2014 17th Euromicro Conference on Digital System Design

The Evaluation Platform for Testing Fault-Tolerance
Methodologies in Electro-mechanical Applications

Jakub Podivinsky, Ondrej Cekan, Marcela Simkova, Zdenek Kotasek
Faculty of Information Technology, Brno University of Technology
Bozetechnova 2, 612 66 Brno, Czech Republic
Tel.: +420 54114-{1361, 1361, 1362, 1223}

Email: {ipodivinsky, icekan, isimkova, kotasek } @fit.vutbr.cz

Abstract—The aim of this paper is to present a new platform
for estimating the fault-tolerance quality of electro-mechanical
applications based on FPGAs. We demonstrate one working
example of such EM application that was evaluated using our
platform: the mechanical robot and its electronic controller in an
FPGA. Different building blocks of the electronic robot controller
allow to model different effects of faults on the whole mission
of the robot (searching a path in a maze). In the experiments,
the mechanical robot is simulated in the simulation environment,
where the effects of faults injected into its controller can be seen.
In this way, it is possible to differentiate between the fault that
causes the failure of the system and the fault that only decreases
the performance. Further extensions of the platform focus on the
interconnection of the platform with the functional verification
environment working directly in FPGA that allows automation
and speed-up of checking the correctness of the system after the
injection of faults.

Keywords—Fault Tolerance, Electro-mechanical Systems, Fault
Injection, Single Event Upset.

I. INTRODUCTION

In several areas, such as aerospace and space applica-
tions or automotive safety-critical applications, fault tolerant
electro-mechanical (EM) systems are highly desirable. In these
systems, the mechanical part is controlled by its electronic
controller. Currently, a trend is to add even more electronics
into EM systems. For example, in aerospace, extending of the
electronic part results in a lower weight that helps reduce the
operating cost [1] [2]. The situation is similar in other sectors,
such as automotive [3].

It is obvious that the fault-tolerance methodologies are
targeted mainly to the electronic components because they
perform the actual computation. However, as the electronics
can be realized on different hardware platforms (processors,
ASICs, FPGAs, etc.), specific fault-tolerance techniques dedi-
cated for these platforms must be developed.

Our research is targeted to Field Programmable Gate
Arrays (FPGAs) as they present many advantages from the
industrial point of view. They can compute many problems
hundreds times faster than modern processors. Moreover, their
reconfigurability allows almost the same flexibility as pro-
cessors. FPGAs are composed of Configurable Logic Blocks
(CLBs) that are interconnected by a programmable intercon-
nection net. Every CLB consists of LUTs Look-Up Table
that realizes the logic function, a multiplexer and a flip-flop.
Structure of CLB is shown in Figure 1. The configuration of

978-1-4799-5793-4/14 $31.00 © 2014 IEEE
DOI 10.1109/DSD.2014.57

312

CLBs and of the interconnection net is stored in the SRAM
memory.

The problem from the reliability point of view is that
FPGAs are quite sensitive to faults caused by charged particles
[4]. These particles can induce an inversion of a bit in the
configuration SRAM memory of an FPGA (or directly to
its internal flip-flops) and this may lead to a change in its
behaviour. Affecting SRAM or directly the flip-flops can be
seen as equivalent in possible consequences. This event is
called the Single Event Upset (SEU).

—>
inputs_: LUT D output
—>
clk —»p

Fig. 1. Structure of Configurable Logic Blocks.

The paper is organized as follows. The related work
connected to the FPGA reliability is summarized in Section II.
The goals of our research and the interconnection scheme of
the platform for estimating the quality of EM applications can
be found in Section III. The architecture of our experimental
design, the robot controller, is provided in Section IV. A
detailed description of the fault injection process that is used
for artificial injection of faults into the robot controller can be
found in Section V. Results of the experiments with the robot
controller are available in Section VI. The future work that
includes using functional verification for automated evaluation
of impacts of faults and the test generation process is presented
in Section VII and VIII. Finally, Section IX concludes the

paper.

II. RELATED WORK

An important feature of FPGAs, which can be utilized
for reliability purposes after a fault (we consider SEUs) is
detected, is called Partial Dynamic Reconfiguration (PDR).
PDR can reconfigure the affected part of the FPGA (a faulty
module) and restore the electronic system into the correct
operation without interrupting other parts of the system. This
type of fault repair during the system runtime can be supported
by hardware redundancy architectures, such as Triple Modular
Redundancy (TMR) [5] or duplex system with Concurrent
Error Detection (CED) [6]. Sensitivity to faults (SEUs) and
the possibility of reconfiguration are the main reasons why so

cpss

Conference Publishing Services

many fault-tolerance methodologies inclined to FPGAs have
been developed and new ones are under investigation [7],[8].

From the above facts, we have identified two areas that
we would like to focus on in our research of fault-tolerant
FPGA-based systems:

The first one is that methodologies are validated and
demonstrated only on simple electronic circuits implemented
in FPGAs. For instance, methodologies focused on the memory
in [9] are validated on simple memories without the additional
logic around. In [10], the fault-tolerance technique is presented
only on a two-input multiplexer, one simple adder and one
counter. Other methodology dedicated to harden finite state
machines [11] is applied only on a simple finite state machine.
Of course, for the demonstration purposes such circuits are
satisfactory. However, in real systems different types of blocks
must be protected against faults at the same time and must
communicate with each other. Therefore, a general evaluation
platform for testing, analysis and comparison of alone-working
or cooperating fault-tolerance methodologies is needed.

As for the second area of the research and the main
contribution of our work, we feel that it must be possible to
check the reactions of the mechanical part of the system if the
functionality of its electronic controller is corrupted by faults.
It is either done in simulation or in a physical realization.

III. THE GOALS OF THE RESEARCH

According to the identified problems we have formulated
our goals in the following way:

1) To develop an evaluation platform based on the
FPGA technology for checking the resilience of EM
applications against faults.

2) To develop and verify a new methodology for increas-

ing fault-tolerance qualities of EM applications using
the proposed platform.

Under the term EM application we understand a mechan-
ical device and its electronic controller implemented in an
FPGA. In our experiments, these components are represented
by a robot device and its controller, which drives the movement
of a robot in a maze.

At this point, we wanted to target also the issue of com-
plexity. The electronic part, the robot controller, is designed
as a complex system with specific components that will allow
testing and validating individual or cooperating fault-tolerance
methodologies based on the FPGA.

As for the first goal of our research, we have already
implemented the evaluation platform that consists of three
basic parts:

e the Virtex5 FPGA board, where the robot controller
is situated after the synthesis and the place and route
process,

e the simulation environment Player/Stage [12] for
checking responses of the mechanical device to in-
structions from the robot controller (see Figure 2),

e the external fault injector (PC) which inserts faults into
the robot controller [13].

Fig. 2. The robot in a maze in Player/Stage simulation environment.

The second goal of our research is covered by the de-
velopment of a methodology how to incrementally harden
EM systems against faults. We expect to identify clearly the
situations when the reconfigurable hardware covers correctly
its functions (and the robot works properly) but also the
situations when the mechanical functions are corrupted and

the robot collapses.

Figure 3 shows the overall interconnection of the PC and
the FPGA board in our platform. Note that there are two
devices called FITkit [14] in both directions, from the PC
to the FPGA and vice versa. FITkit is a hardware platform
that was developed for student projects at the Faculty of
Information Technology, Brno University of Technology. In
our platform, FITkits represent a communication layer and
serve as a debugging point for communication between the
PC and the FPGA board. The SEU injector runs on the PC
and is connected through the JTAG interface directly to the
main FPGA board where the robot controller is situated. Via
the connection between the SEU injector and the simulation
environment (as shown in Figure 3), we are able to control
the SEU injection process into the robot controller for every

mission and to see effects of faults directly in simulation.

PC

simulation

=
SEU

JTAG

FPGA board

L

robot
controller

Fig. 3.

The platform for testing fault-tolerance methodologies.

313

In our opinion, it is important to find a relation between the
level of functional corruption of the electronic controller and
the corruption of the mechanical functionality in the EM ap-
plications (i.e. between the robot controller and the simulated
mechanical robot). Therefore, it must be possible to introduce
various levels of external faults into the controller and check
whether the mechanical function: a) was not corrupted, b) was
corrupted partially, c) was corrupted completely.

IV. THE ROBOT CONTROLLER - STRUCTURE AND
PRINCIPLES

In Figure 4, the block diagram of the implemented robot
controller is available. The control unit is connected to the
PC (where the simulation environment is located) via the
Interface Block. Through this block, data from the simulation
are received (information about barriers, distances from control
points, target positions) and in the opposite direction, instruc-
tions about the movement of the robot are sent (direction and
speed).

The robot controller is composed of various blocks, their
function is described in [15]. Here, we only summarize main
characteristics of every component. The central block of the
robot controller is a bus through which the communication
between each block is accomplished. Each of components,
without the Engine Control Module, is connected to the bus.
The Position Evaluation Unit acquires the distance from the
control points, which are located in the fixed positions in
the maze. From these, the position of the robot in the maze
is calculated and provided to other units as coordinates x
and y. The Barrier Detection Unit (BDU) uses four sensors;
each located on one side of the robot (cubical robot) and
provides information about the distance to the surrounding
barriers. The output is a four-bit vector that represents the
four-neighbourhood of the robot and informs about barriers
in this area. Map updating is provided by the Map Unit
(MU) and is based on the information about the position
of the robot obtained from the Position Evaluation Unit and
the information about the occurrence of barriers in a four-
neighbourhood provided by the Barrier Detection Unit. The
Map Memory Unit (MMU) stores information about the up-
to-date map. The memory is realized by the block memory
(BRAM) available in the FPGA. The most important block that
manages the activity of other blocks in the robot controller is
the Path Finding Unit (PFU). It implements the simple iteration
algorithm for finding a path through the maze according to the
information about the current and the desired target position.
The mechanical parts of the robot are driven by the setting of
the speed in the required direction of the movement by the
Engine Control Module (ECM).

The robot controller is designed as a complex system with
specific components that will allow testing and validating var-
ious types of fault-tolerant methodologies focused on FPGAs:

Combinational circuits

Combinational circuits are the basic types of digital
circuits, their output is dependent just on the current
input. In the robot controller, the Barrier Detection
Unit represents a pure combinational circuit.

Sequential circuits
The output of the sequential circuit, unlike combina-

314

tional circuit, is not dependent only on the current
input but also on the actual state. These circuits
also contain a memory for storing a state. Sequential
circuits can be explicitly controlled by the finite state
machine. Sequential circuits without an explicit con-
trol are represented by the Map Unit and the Position
Evaluation Unit in the robot controller.

Finite state machines

Finite state machines also represent sequential circuits,
their computational process is modeled by states and
transitions between them. In the robot controller, the
Path Finding Unit and the Engine Control Module, to-
gether with units that provide the bus communication,
are implemented as finite state machines.

Buses

The bus is a central element of our controller. We
decided to use freely available Wishbone bus [16]
that is configured as a shared bus. It means that the
communication on the bus can be driven only by
one master device and the other units must wait for
releasing the bus. All function blocks are connected
to the bus via their wrapper.

Memories

In the robot controller, we can find two occurrences of
different types of memory. The first, the Map Memory
Unit, is realized as the Block Memory (BRAM) which
is available on the FPGA. The second memory is
a queue in the Engine Control Module that stores
continuously calculated path to the destination.

V. EVALUATION OF RELIABILITY BY FAULT INJECTION

The weak point of FPGAs from the reliability point of view
is their configuration memory. The functionality of an FPGA
chip is defined by the sequence of configuration bits (called
bitstream) which is loaded into the configuration memory. In
our case, a specific part of bitstream determines the function-
ality of the robot controller.

However, even the smallest change in the configuration
memory can lead to different functionality. When a charged
particle strikes a memory cell, the resulting effect is the
inversion of the stored value (known as the Single Event Upset,
SEU) [17].

During testing the resilience of systems against faults,
waiting for their natural appearance is not feasible. A typical
reason is the Mean Time Between Failures (MTBF) parameter
that can be in the order of years. Therefore, some special
techniques are used in order to artificially accelerate the fault
occurrence. The most popular one is called fault injection.

Therefore, to simulate effects of faults in the FPGA,
it could be done by a direct change of the configuration
bitstream which is loaded into the configuration memory.
For this purpose we implemented a fault injector [13] which
allows to prepare bitstream for our FPGA and also to modify
single or multiple bits of the bitstream in order to simulate
single and multiple faults. As a consequence, the design
placed in the FPGA (determined by the configuration data)
is influenced similarly as by a real fault which strikes the
hardware architecture of the FPGA in a real environment.

PEU Finite State Machine

BDU Finite State Machine

Position Evaluation Unit

Barrier Detection Unit

(PEU) (BDU)

Fig. 4. The block diagram of the robot controller.

For effective testing of fault effects on a system composed
of several blocks, we need to determine the block in which the
fault will be injected. In the case of injecting faults into the
whole FPGA we are not sure which block is affected, or if the
useful part of the bitstream is hit. The implemented injector is
able to inject faults only to specified bits of the configuration
memory, a specification list of these bits is input parameter.

The list of bits representing each component is obtained
through several steps. First, we perform synthesis using Xilinx
synthesis tools [18]. The result of synthesis is a netlist,
which serves as an input for the next step. Next, we use the
PlanAhead [19] tool for the layout of the components on the
FPGA. Thanks to this, we know where each of components is
placed. The bitstream is generated in this step and the FPGA
can be programmed. The knowledge about component layout
allows us to use the RapidSmith [20] tool for analysing the
design. This tool is able to generate a list of the bitstream
bits that correspond to the identified areas of the FPGA, while
we know what components are in each area. The disadvantage
is that this process provides only a list of bitstream bits that
correspond to Lookup Tables (LUTs). Our goal in the future
will be to find a method which allows us to localize also bits
of the bitstream corresponding to the interconnection network.

VI. THE EXPERIMENT WITH THE ROBOT CONTROLLER

The aim of the experiment is to identify which parts of
the robot controller are vulnerable to faults. The flow of the
experiment is displayed in Figure 5. At first, we initiate the
environment of the robot in simulation. We generate a maze

|
| Robot Controller \
\ MMU Map Memory Unit MMU ‘
} Interface (MMU) Interface \
\
} |
\
| Engine \
| Control ECM Path Finding Unit Map Unit \
! Module | Queue (PFU) (MU) \
} (ECM) |
‘ l PFU Wishbone MASTER MU Finite State Machine }
\
| MU Wishbone MASTER‘ }
} |
\
e |
Enironment | | sec | seRc |
pC | Interface Wishbone Wishbone BUS 1 }
(SEPC) } Block MASTER ‘
\
} |
| PEU Wishbone SLAVE BDU Wishbone SLAVE ‘ }
\
\
\
\
\
\
\
\
\
\
\
\

315

Start Position

End Position
. WIF x?'
v
XQ
Maze Robot Controller Monitoring of
Initialization Initialization Impact of Faults

Fig. 5.

together with the start and the end position for the mission
of the robot. As the first scenario, we chose a small maze
with 8x8 fields. The start position was in the upper left corner
and the end position in the lower right corner. Subsequently,
the robot controller is initiated. In particular, the bistream for
the Virtex5 FPGA board is generated. When loaded, the robot
starts to search a path to the end position. It moves quite slowly,
one robot mission takes about one minute. At this point, the
fault injection takes place. We generate randomly an LUT of
every unit of the robot controller into which the fault will
be injected. Thanks to the Rapidsmith, only corresponding
bits of the bistream are inverted. We want to point out that
we really target only bits if the bitstream belonging to the
robot controller design. Other bits of the bitstream belonging
to the unused parts of the FPGA or to the interconnection
network are not affected. Faults are injected one after another
(MTBF = 2s) until the robot starts to behave incorrectly or
fails. We were monitoring (1) the number of faults that led to
the malfunction of the robot and (2) how the behaviour of the
robot was changed.

The flow of one experiment.

35

30 -
25 -
20 -
15 -
10 -
5 1 L1 1 ©a ;
1 T I
0
S R M R I I S Al M R
)i /); / / ’)3 ’ 7 Q
& & & £ <& S S N
Fig. 6. The quartil graf of the results of experiments.

The results of the experiments are shown in Table 1. In
the first column, the list of components of the robot controller
is provided. In the second column, the total number of bits
of the bitstream that belong to the LUTs of corresponding
components is shown. The following three columns represent
the number of injected faults into particular components which
caused incorrect behaviour of the robot. The first number is
minimum, the second number is median and the last number is
maximum of faults that led to failure. Injecting faults into all
bits of the bitstream would be very time-consuming. Therefore,
we utilise the statistic evaluation. 20 experimental runs were
performed for each component (320 experimental runs in
total). The last column of the table contains the state of the
robot that was evaluated as the wrong behaviour. These states
are described in more detail in the further text.

TABLE L. THE EXPERIMENTAL RESULTS.
’ Components Bits of bitstream | Number of injected faults | Consequence
| Min | Median] Max_|

PEU 21 632 2 6 12 freezing
PEU_FSM 2112 >80 - >80 -

PEU_WB 2112 41 - >80 | freezing
BDU 320 2 6 21 freezing
BDU_FSM 2752 3 6 34 | freezing
BDU_WB 2 176 3 9 28 | freezing
SEPC_INF 1216 2 3 7 freezing
SEPC_WB 9 088 2 3 7 freezing
ECM 25 664 1 2 7 | freezing
PFU 7 488 3 6 12 deadlock
PFU_WB 7424 2 3 9 | freezing
MU 11 840 1 2 3 | crashing
MU_FSM 1280 1 3 5 | freezing
MU_WB 7 680 1 3 6 | freezing
MMU 3 008 1 3 6 | freezing
WB_BUS 5 056 1 3 6 freezing

The statistical data from the measures are also demon-
strated in Figure 6. It is a quartile chart that for each component
shows the minimum, the first quartile (25%), median, the
second quartile (75%) and maximum of the measured number
of injected faults that led to the failure. Moreover, the line
across all components shows the average number of faults
in each component that led to the failure. One interesting
conclusion arises from the graph. The incorrect behaviour did
not appear immediately after the first injection of a fault. We

316

can conclude that some bits of the bitstream, despite they
are identified as related to the robot controller, are not used
to store a useful information. This can be seen particularly
in components PEU_FSM and PEU_WB. There are several
explanations of this, e.g. not all inputs of LUTs are employed
or not all states of FSMs are visited during the computation.
Nevertheless, we realised that some components contain more
critical bits than others and thus they should be preferred while
hardening against faults by some fault-tolerance methods.

The most common consequences of injected faults are:

e Freezing on place
Freezing on one spot means that the robot suddenly
stopped after the fault injection and did not continue
in its mission.

e Deadlock
After injection of certain number of faults the robot
began to walk around in a cycle.

e Crashing into a wall
In some cases, the robot did not recognise the occur-
rence of walls in the maze and repeatedly crashed to
the wall.

e Other

In the experiments, we observed a small number of
other interesting consequences of faults. An example
might be freezing of the robot in one place, then a re-
freezing or walking in a cycle. We note also a wrong
turn of the robot in the maze, which was followed by
freezing.

The proportional representation of these consequences is
displayed in Figure 7. As can be deduced from the chart,
the most common consequence of injected faults is Freezing
on place. We can also conclude that stopping of the robot is
not so critical as for example, a collision with the wall. This
conclusion can be very critical and useful for different kinds
of EM applications.

11%

78%

Freezing on place (78%)
B Deadlock (7%)

Crashing into a wall (11%)
B Other (4%)

Fig. 7. The chart of typical consequences of injected faults on the mission
of the robot.

VII. THE USE OF FUNCTIONAL VERIFICATION FOR
AUTOMATED EVALUATION OF FAULT IMPACTS

For extensive testing of the behaviour of the robot or any
other EM system placed into our evaluation platform, we need
to examine various test scenarios. After application of proper
test vectors, we can prove the correctness and accuracy of the
behaviour of the system with respect to the specification. The
manual check of these test vectors is difficult as it requires
a full control from the user. The user is responsible for
running the test environment, generating test vectors and also
analysing the outputs of the system. All these activities are
time-demanding and therefore, it is not possible to test the
system thoroughly within a reasonable time. It is necessary
to apply some kind of automation. An extended technique for
automated checking of the correctness of the system is called
verification. There are several techniques used in the verifica-
tion domain, but their description is not crucial for this work.
We decided to use an approach called functional verification,
as this type of verification fits best to our experiments.

Functional verification [21] is the process of verifying that
a model of the system, also called DUT or Design Under
Test, compliances with the specification by monitoring inputs
and outputs in simulation. Moreover, the DUT outputs are
compared to the outputs of the reference model (sometimes
also referred to as the golden model) that is typically imple-
mented by a verification engineer or a designer than did not
implemented the DUT. On the basis of the compared outputs
a discrepancy between the two models can be detected and
thus an error in the systems can be discovered. The basic
principle of functional verification is demonstrated in Figure 8.
An important prerequisite for functional verification is also a
good generator of input test vectors for testing all possible
scenarios.

To be able to inject faults into the FPGA while performing
functional verification, we must carry out verification directly
in the FPGA (not in the simulation as usually). Advantageously
we can use and modify hardware accelerated verification that
uses an FPGA as the acceleration board. An example of such
accelerator is the framework HAVEN [21]. The extension
of our evaluation platform with the support of functional
verification is shown in Figure 9. The DUT (in our case the

317

Reference Model

Test
Vectors

DUT

Fig. 8. The main principle of functional verification.

robot controller) will be placed on the FPGA. The outputs
from the FPGA are compared to the outputs of the reference
model and they represent also the inputs that are propagated
to the simulation of the mechanical part. Thus, the output of
the DUT stimulates the movement of the mechanical part of
the robot in the simulated maze. The inputs for the FPGA
and for the reference model are data from the sensors of the
mechanical part of the robot.

As the reference model, a second implementation of the
control unit, for example in SystemVerilog, C, SystemC, or
the same VHDL implementation that is used as the DUT but
without injected faults, can be considered. The Fault Injector
is a feature that differentiates the current proposal from the
classic functional verification. Using this feature we can verify
that the fault-tolerance techniques used in the robot controller
work properly and the robot behaves correctly also in the
presence of faults injected into its controller.

Generation of
Test Vectors

Simulation of

Mechanical Part GG

.
| FPGA

\
| | Driver
\

DUT
(Electronic Part)

Fig. 9.
injection.

Functional verification involvement in our platform with the fault

The verification process will be divided into two phases:

1) Verification of the electronic part only, without
monitoring the impact of faults on the mechanical

part.

Three possible outcomes can arise: (1) The output
from the DUT and from the reference model is the
same, an error did not appear. (2) The output is not
identical but despite this, the robot has completed
the mission (the robot reached the end position in
the maze). (3) The output is not identical and at
the same time, the mission was not accomplished.
The last outcome is the most serious one and it will
require a thorough analysis of the problem.

2) Analysis of the faults, which affected the mechanical

part.

In this case, we will examine the faults that
caused the failure of the mission of the robot. This
activity will be carried out manually, since it is
necessary to run the required experiment again and
to monitor the behaviour of the mechanical part in
simulation as described in the experimental part of
this paper.

A very important element in the proposed platform is the
generation of test vectors. To be able to check all working
scenarios in functional verification and achieve the highest
possible coverage of all key functions in the verified circuit
the high-quality generator of inputs is needed. In our case, the
generation aims at different mazes and different starting and
end position of the movements of the robot. We also plan to
use the generator for controlling injecting of faults (because
now it is configured manually). We will generate signals that
will drive the generation of faults and will determine when
and into which place a fault should be injected.

VIII. TEST VECTOR GENERATION

Generation of test vectors is our further goal. To prove the
correct behaviour of the system according to its specification,
testing the system on a wide set of input values is needed. We
plan to adjust the generation of input test vectors to functional
verification purposes and as an advantageous method seems
to be an approach called Coverage Directed Test Generation
(CDTG) [22] [23]. This method generates test vectors accord-
ing to the defined design conditions and limitations which are
called constraints. The main challenge in the generation of
test vectors is to achieve maximal coverage of the system key
functions. If a system function remains unverified, this method
will define additional constraints in order to get this feature
covered. At the end, the coverage report which is the result of
the simulation runtime of verification is created.

Thanks to CDTG we will acquire two important advan-
tages. The first is the possibility that the uncovered features
of the system become covered and a higher level of coverage
will be achieved. The second advantage is in testing certain
scenarios multiple times for different input values.

Figure 10 shows the proposed method of generating test
vectors. This method is not limited only to generation of
inputs for the robot controller which will be described in the
next paragraph. It represents a universal approach that can
be used to generate inputs for different kinds of systems.
The basic elements of the universality of the generator are
two separate pseudo-formal models. The first model labelled
as the Problem Description contains information about the
scenario we want to generate. It may contain information about
variables, data types, static values or substitutes that we want
to generate. In simple words, this model defines what we want
to generate. The second model labelled as the Constraints
for the Problem describes how the scenario defined in the
Problem Description should be generated. This model thus
contains constraints that should be taken into account while
generating the scenario. This is essentially a limit for data
values, such as a variable cannot take certain values from the

318

range of the data type, or restriction of dependency, such as
some combination of variables cannot occur after the currently
generated combination. Both of these models are inputs to the
generator of test vectors that is currently in the implementation
phase.

Generation of
Test Vectors

Constraints
for the
Problem

Problem
Description

Test Vector

Test Vectors
Fig. 10. The principle of the constraint generator.

Figure 11 shows an example of generating the mazes
for the robot device. This is a simple example that shows
the function of above mentioned approach. The problem of
generating the maze is defined as the generation of lines that
are represented by the boolean array of specific size. The
constraints restrict the minimal width of the corridor of the
maze, the walls of the maze can be only rectangular and a
room that have no path cannot appear in the maze. The result
obtained by the generator is a sequence of rows that consists of
zeroes or ones. Zeroes represent the corridors, ones represent
the walls. This generated output may be further processed.
In our case, this output is regenerated into a bitmap image
representing the desired maze for the robot.

D

Generation of corner_min_size(1)
bool Test Vectors right_angle_walls(true)
line[42] no_closed_room(true)
Test Vector

Problem Description Constraints

11
110000000111001000100011110000111000000001
100011000111001110100010000000100001111101

Bitmap Generation

Fig. I11. An example of generating a maze for the robot controller.

IX. CONCLUSION AND FUTURE WORK

In this paper, we introduced the evaluation platform for es-
timating reliability of FPGA designs. As our research focuses
on testing EM applications, we presented the experimental
design which is composed of the mechanical robot and its
electronic controller situated in the FPGA. The robot controller
contains a variety of components. During the experiments, ran-
dom faults were artificially injected into these components and
we were monitoring impact of these faults on the behaviour
of the robot in the simulation environment. These experiments
showed that some faults have an impact on the behaviour of
the robot, and others do not have. According to this result
we were able to identify the parts/components of the robot
controller that need to be hardened by some fault-tolerance
techniques.

In addition, we have recognised from the experiments
that some kind of automation is unavoidable in our future
experiments, especially in the early phases of testing. The
reason is that monitoring the behaviour of system in simulation
is very time-demanding. Therefore, we have already prepared
an innovative extension of our platform - interconnection of
fault injection and functional verification environment with
advanced test generation. Using this approach we will be able
to automatically verify an EM system during the fault injection.
The automation is achieved by comparing the outputs of the
verified system to the reference model that is in our case
represented by the same design but without injected faults.

ACKNOWLEDGMENT

This work was supported by the following projects:
National COST LD12036 - “Methodologies for Fault Tol-
erant Systems Design Development, Implementation and
Verification”, project Centrum excelence IT4Innovations
(ED1.1.00/02.0070), EU COST Action IC1103 - MEDIAN
- Manufacturable and Dependable multlcore Architectures at
Nanoscale and BUT project FIT-S-14-2297.

REFERENCES
[1]

S. Cutts, “A collaborative approach to the more electric aircraft,” in
Power Electronics, Machines and Drives, 2002. International Confer-

ence on (Conf. Publ. No. 487), June 2002, pp. 223-228.

J. Bennett, A. Jack, B. Mecrow, D. Atkinson, C. Sewell, and G. Mason,
“Fault-tolerant control architecture for an electrical actuator,” in Power
Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th
Annual, vol. 6, June 2004, pp. 4371-4377 Vol.6.

G. Leen and D. Heffernan, “Expanding automotive electronic systems,”
Computer, vol. 35, no. 1, pp. 88-93, Jan 2002.

M. Ceschia, M. Violante, M. Reorda, A. Paccagnella, P. Bernardi,
M. Rebaudengo, D. Bortolato, M. Bellato, P. Zambolin, and A. Can-
delori, “Identification and classification of single-event upsets in the
configuration memory of SRAM-based FPGAs,” Nuclear Science, IEEE
Transactions on, vol. 50, no. 6, pp. 2088-2094, 2003.

C. Bolchini, A. Miele, and M. D. Santambrogio, “TMR and Partial
Dynamic Reconfiguration to Mitigate SEU Faults in FPGAs,” in DFT
’07: Proceedings of the 22nd IEEE International Symposium on Defect
and Fault-Tolerance in VLSI Systems. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 87-95.

J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici, “Dynamic
Fault Tolerance in FPGAs via Partial Reconfiguration,” in FCCM ’00:
Proceedings of the 2000 IEEE Symposium on Field-Programmable
Custom Computing Machines. Washington, DC, USA: IEEE Computer
Society, 2000, pp. 165-170.

[2]

[3]

[4]

[51

[6]

319

[71

[8]

[9]

[10]

(11]

[12]

[13]

[14]

(15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

J. A. Cheatham, J. M. Emmert, and S. Baumgart, “A Survey of Fault
Tolerant Methodologies for FPGAs,” vol. 11, no. 2. New York, NY,
USA: ACM, 2006, pp. 501-533.

L. Sterpone, M. Aguirre, J. Tombs, and H. Guzman-Miranda, “On the
Design of Tunable Fault Tolerant Circuits on SRAM-based FPGAs
for Safety Critical Applications,” in DATE ’'08: Proceedings of the
conference on Design, automation and test in Europe. New York,
NY, USA: ACM, 2008, pp. 336-341.

N. Rollins, M. Fuller, and M. Wirthlin, “A comparison of fault-tolerant
memories in sram-based fpgas,” in Aerospace Conference, 2010 IEEE,
2010, pp. 1-12.

M. Naseer, P. Sharma, and R. Kshirsagar, “Fault tolerance in fpga archi-
tecture using hardware controller - a design approach,” in Advances in
Recent Technologies in Communication and Computing, 2009. ARTCom
’09. International Conference on, 2009, pp. 906-908.

L. Frigerio and F. Salice, “Ram-based fault tolerant state machines for
fpgas,” in Defect and Fault-Tolerance in VLSI Systems, 2007. DFT ’07.
22nd IEEE International Symposium on, 2007, pp. 312-320.

B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Proceedings
of the 11th international conference on advanced robotics, vol. 1, 2003,
pp. 317-323.

M. Straka, J. Kastil, and Z. Kotasek, “Seu simulation framework for
xilinx fpga: First step towards testing fault tolerant systems,” in /4th
EUROMICRO Conference on Digital System Design. 1EEE Computer
Society, 2011, pp. 223-230.

7. Vasicek. (2014,
www.fit.vutbr.cz/FITkit

J. Podivinsky, M. Simkova, and Z. Kotasek, “Complex Control System
for Testing Fault-Tolerance Methodologies,” in Proceedings of The
Third Workshop on Manufacturable and Dependable Multicore Archi-
tectures at Nanoscale (MEDIAN 2014). COST, European Cooperation
in Science and Technology, 2014, pp. 24-27.

OPENCORES. (2014, Apr.) Wishbone B4: WISHBONE System-on-
Chip (SoC) Interconnection Architecture Portable IP Cores. [Online].
Available: http://cdn.opencores.org/downloads/wbspec_b4.pdf

R. Oliveira, A. Jagirdar, and T. J. Chakraborty, “A TMR Scheme
for SEU Mitigation in Scan Flip-Flops,” in ISQED ’'07: Proceedings
of the 8th International Symposium on Quality Electronic Design.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 905-910.
XILINX, “Xst User Guide.”

N. Dorairaj, E. Shiflet, and M. Goosman, “Planahead software as a
platform for partial reconfiguration,” Xcell Journal, vol. 55, no. 68-71,
p- 84, 2005.

C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings, “Rapid
prototyping tools for fpga designs: Rapidsmith,” in Field-Programmable
Technology (FPT), 2010 International Conference on, Dec 2010, pp.
353-356.

Apr) FITkit. [Online]. Available:

M. Simkova, O. Lengal, and M. Kajan, “Haven: An
open framework for fpga-accelerated functional verification
of hardware,” Tech. Rep., 2011. [Online]. Available:

http://www.fit.vutbr.cz/research/view_pub.php.en?id=9739

M. George and O. Ait Mohamed, “Performance analysis of constraint
solvers for coverage directed test generation,” in Microelectronics
(ICM), 2011 International Conference on, 2011, pp. 1-5.

H. Shen, P. Wang, Y. Chen, Q. Guo, and H. Zhang, “Designing
an effective constraint solver in coverage directed test generation,”
in Embedded Software and Systems, 2009. ICESS ’09. International
Conference on, 2009, pp. 388-395.

