
Traffic enerator ased on ehavioral attern

Matej Kacic, Daniel Ovsonka, Petr Hanacek and Maros Barabas
Faculty of Information Technology

Brno University of Technology

Boetechova 2, 612 66 Brno, Czech Republic

Email: ikacic@fit.vutbr.cz

Abstract—Network traffic generation was the subject of many

research projects in the past, but none of them could generate
network data which has the same nature as a traffic from

human or machine behavior. In this paper we introduce a
related work in this field of area focusing on advantages and
disadvantages, such as authenticity, inaccuracy, wrong timings

and real-time generation. Further, we propose a generator
capable of generating traffic with predefined behavioral pattern
of a valid communication. The high diversity and randomness of

generated traffic allowed us to use this generator for testing of
our reputation system, which evaluates value of reputation based
on behavioral pattern by analysing network traffic.

Keywords—Network traffic generator, behavioral pattern, wire-
less, http traffic, malware injection, security

I. INTRODUCTION

The main idea of the proposed solution is to create a traffic

generator, which is capable of generating frames/packets from

L2 layer to L7 layer with high authenticity and accuracy.The

goal is to create a system capable of generating traffic that is

statistically almost identical to a genuine (real, valid) network

traffic, but also providing high extensibility and performance.

One of the main requirements on the system is a mechanism

of defining rules, which can describe a behavioral pattern

of each entity within the network. This behavioral pattern is

further used in process of generating traffic to simulate the real

behavior of an entity, but with different data and/or properties.

The basic prerequisite for the system is the real network

data, which is based on stored PCAP dump files previously

obtained from a real network traffic. The key part of the

system is a mathematical model, whose purpose is to describe

the behavior of entities on the network. The genuine network

traffic is analysed and based on previously defined set of rules

(composed of protocol dependent and independent rules), a

model of analysed entity is created. Based on these rules the

obtained network communication is processed and altered to

increase diversity and randomness of generated traffic, but in

a way to keep consistency of the communication.

As it was already mentioned, the major requirement is

similarity of generated traffic data to a real traffic created by

network users or machines, and it should be difficult or even

impossible to recognize generated traffic from the genuine

one. For example, this could be achieved by simulating user

behavior by using graphic user interface testing tools to

automatically generate network traffic.

Based on these findings and requirements we created a

network traffic generator built on a large database of genuine

network traffic data. Original network traffic data are trans-

formed to a traffic, adjusted according to user settings. The

generator engine uses probability-based algorithms, therefore

the output is always different even if the settings are the

same. The database of genuine network data is used as a

source for the engine but all the relevant fields in protocol

headers are modified. The prototype of generator currently

supports Hyper Text Transport Protocol (HTTP) and HTTP

Secure (HTTPS) protocol and is easily extensible by any other

text-based protocol. The only requirements for adding protocol

extension is the existence of source data (dump of genuine

network traffic) for the protocol and user-defined protocol-

dependent rewrite rules. The advantage of this approach is the

possibility to specify the size, duration or number of appearing

entities in the output (i.e. generated) traffic. This allows a

user to create various scenarios for later analysis or research

purpose.

The paper is divided as follows. Section II covers the

summary of our investigation of state of the art in the area

of network traffic generators. High level design architecture

is described in section III and HTTP traffic generation as the

most complex model of our solution is proposed in section

V. The paper is concluded with results and test scenario in

section VI.

II. RELATED WORK

Traffic generation solutions can be classified into three main

groups: trace-based, model-based, and testing network devices.

In the following sections we describe the main ideas of each

approach with their advantages, disadvantages and references

to related research.

A. Model-based approaches

The model-based approach uses a stochastic traffic model

where parameters of the model are based on traffic characteris-

tics of measured data. The main disadvantage of this approach

is the use of very sophisticated and complex models to get

high accuracy results. In many cases the model has so many

parameters that it is impossible to implement it.

The article [1] introduced new dynamic application-level

protocol replay techniques using statistical models of user

behavior to generate workloads on the testbed hosts. They

emulate remote services by re-assembling real traffic to a very

Copyright © 2014 ICITST-2014 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 230

high degree of fidelity. They also control windows applications

like Internet Explorer or Outlook to generates traffic. This

solution provides very low variety of applications protocols

and generating itself depends on windows platform.

Authors and co. [2] proposed a method, called Event-

driven Automata Synchronized Replay (EAR), to address

real traffic replay over wireless LAN. EAR transforms the

captured packet trace into a sequence of events that follow the

IEEE 802.11 protocol. The three-level automata are applied to

achieve packet-replay control and synchronize the environment

effects in traffic replay with the packets and signals captured

in a real environment.

Authors in [3] presented the evaluation of LiTGen, a real-

istic IP traffic model for generation of IP traffic with accurate

time scale properties and performance. They confront LiTGen

against real data traces using two methods of evaluation.

These methods respectively allow to observe the causes and

consequences of the traffic burstiness. The result of their work

points the importance of precise modelling of random variables

distributions involved in the underlying mode. It should be

noticed that the IP model used in LiTGen is quite simple,

thus the synthetic traces do not reflect any behavioral pattern.

B. Trace-based approaches

The trace-based approach uses data / measurements from

real environment. This kind of data contain real payload and

real packets (frames) headers, therefore the authenticity and

accuracy is guaranteed. Correct inter-packet timings strictly

depend on specific solution [4].

he result of this approach is privacy issues, which are the

reason why this solution cannot be applicable to production

environment. This approach has many disadvantages, a major

handicap is that communication must be generated in real-

time, therefore it is not effective for larger test-cases. The

extensibility of this approach is also difficult because a user

has to rewrite or create new scripts and prepare experimental

environment with all required applications, which is extremely

time consuming.

A solution Tmix proposed in [5] uses real network traces

to replay correct packet inter-arrival timing and ns2 sim-

ulator to mimic the TCP behavior. It starts from trace of

TCP/IP headers on a production network, and then model

is constructed for all the TCP connections observed in the

network. Tmix algorithm is reused to replay the connections

and reproduce the application-level behaviors observed on the

original network.The main disadvantage of this solution is

absence of realistic packet payload.

Last research in this area is Multi-Functional Emulator for

Traffic Analysis [4], where authors presented user behavior

based traffic emulation system, which uses real measurements

to achieve a complete payload and realistic inter-packet timing.

They emulate network applications on different platforms

(Windows, Android)and different technologies (wired, Wifi,

3g) by remotely controlling those applications. The emulator

needs real running devices to eavesdrop the traffic traces from

the network whenever the change of behavioral model occurs.

C. Testing network devices

Generators belonging to this category represent high perfor-

mance packet generators. We have investigated many existing

solutions which are used for testing network devices, but there

is a problem with authenticity, inaccuracy of packets, and

wrong or insufficient timings which do not correspond to a

real network.

The KUTE is UDP packet generator and receiver which runs

entirely in the Linux kernel [6]. It has been implemented with

purpose of sending and receiving higher packet rates on high

speed network interfaces (e.g. Gigabit Ethernet). KUTE, unlike

other generators which are using user-space environment, can

handle inter-packet times more accurately. There are number

of tools (RUDE [7], MGEN [8]) which work very similar to

KUTE.

The article in [9] analyzes four of the most used packet-level

traffic generators (RUDE, MGEN, KUTE, D-ITG Fig. 1. High

level design of Traffic generator [10]) shows how they fail to

follow the requested profiles. The generated traffic profiles

are very different from those requested.They also identify

problems affecting their accuracy.

Another approach is used in BRUNO [11], which is based

on cooperative PC/NP architecture. An advanced software tool

runs on a host PC and instructs the processing engines of

an Intel IXP2400 Network Processor, which takes care of the

actual traffic generation. This approach can achieve traffic load

of 800 Mbps. Other solutions, described in previous paragraph,

achieve maximum traffic load of 400 Mbps.

All solutions in this category have great performance and

accurate timing, but they are unsuitable for generating different

types of traffic (TCP/UDP, HTTP, FTP, etc.). In our system

we focus on generating traffic based on defined rules with

corresponding behavioral patterns and we focus on precise

inter-packet timings with realistic data payload. Our generator

is not designed for real-time stress testing of network devices,

but we can retransmit generated traces directly to the wired or

WiFi networks.

III. HIGH LEVEL DESIGN

This section describes in detail the scheme and also the

dataflow of the traffic generator. The system can be separated

into several modules, each having specific use:

This section describes in detail the scheme and also the

dataflow of the traffic generator. The system can be separated

into several modules, each having specific use.

A. Calendar

Calendar is a graphic, web based module which offers the

possibility of easily adding behavioral patterns to the system. It

is called calendar because of format of data entry where every

behavioral pattern is represented by a rule added to particular

timeslot. Every single rule defines the time interval, duration

and protocol specific details of simulated behavior. In case of

simulating HTTP traffic, there is an option to specify which

domains will be visited in simulated communication and also

how much data will be transferred. Users can create or modify

Copyright © 2014 ICITST-2014 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 231

Fig. 1. High level design of Traffic generator

these rules that are subsequently used for the traffic simulation.

Implementation of this module is based on SQL database, used

as a storage of all created rules, it serves as a metadata for

stored PCAP files and it also creates the interconnection with

the other modules.

B. The Core module

This module provides the key functionality of the network

traffic generator. This module takes multiple inputs; database

of captured PCAP files and also information from calendar

module. The input data are processed to generate the output in

form of PCAP file. The module consists of several submodules

where each of them is used to generate one specific protocol

communication. The core module is easily extensible by a

custom module which can generate any arbitrary protocol.

The implementation of this module provides a layer to easily

transform low level protocols like DNS, DHCP etc. Our actual

work aims to generating HTTP traffic, so the most important

part is HTTP submodule which is described in section V.

C. WiFi module

One of the most important criteria for determining the

wireless users behavior is user mobility. The mobility pattern

can be very different in a time, for the reason of nature of our

environment, habits and modern devices.

There are also some device types with very high mobility

- mobile phones and tablets with VoIP services. An example

of this type of user might be a person using VoIP application

while walking the office.

We can simulate the user mobility by different approaches:

• Changing Access Points - user can move between access

points in time i.e. we can simulate this movement in time

of day.

• Location of wireless device - changing the value of signal

strengths in radio header.

The WiFi module is an extension of generation core. It

extends the core module with capability of generating wireless

frames according to standard 802.11i [?] (encrypting, decrypt-

ing L2 frames, computing of correct initialization vector and

checksums).

First, the live communication is sniffed from live wireless

environment for multiple devices. Sniffed communication is

decrypted and stored into pcap files. The system preserves a

radiotap header and MAC header untouched. In order to keep

compatibility with the core module, decrypted payload of the

wireless frames is transformed into ethernet form. When the

core module returns newly generated data, this module will

develop a framework [?] for this purpose, which is capable of

sniffing, managing encryption keys (PTK/GTK), decrypting

and encrypting data via stored encryption keys, etc.

D. Malware module

This module adds the malicious packets into generated net-

work traffic. We have a collection of basic types of malware,

which is then analysed in sandbox environment. For each

malware the network communication are generated and stored.

These traffic traces are imported into our traffic generator,

where the malicious communication is merged and combined

with generated traffic from core module.

Malware module is also capable of generating Distributed

Denial-of-Service (DDoS) attacks data. In order to generate

DDoS network traffic we have to specify the number of bots,

packets per second and kilobytes per second. This generation

is based on a framework for generating realistic traffic for

DDoS attacks and Flash Events [15].

IV. DATA ACQUISITION

The important task in the context of this work was to create

a large database of real network traffic for each simulated

protocol. The number of captured packets for each protocol

gives us more variability while generating simulated network

traffic, so data gathered from real network traffic is key part

of our system. One of the goals of the project is to provide

customizable environment for users, therefore we also provide

a way to add additional previously captured data from users.

The data for simulating HTTP protocol were obtained from

a virtual network which consists of computers with different

operation systems. We used virtual network because of better

scalability of deployed systems and also it gives us opportunity

to automate this task in the future. The Wi-Fi part of the

traffic was generated separately on different physical network

adapters and then the final data of HTTP and Wi-Fi protocol

had to be merged together.

In this paper we aim to simulate HTTP traffic, so that

we create real network flows manually. Every single captured

flow consists of one access request and one browsing request

Copyright © 2014 ICITST-2014 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 232

of specific web page, and we have also slightly changed

virtual environment between single experiments, for example

maximum speed of the network, load of the virtual machine or

error rate. Packets were captured directly on virtual network

adapter by Wireshark [16] network sniffing tool and then they

were saved as PCAP file. Each captured file has to be named

by domain name of the corresponding web page and then

saved to the database of relevant generator module.

V. HTTP SUBMODULE

This module represents the core part of our actual work.

HTTP protocol was selected because of its complexity which

allows us to better demonstration of achieved results. The

main goal of this module is to generate valid atomic HTTP

traffic based on input behavioral patterns. Behavioral patterns

can specify the duration of communication and size of data

traffic.This generated atomic HTTP communication has to be

merged to final PCAP file based on information gathered from

the calendar. The submodule can be divided into independent

parts which are described as follows:

A. Randomizer

This part provides low level cooperation with database

of stored PCAP files. It establishes a layer between stored

files and generator engine which allows easy and transparent

reading of stored packets. The randomizer reads packets from

randomly selected file. The randomization is used in selection

process of source PCAP file. The decision to change the source

file is made by other modules; based on state of the generated

communication. This approach preserves information about

single flows in HTTP traffic i.e. if some query is processed,

the context should not be switched.

B. Selector

Selector module is used to filter packets incoming from

randomizer. Packet have to correspond to behavioral pattern

and also the state of generated communication, so if the packet

do not fit this rules it is dropped out until the best fitting packet

is selected.

C. Header rewriter

Header rewriter is used to retransform packet data. Rewrite

rules are applied on internet, transport and application layer

of TCP/IP protocol stack. In this case all IP addresses in

source incoming packets from randomizer are replaced based

on generated communication parameters. This module is not

strictly aimed for HTTP traffic but also resolves DNS queries

and replaces all affected data. HTTP header is transformed as

well, so all HTTP GET or POST messages are also modified.

D. Finalizer

The last step of workflow in HTTP submodule is finalizing

generated packets. This part performs modifications of CRC

checksums and timestamps of generated packets. This opera-

tion is crucial for preserving the validity of generated network

traffic. The modification of timestamp allows the system to

merge generated packets together and the stream of random

valid network traffic for supported protocols is created.

Fig. 2. HTTP submodule

VI. TEST AND RESULTS

The main goal of testing process is to prove that generated

network traffic satisfies the key characteristics which are cor-

respondence with behavioral pattern and validity of generated

packets. We used two approaches to verify the communication

is valid. The first approach is based on comparison of data

distribution of packets in time, the second one is based on

statistical analysis. We also manually verified generated PCAP

files in Wireshark if they are valid and flows are not corrupted.

Fig. 3. Comparison of the real network traffic with generated traffic

The fig. 3 shows packet distribution of real captured data

compared to generated traffic. Real data was captured by

visiting single page of web application and on the other

hand simulated traffic was generated with parameters (size

of communication, length of communication) corresponding

Copyright © 2014 ICITST-2014 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 233

to the real communication. The positive value on the axis

y represents inbound communication and the negative value

represents outbound communication from host machine. It is

important that the amount of inbound and outbound commu-

nication and the time distribution is comparable with realistic

traffic. The fig. 4 shows packet distribution of simulated

traffic generated with the same input parameters. The distri-

bution contains a small deviation between each traffic, but on

the other hand, communications are still very similar.

The statistical analysis was based on computation of the

average of packet size and time difference between consecutive

packets. The results of tests are shown in table I. It contains the

set of real captured packets and three traffic simulations which

tend to follow the real traffic. In this case deviations from real

communication are notable, but they still satisfy predefined

requirements.

Real traff. Sim. traff. Sim. traff. Sim. traff.

Avg. in. size [B] 455.334 576.006 1134.556 657.991

Avg out. size [B] 105.846 114.800 94.283 118.375

Avg. time diff. [s] 0.0078 0.0033 0.0030 0.0034

TABLE I
STATISTICAL ANALYSIS

Fig. 4. Comparison of two generated traffic with the same behavioral
parameters

VII. CONCLUSION

In this paper we presented the prototype of traffic gen-

erator, which generates network traffic based on predefined

behavioral patterns, further we shortly described the archi-

tecture of proposed solution and results of generating HTTP

communication. The generated traffic shows a similarity with

genuine traffic, but each generated data has a small deviation

from sample traffic,which is intentionally altered to increase

diversity and randomness of generated traffic, but in a way to

keep consistency of the communication.

We use this generator to test our behavioral reputation

system. It can generate network traffic with specific behavioral

pattern and then the reputation system detects or does not

detect this pattern and evaluation of entity reputation can

begin.

As a future work, we plan to develop new submodules for

the generator core, such as SMTP, IMAP, SSH, in order to

cover the most used network protocols to simulate real network

traffic with high accuracy. This data will be used to verify

applications such reputation systems for which is the valid

network traffic very important part.

ACKNOWLEDGMENT

The work was supported by the EU/Czech IT4Innovations

Centre of Excellence project CZ.1.05/1.1.00/02.0070 and the

internal BUT projects FIT-S-12-1 and FIT-S-14-2486.

REFERENCES

[1] C. V. Wright, C. Connelly, T. Braje, J. C. Rabek, L. M. Rossey, and R. K.
Cunningham, “Generating client workloads and high-fidelity network
traffic for controllable, repeatable experiments in computer security,” in
Recent advances in intrusion detection. Springer, 2010, pp. 218–237.

[2] C.-Y. Ku, Y.-D. Lin, Y.-C. Lai, P.-H. Li, and K.-J. Lin, “Real traffic
replay over wlan with environment emulation,” in Wireless Communi-
cations and Networking Conference (WCNC), 2012 IEEE. IEEE, 2012,
pp. 2406–2411.

[3] C. Rolland, J. Ridoux, B. Baynat, and V. Borrel, “Using litgen, a realistic
ip traffic model, to evaluate the impact of burstiness on performance,”
in Proceedings of the 1st international conference on Simulation tools
and techniques for communications, networks and systems & workshops.
ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), 2008, p. 26.

[4] S. Molnár, P. Megyesi, and G. Szabo, “Multi-functional emulator for
traffic analysis,” in Communications (ICC), 2013 IEEE International
Conference on. IEEE, 2013, pp. 2397–2402.

[5] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay, and F. D.
Smith, “Tmix: a tool for generating realistic tcp application workloads
in ns-2,” ACM SIGCOMM Computer Communication Review, vol. 36,
no. 3, pp. 65–76, 2006.

[6] S. Zander, D. Kennedy, and G. Armitage, “Kute–a high performance
kernel-based udp traffic engine,” CAIA (Center for Advanced Internet
Architectures) Technical Report, 2005.

[7] J. Laine, S. Saaristo, and R. Prior, “Real-time udp data emitter (rude)
and collector for rude (crude),” 2003.

[8] B. Adamson and S. Gallavan, “The multi-generator (mgen) toolset.” [9]
A. Botta, A. Dainotti, and A. Pescape, “Do you trust your software-based

traffic generator?” Communications Magazine, IEEE, vol. 48, no. 9, pp.
158–165, Sept 2010.

[10] G. Antichi, A. Di Pietro, D. Ficara, S. Giordano, G. Procissi, and
F. Vitucci, “Bruno: A high performance traffic generator for network

processor,” in Performance Evaluation of Computer and Telecommuni-
cation Systems, 2008. SPECTS 2008. International Symposium on, June
2008, pp. 526–533.

[11] “Ieee standard for information technology- telecommunications and
information exchange between systems- local and metropolitan area
networks- specific requirements part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifications amendment 6:
Medium access control (mac) security enhancements,” IEEE Std 802.11i-
2004, pp. 1–175, 2004.

[12] M. Kacic, P. Hanacek, M. Henzl, and P. Jurnecka, “Malware injection
in wireless networks,” in Intelligent Data Acquisition and Advanced
Computing Systems (IDAACS), 2013 IEEE 7th International Conference
on, vol. 01, Sept 2013, pp. 483–487.

[13] S. Bhatia, D. Schmidt, G. Mohay, and A. Tickle, “A
framework for generating realistic traffic for distributed denial- of-
service attacks and flash events,” Computers & Security, vol.
40, no. 0, pp. 95 – 107, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404813001673

[14] A. Orebaugh, G. Ramirez, and J. Beale, Wireshark & Ethereal network
protocol analyzer toolkit. Syngress, 2006.

Copyright © 2014 ICITST-2014 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 234

