levels, each of which contains the number of aggregated
orders and the total number of shares. The number of price
levels can be, in theory, unlimited. Thus, exchanges usually
provide only several of the best price levels. A book, which is
limited to a fixed number of price levels, is called the Depth
of Book. The number of price levels in the Depth of Book
is usually five, but it can vary slightly between exchanges. If
only the best price level is provided, we get the Top of Book.

Different types of books are illustrated in Figure 1. The
aggregated book with n instruments is represented by the
dotted box. Note that each instrument (dashed line) can have
a different number of price levels. The Depth of Book is
highlighted in light gray color, the Top of Book in dark gray
color.

Offer side

Price level 6

Price level 5

Price level o

Price level 4

Price level 3

Price level 2

Price level 1

.
.

.

1

Bid side

Price level 1

Price level 2

Price level 3

Price level 4

Price level 5

Price level 6

Price level b

. . .

1

Instrument 1

Bid side

Price level 1

Price level 2

Price level 3

Price level 4

Price level 5

Price level 6

Price level bn

. . .

Offer side

Price level 6

Price level 5

Price level 4

Price level 3

Price level 2

Price level 1

Price level on

.
.

.

Instrument n

Top of Book Depth of Book Aggregated Book

Offer side

Price level o

Price level 6

Price level 5

Price level 4

Price level 3

Price level 2

Price level 1

.
.

.

2

Bid side

Price level 1

Price level 2

Price level 3

Price level 4

Price level 5

Price level 6

Price level b
. . .

2

Instrument 2 . . .

Instrument ID 1 Instrument ID 2 Instrument ID n

Fig. 1. Aggregated book

If any change occurs in the top five price levels, the
exchange generates an update message to inform the user.
Typical update messages are insert new price level, delete
a price level or change existing price level. For example,
processing of message “insert new price level 4 on the bid
side” requires to create new price level 4, move previous price
level 4 to price level 5 and delete previous price level 5.

In this paper, we focus on the book handling and its
implementation in FPGA. The main task is to process the
incoming decoded messages and create the book. Specifically,
we focus on the Depth of Book for options. Thus, we need
to process a large number of instruments – up to 100 000
instruments per feed. These instruments are identified by
unique ID, which is usually 32 bits or 64 bits large.

The Depth of Book record for each instrument is memory
consuming; it contains prices and quantities for 10 price
levels (5 for both sides) and some additional information, like

sequence numbers, timestamps, flags etc. Storing such record
requires approximately 1100 bits. That is about 105 Mbit for
100 00 instruments. The problem we need to address is how
to store this data while keeping the lookup operation as fast
as possible. Insert and delete operations are not required as
all instrument IDs are broadcast at the beginning of the day
and do not change during the processing. To achieve low
and deterministic latency, the lookup has to be done quickly,
preferable in constant time.

III. ANALYSIS

Hash functions enable fast lookups in large data sets. Main
shortcoming of hash functions are collisions, which increase
the number of necessary memory accesses and thus the time
required for a lookup. Collisions are usually compensated by
a larger size of the hash table. Algorithms for hash table imple-
mentation differ in the lookup time and maximum achievable
utilization of the table. These two requirements are contradic-
tory and it is necessary to find a solution, which is suitable
for the book handling. Thus we have conducted an analysis
of several algorithms. Comparison of time performance of
different hashing schemes running on a PC is presented in
[5]. We will focus on the achievable memory utilization.

The first algorithm is a naive approach, which uses only
one hash function. If the the given index is already occupied,
the algorithm fails. This approach can be improved if we allow
to store the key in the index given by the hash function or in the
N following addresses (Linear Probing). Another modification
is to compute the N following addresses by adding a value
given by a second hash function (Double Hashing). We do not
consider Chained Hashing and Two-way Chaining as these
algorithms require dynamic memory allocation.

Better results are provided by cuckoo hashing [5], which
utilizes two hash functions. These functions determine the
addresses, where the key can be stored. It is possible that
neither one of the two addresses is free. In that case, new
record will replace one of the current occupants. Then, the
misplaced record is inserted in its other possible address. This
process is repeated until the misplaced record is stored in a free
space or until a predefined number of iterations is reached. In
the second case, the insertion procedure fails. There are two
variants of the cuckoo hashing with different types of memory
access. Both hash functions either address the whole memory
(Cuckoo-common), or the memory is divided into separate
parts and each function addresses one part (Cuckoo-divide).

The above described algorithms were implemented using
the Jenkins function [6]. We conducted tests based on real in-
strument identificators from the exchange, which were inserted
to a table of size 131 072. When the insertion procedure failed,
we stored the current memory utilization. Then, the table was
cleared and the test was repeated for new randomly generated
seeds of hash functions. For each algorithm, 100 000 iterations
were run with five different sets of identificators.

Measured values are shown in the graph in figure 2. The
x axis shows the memory utilization, the y axis shows the
number of successful runs with the given utilization. We set
N = 4 for Linear Probing and Double Hashing. Increasing
this number would enable higher memory utilization, however,
it would also increase the latency, which is not acceptable in

Session 5B (Student Session) Digital

177

0% 25% 50% 75%
0%

25%

50%

75%

100%

Memory utilization

S
u
cc
es
s
ra
te

Naive

Linear Probing (N=4)

Double Hashing (N=4)

Cuckoo−common

Cuckoo−divide

Fig. 2. Achievable memory utilization for different hashing schemes

25% 50% 75% 90% 100%
0%

25%

50%

75%

100%

Memory utilization

S
u
cc
es
s
ra
te

d=2, common

d=3, common

d=4, common

d=2, divided

d=3, divided

d=4, divided

Fig. 3. Achievable memory utilization for d-ary cuckoo hashing

this case. It can be seen in the graph that the best utilization
is achieved by cuckoo hashing with separated memory blocks.

Memory utilization of cuckoo hashing can be further im-
proved by using more hash functions. This approach is called
d-ary cuckoo hashing [7] and it is a generalization of basic
cuckoo hashing. Each key can be stored in one of the d slots
determined by the hash functions. Graph in figure 3 shows
achieved memory utilization for d-ary cuckoo hashing with 2,
3 and 4 hash functions for both variants of the algorithm. The
measured values correspond with the theoretical bounds in [8]:
50 % for d = 2, 91 % for d = 3, 97 % for d = 4. The d-ary
cuckoo hashing with 4 functions achieves the best memory
utilization. However, with more hash functions, the number of
memory accesses and thus the latency increases. This trade-off
is discussed in more detail in section V. We can also see that
it is more beneficial to use the variant with divided memory.

IV. ARCHITECTURE

In the case of book handling, the input of hashing algorithm
is a set of instrument identificators. The set is known at the
beginning of each trading day. Thus, we can prepare the hash
table in software (insert all identificators to the table) and focus
hardware implementation just on the lookup operation.

Each item in the hash table prepared in software contains
identificator of assigned instrument or value 0 (we suppose 0 is
not a valid identificator). This table and the generated seeds of
hash functions are loaded to the hardware as a configuration.
The table cannot be stored in the on-chip memory in the FPGA
due to its size (approximately 105 Mbit is required for 100 000
instruments). Considering the required capacity and latency,
a suitable option is QDR SRAM memory.

Architecture for symbol lookup using d-ary cuckoo hashing
with 3 hash functions and divided memory is shown in figure 4.

As the external memory provides only one read interface,
we do not need to compute all hash functions in parallel.
Instead, only one block for hash computation is used. Correct
seed for the hash function is provided by controlling FSM.
Resulting values are then transformed to addresses for the
separate memory parts in the Offset block. The first value
is used directly as an address, other two values needs to be
incremented by corresponding offset. The computed addresses
are used to read the data records from the Book Memory.
Keys in the records are compared with the input identificator
in the Validate block. Valid record is selected according to
the comparison result. If neither of the keys is equal to the
identificator, the lookup fails and the instrument is ignored.
The Pre-validate block in the dashed box is described later.

The external memory usually has a high latency. Thus,
a whole data record for each instrument is always read from the
memory. If a memory with lower latency is available, it would
be more effective to first read only the key from each address,
then determine the correct one and read only the relevant data
record. Also, the keys can be stored in the on-chip memory
while the rest of the record remains in the external memory.
In such case, a single clock cycle is required to determine the
correct address of the instrument and only one record needs
to be read from the external memory.

Capacity of the on-chip memory in the FPGA is limited
and it is also used for buffering and other parts of the design.
Therefore, it is not always possible to store the keys in the on-
chip memory. However, we can store only a hash value of the
key in the memory. To validate a key, we compare its stored
hash value with a hash value of the input identificator (see the
Pre-validate block in figure 4). If hash values are different, the
key can be ignored. Only the valid record has to be read from
the memory. Collisions can occur if two different identifiers
have the same hash value. Then, two or more records have to
be read from the external memory to validate the full value of
the key. Our preliminary experiments show that collisions can
be avoided if hash size is at least �log2M�, where M is the
number of instruments.

V. EXPERIMENTAL RESULTS

The cuckoo hashing architecture described in the previous
section was implemented in VHDL. As a testing platform, we
used COMBO-LXT card, which is equipped with a Virtex-5
XC5VLX155T chip and two QDR-II SRAM CY7C1513AV18
modules with a total capacity of 144 Mbit.

The data bus interface of the memory modules is 72 bits
wide. We use the modules in parallel in order to double the
memory throughput and the data word width. One record in the
book (1 100 bits) is thus split into 8 words and up to 131 072
instruments can be stored in the memory. The other possibility
is to use the two modules as a separate blocks of memory. This
enables to read data for two instruments at once, but only at
a half speed. Because of that, the minimal latency (i.e. time to
read one record) would double when compared to the previous
case. The average latency would worsen as well. Thus, it is
more beneficial to use the modules in parallel.

We synthesized our implementation using the Xilinx ISE
tool version 14.4. Maximum achievable frequency is 159.5
MHz, the real design was running at 150 MHz. The latency of

Session 5B (Student Session) Digital

178

Offset

FSM

Validate
Book

Memory
Pre−validate

BRAM storage Hash block

Seeds

Hash block

enable

Instrument ID key address

sel

Instrument data

key

Fig. 4. Cuckoo hash architecture

memory modules was determined by analysis in simulation and
measurements in hardware. One read operation has a latency
of 19 clock cycles, the following words are available with
every clock cycle. Delay of the hash function computation is
4 cycles.

The comparison of d-ary cuckoo hashing with 2, 3 and 4
hash functions in terms of latency and maximum number of
stored symbols is presented in table I.

The second column shows minimal, average and maximum
latency required for instrument lookup and reading of the data
record. The actual value of the latency depends on which part
of the memory is the record stored in. For example, if the
record is stored in the first part of the table, the latency will
be 30 cycles (4 cycles hash computation, 19 cycles memory
latency, 7 cycles to read the rest of the record). If, however,
the record is stored in the third part of the table, the latency
will increase by 16 cycles (the first two records were read
unnecessarily).

Comparison of the resource consumption is in the third
column. As the block for hash function computation is always
shared, the required resources do not differ significantly. The
memory controllers are not accounted for in these numbers.

The forth column contains the maximum number of in-
struments that can be stored in the memory. These values
were determined based on the analysis of achievable memory
utilization in section III.

The last row of each section of the table shows the
theoretical optimal solution, which would have 100 % memory
utilization and a latency equal to the time required to read one
record from the memory.

The effect of adding more memory modules to the card
is illustrated by the last two sections in the table. We can
see that the difference between the minimum and maximum
latency is decreasing with increasing size of memory data bus.
The minimum latency, however, decreases only slightly as the
latency of memory controller becomes dominant.

The table shows that the memory utilization increases with
the number of used hash functions, however, the average
and maximum latency of lookup increases as well. Suitable
solution needs to be selected based on the requirements for
the trading application and the available memory size.

VI. CONCLUSIONS

The paper proposes book handling hardware architecture
for low latency trading on financial exchanges. According to

Algorithm Latency [ns] Resources Number of
min avg max Flip-Flops LUT instruments

2 memory modules
Cuckoo d = 2 200 227 253 390 552 65 536
Cuckoo d = 3 200 253 307 422 585 119 275
Cuckoo d = 4 200 280 360 454 586 127 139
Optimal 173 173 173 — — 131 072

4 memory modules
Cuckoo d = 4 173 213 253 454 586 254 279
Optimal 147 147 147 — — 262 144

8 memory modules
Cuckoo d = 4 160 180 200 454 586 508 559
Optimal 133 133 133 — — 524 288

TABLE I. COMPARISON OF LATENCY, RESOURCE CONSUMPTION AND
MAXIMUM NUMBER OF INSTRUMENTS

our knowledge, this is the first hardware realization of the book
handling. The architecture utilizes external memory to store
large book of financial instruments and uses cuckoo hashing
for fast lookup in the book. The architecture was tested on
COMBO-LXT card with average lookup latency 227–280 ns.
The latency was decreased by two orders of magnitude in
comparison to recent software implementations [1]. Moreover,
the proposed hardware architecture allows to store large book
with 65 536–127 139 instruments.

ACKNOWLEDGMENT

This work was supported by the BUT project FIT-S-14-2297.

REFERENCES

[1] J. W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English, and
K. Vissers, “A low-latency library in fpga hardware for high-frequency
trading (hft),” High-Performance Interconnects, Symposium on, vol. 0,
pp. 9–16, 2012.

[2] G. W. Morris, D. B. Thomas, and W. Luk, “Fpga accelerated low-
latency market data feed processing,” High-Performance Interconnects,
Symposium on, vol. 0, pp. 83–89, 2009.

[3] C. Leber, B. Geib, and H. Litz, “High frequency trading acceleration
using fpgas,” in Field Programmable Logic and Applications (FPL), 2011
International Conference on, 2011, pp. 317–322.

[4] R. Pottathuparambil, J. Coyne, J. Allred, W. Lynch, and V. Natoli, “Low-
latency fpga based financial data feed handler,” in Field-Programmable
Custom Computing Machines (FCCM), 2011 IEEE 19th Annual Inter-
national Symposium on, 2011, pp. 93–96.

[5] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in Journal of Algorithms,
2001, p. 2004.

[6] B. Jenkins, “Algorithm alley: Hash functions.” Dr. Dobb’s J. of Software
Tools, vol. 22, no. 9, 1997.

[7] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis, “Space efficient hash
tables with worst case constant access time,” in In STACS, 2003.

[8] N. Fountoulakis, K. Panagiotou, and A. Steger, “On the insertion time
of cuckoo hashing,” CoRR, vol. abs/1006.1231, 2010.

