
Real-Time Indexing of Complex Data Streams

Petr Chmelar, Michal Drozd, Michal Sebek and Jaroslav Zendulka
IT4Innovations Centre of Excellence, Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

{chmelarp, idrozd, isebek, zendulka}@fit.vutbr.cz

Abstract — The paper deals with indexing of a complex type data
stream stored in a database. We present a novel indexing schema
and framework referred to as ReTIn (Real-Time Indexing), the
objective of which is to allow indexing of complex data arriving
as a stream to a database with respect to soft real-time
constraints met with some level of confidence for the maximum
duration of insert and select operations. The idea of ReTIn is a
combination of a sequential access to the most recent data and an
index-based access to less recent data stored in the database. The
collection of statistics makes balancing of indexed and unindexed
parts of the database efficient. We have implemented ReTIn
using PostgreSQL DBMS and its GIN index. Experimental
results presented in the paper demonstrate some properties and
advantages of our approach.

I. INTRODUCTION

During last three decades data stream sources and data-in-
tensive applications has appeared [1]. In contrast to traditional
databases where data is stored in finite data sets, a data stream is
a continuous, possibly infinite stream of changing and often
high dimensional data that must be processed under some real-
time constrains usually. Examples of such applications include
network monitoring, financial and security, surveillance, sensor
networks and other applications processing temporal data. Al-
though research in real-time database systems received a lot of
attention in last two decades, the primary objective of the real-
time support in these databases was different compared to data
streams [2]. Several basic data stream specific techniques have
been developed for continuous querying [3], sliding window
query processing [4], approximate query processing [5], sam-
pling, sketching and synopsis construction [6]. Most of these
techniques rely on data stream processing in the main memory,
however this might be unsatisfactory for applications men-
tioned.

The goal is to store the data in a database. An index is a data
structure designed to increase the data access speed at the ex-
pense of decrease the data modification speed. B-tree, hashed or
bitmap are not appropriate for high-dimensional data. In addi-
tion, costs of updates limit their effective use. The problem of
index maintenance is more critical when employed advanced in-
dexing techniques for high-dimensional data as KD-tree, R-tree
or inverted index. In such a case, it may be necessary to rebuild
the index completely after some time. As a result, some data
stream specific indexing methods have been developed. Multi-
granularity aggregation indexing [7] is an integrated structure
managing summarized information of snapshots. Po-tree [8] is
an indexing structure for spatio-temporal databases with soft
real time constraints which combines two different structures

for spatial and temporal dimensions. However, we haven't found
a general approach that satisfies our needs.

Our research in real-time and data stream indexing was mo-
tivated by two areas. First is the need to index metadata of mov-
ing objects produced by computer vision modules of our experi-
mental surveillance network system SUNAR [9]. The main op-
eration of SUNAR is the persistent tracking of objects moving
in a space watched by multiple surveillance cameras. The track-
ing is based on similarity of values of moving objects character-
istics, both spatio-temporal and visual. The intelligent cameras
produce a data stream of this kind, which is necessary to index
to make the similarity search possible in near real-time. The sec-
ond domain that has motivated our research is computer secu-
rity, namely a data stream processed by an intelligent intrusion
detection system (IDPS) that monitors and analyzes the com-
puter network traffic in real time. It is based on extended data
flow protocol, which includes source and destination IP ad-
dresses, timing, packet sizes and signatures of both packets and
attacks or another data that must be logged, analyzed and re-
ported as soon as possible.

There are many other application domains that deal with
streams of spatio-temporal data representing moving objects.
For example, an air-traffic control to support decisions about
flight paths and the landing order based on data such as position,
altitude, speed or fuel left. There is rarely enough time to re-in-
dex the database under special circumstances – as in a geo-
graphic information system presented in a case study [8] that
stores and evaluates data issued from an array of spatially refer-
enced sensors, used to a natural disaster prevention.

In this paper we present an indexing schema and framework
referred to as ReTIn (Real-Time INdexing), the objective of
which is to allow indexing of complex data arriving as a stream
to a database with respect to soft real-time constraints. A con-
cept of a soft real-time constraint is similar to one known from
real-time databases [10]. It is not a hard constraint that has to be
always met but the number of its violations must be minimized.
The idea of our approach is similar to a real-time index/cache
consistency maintenance technique Codir for text retrieval sys-
tems presented in [11]. It builds a transient index for new docu-
ment updates and queries are processed using both permanent
and transient index. To minimize performance overhead associ-
ated with document database updates, Codir integrates transient
index with permanent index lazily using piggybacking [12] for
statistics.

Our indexing schema consists of two main parts where data
is stored. Values arriving in a data stream are inserted into the
unindexed part that contains the most recent data. Less recent
data is stored in the other part which is indexed on backgroud.

Queries are processed accessing data in both parts. The schema
maintenance, which includes moving data from unindexed part
to indexed one, is controlled by two soft real-time constraints
for query and insert processing and it uses piggybacking to col-
lect and update statistics. The schema maintenance runs as a
background process for all database operations.

The content of the paper is organized as follows. The next
section contains problem formulation and describes the structure
of the proposed indexing schema and operations on it. Section 4
presents experimental results and Section 5 concludes the work.

II. RETIN INDEXING SCHEMA CONCEPTS

The ReTIn indexing schema supports the most important
real-time data stream operations on a single table in the data-
base, in which a portion of the stream is stored – insert and se-
lect (executes a query). There are three parameters that control
the behavior of the indexing schema: a maximum time of insert
operation TI MAX, a maximum time of select operation TS MAX and
a confidence factor R. Then the schema meets the constraints
TI MAX and TS MAX as soft constraints with confidence R*σ where σ
is a standard deviation of execution times distribution and R a
selected confidence factor as described further.

A. Problem formulation

 Let ds be a data stream of data elements e of a type dt,
which is complex in general – composite and/or multiple-val-
ued. The data stream is processed using a sliding window. As-
sume that the window is larger than it fits in the main memory.
The content of the window is stored in a database table D, not
necessarily normalized. The size of the window is not specified
in advance. Instead, real-time constraints TI MAX and TS MAX are
(user) specified durations of insert and select operations on the
table D. Thus, the size of the window is dependent on the dura-
tion of these operations. It is required to minimize the number of
violations of the timing constraints. The softness of the con-
straints is dependent on the probability of their violation. We
can introduce estimates for maximum processing times of insert
and select operations (estimated maximum) on D: M[TI] and
M[TS], respectively:

M [TO]=μ (TO)+R∗σ (TO) (1)

where OPERATION is either INSERT or SELECT. The esti-
mates are derived from the expected duration of the operation
E[TO]. It is given by the average processing time of the opera-
tion μ(TO), and its standard deviation σ(TO). The real value R is
a confidence factor which determines together with the standard
deviation σ the confidence interval or the allowable probability
of the constraint violation. For example, provided Gaussian nor-
mal distribution the value R=3.0 results in 99.73% probability
of not exceeding the TO MAX. Data modification operations are
usually not defined on streams.

B. Proposed solution

The table D consists of two subtables, namely D0 and DI
that differ in access methods. Data in D0 is accessed by means
of full scan whereas data in DI is indexed. All incoming data of
the data stream ds is inserted into D0. DI contains less recent
data of the stream that were moved there from D0 during index-
ing schema maintenance operations in the past. The objective of
the schema maintenance operation is to improve performance to

meet the soft constraints TI MAX and TS MAX. There are two cases
that result in accomplishing the schema maintenance operation:

1) Duration of insert or select operation that is to be exe-
cuted would violate TI MAX or TS MAX with high probability,

2) full scan of D0 takes more time than access to data in DI.

To be able to check for these situations, some temporal sta-
tistics must be gathered during the execution of operations on
ReTIn. In 1) reduction of the DI part may be necessary. It is
done by moving the less resent data, which is considered to be
obsolete to some overflow storage, or by deleting it. This data
will not further be available under ReTIn constraints, but may
stay in the database. The schema maintenance operation should
not block and significantly delay insertion of new stream data
and querying the data in D. We solve it such a way that the
maintenance operation is performed asynchronously as a back-
ground process to insert and select operations. In addition, the
maintenance operation must be atomic.

 Our approach is advantageous in at least two situations.
First, when the duration of a sequential scan for a select opera-
tion on D would take much longer than a corresponding index
scanor when it would violate the constraint TS MAX. Second, when
updating an index would take much longer than a simple inser-
tion of data or it would violate the constraint TI MAX:

E [T SD0] E≫ [T SDI] , E [T S]>E [T SMAX]
(2)

E [TUI] E≫ [T I] , E [TUI]>E [T I MAX]
where E[TO] stands for expected duration of a corresponding
operation and TUI stands for index update time.

C. ReTIn Schema

The basic elements of the ReTIn indexing schema are
shown in Figure 1. It consists of the hierarchy of three tables.
All the tables have the same schema (t: timestamp, d: dt), where
timestamp is an underlying DBMSs data type and dt is the type
of an element of the data stream ds. Because the data type dt can
be a composite and/or multiple-valued, the column d can con-
tain arrays, subtypes or nested collections.

Fig. 1. Basic elements of the ReTIn indexing schema. The table D encapsulates
subtables D0, which is not indexed, and indexed one DI. DI consists of partitions

Pi. Metadata related to all partitions Pi and D0 are stored in the MD table.

D is a virtual table that encapsulates tables D0 and DI. All
clients' insert and select operations run on it (encapsulation).

D0 is a base table containing the recent data of the data stream
ds that has been inserted into D. The data is accessed by a
full scan.

DI is a virtual table that encapsulates one or more base tables Pi

(i = 1, ... k) referred to as partitions. The number of parti-
tions k changes in time. There are one or more indexes on
DI or each Pi .

MD is a base table that contains temporal statistics concerning
the insert and select operations on tables D, D0 and DI, as
illustrated in Figure 1. It will be described in more details in
the following section.

D. Operations of ReTIn

The ReTIn indexing schema provides two logical operations
to its clients (operations of the DBMS):

1. INSERT INTO D(d) VALUES(e) – inserts an element e
into table D,

2. SELECT statement – selects data from D.

 INSERT and SELECT statements are conforming the SQL
standard and they fully rely on corresponding operations of the
underlying DBMS (no special operations needed). The only ad-
ditional activities include logging of queries and the update of
temporal statistics used for the decision whether the indexing
schema maintenance operation should be performed. It is an in-
ternal operation of the ReTIn role, which changes the content of
tables D0 and DI in such a way that the soft constraints TI MAX
and TS MAX will be met for some period of time. The mainte-
nance is performed asynchronously to all operations.

All operations are described more formally below. Inputs,
outputs (data only is considered here) and preconditions used
are specified. Algorithms are described in a pseudocode.

Alg. 1. Operation INSERT

Input: e – a data stream element
Output:
Precondition: INSERT INTO D(d) VALUES(e) performed
INSERT INTO D0 VALUES (current timestamp, e);
update_insert_statistics();
SIGNAL “check RT constraints”;

Algorithm 1 presents the INSERT operation. It is ensured,
that the new value will always be inserted into the table D0
without the need to update any index. The database must sup-
port (instead) triggers. We use also table inheritance (since
SQL: 1999) for partitioning. The operation update_insert_statis-
tics() updates statistics related to the insert operation. These sta-
tistics are stored in the metadata table MD. The operation up-
dates sums that are necessary to compute the mean μ(TI) and the
standard deviation σ(TI). The statement SIGNAL represents the
sending of an asynchronous message to the process responsible
for the indexing schema maintenance operation. For example
dbms_alert in Oracle or listen/notify concept in PostgreSQL. If
the DBMS does not support this functionality, it is necessary to
set a sleep period for the maintenance process, the delay can be
derived from the frequency of insertions.

Alg. 2. Operation SELECT

Input: a select statement
Output: rs – a result set, retrieves data from D
Precondition: SELECT d FROM D … query performed
rs = EXECUTE SELECT statement;
update_query_statistics(statement);

Algorithm 2 presents the SELECT operation. Its execution
is optimized by DBMS's query processing planner and opti-
mizer. We suppose the optimizer uses indexes on the table DI
(Pi) and a full scan on the table D0 to access the data from the
table D. Next, the update_query_statistics() operation logs the
query in a log, which may be standard log of the DBMS. We
use pgFouine to analyze the logs and to compute temporal sta-
tistics of of SELECT operations. For the purposes of testing, we
perform some queries in the indexing_schema_maintenance()
process and measure their duration. It calculates the mean μ(TS)
and standard deviation σ(TS) of the queries duration on D.
Moreover, it calculates the mean value μ(TS DI) of the durations
of accessing data in DI employing indexes and the mean value
μ(TS D0) of the durations of the accessing data in D0.

Alg. 3. Process indexing_schema_maintenance()

Input: user-defined constraints, table MD
Output: schema changes
Precondition: A signal “check RT constraint”

 or a batch of INSERTs
M[TI] = μ(Ts) + n*σ(Ts);
if M[TI] > TI MAX then
 raise warning “Insufficient Hardware”;
M[TS] = μ(Ts) + R*σ(TS);
E[TS DI] = μ(Ts DI);
E[TS D0] = μ(Ts D0);
if M[TS] > TS MAX or E[TS D0] > E[TS DI] then {
 create new virtual table DI';
 if M[TS DI] > TS then
 exclude partition P1 from DI';
 if E[TS D0] > E[TS DI] then {
 data in D0 make a new partition Pk+1;
 include partition Pk+1 into DI';
 }
 create indexes for DI';
 replace DI with DI';
}

In algorithm 3, expressions E[X] and M[X], in accordance
with (1), stand for expected value and estimated maximum
value of X. The first condition (if) in the algorithm checks the
insert operation durations to meet the soft real-time constraint
TI MAX. If it is violated, the situation is just reported, because the
ReTIn does not use any index while inserting the data, so there
is no related overhead that could be reduced.

The second condition checks the temporal constraints and
defines when the indexing schema operation should be per-
formed. Until the condition is met, the balancing of the execu-
tion time of the full scan on D0 and the index data access on DI
is considered to be optimal. The indexing schema maintenance
operation can be executed if one or both of the following condi-
tions are met – The duration of select operations on the indexed
data part are about to break the user-defined TS MAX or sequential
selects last longer than the indexed ones. In such cases the
schema is changed and indexes are created. The re-indexing
process is accomplished by the atomic replacement of the dep-
recated logical index table DI with DI'.

You can download ReTIn on PostgreSQL implementation at
http://www.fit.vutbr.cz/research/prod/index.php.en?id=129 un-
der GNU General Public License.

http://www.fit.vutbr.cz/research/prod/index.php.en?id=129

III. EXPERIMENTAL RESULTS

We used a dataset of meteorological observations em Global
Surface Summary of Day Data (GSOD) [13] for experiments.
GSOD is a product archived at the National Climatic Data Cen-
ter (NCDC) to make a wide range of climatic data available to
researchers and the public. The on-line data files cover the time
period from 1929. They contain data from more than 9,000 sta-
tions. Each record contains the global summary of day data con-
taining 18 surface meteorological means and maximums and
other characteristics as temperature, dew point, sea level pres-
sure, visibility, wind speed together with precipitation amount,
snow depth and indicators for occurrence of fog, rain or drizzle,
snow or ice pellets, hail, thunder, and tornado/funnel cloud sum-
mary. Although this is not typical data with critical real-time
constrains, but their huge ammount, spatio-temporal and data
stream nature and the general availability make them ideal for
repeatable experiments.

The GSOD data were represented by an array of integers.
Float values in the dataset were rescaled and converted into in-
tegers due to performance and memory saving reasons. Then the
table D into which the data is stored in the database had schema
D(t: timestamp, d: array of integer). ReTIn implementation
based on the PostgreSQL 8.4 database management system and
the Generalized Inverted Index (GIN) index, recommended for
indexing of large arrays, ran on a server 2 x AMD Opteron 2435
(6 cores, 2.6GHz), 64GB RAM and 2.5TB RAID-6.

The goal of the first experiment was to show dependency of
the execution times of insert and select operations on the
amount of data in the database for given constraints TI MAX and
TS MAX. There were three approaches to access data used: unin-
dexed data, GIN indexed data and by means of the ReTIn in-
dexing schema. The experiment was evaluated on 500,000
records of 1950's GSOD data. Size of the table D was about
240 MB including the GIN index structure.

The methodology of the experiment was as follows: Records
were sequentially inserted into the data table. Average and max-
imum execution times of insertions were measured for batches
of 100 insertions. Average and maximum durations of queries
were measured by a set of queries for batches of 1,000 inser-
tions. The same set of queries with the contains array operator
was used in the batches. A result set of queries contained 5 to
50% of all records in the table. Execution times were measured
by stored functions on the database server. They are equivalent
to the EXPLAIN ANALYZE query. During this experiment we
set both TI MAX and TS MAX constraints to 0.3s and R = 3σ. The ex-
periment was repeated 3 times to avoid random noise.

Figure 2 shows dependency of average and maximum exe-
cution times on the size of the table D without any index on data
column d. This approach was very fast for insertion but execu-
tion times of queries increased linearly with the number of
records. The 0.3s time constraint was permanently broken for
more than 460,000 inserted records in the table. This corre-
sponds to our expectation because of the full scan access to data.

a)

b)

Fig. 2. Execution times of (a) insertions, (b) queries on the database table
without an index on column d.

a)

b)

Fig. 3. Execution times of (a) insertions, (b) queries on the database with
the GIN index on column d.

a)

b)

Fig. 4. Execution times of (a) insertions, (b) queries on table D of the
ReTIn index schema.

a)

b)

Fig. 5. Re-indexation aspects: (a) average times of queries on D0 and DI tables,
(b) dependency of the size of the D0 table on the number of executions of the in-
dex schema maintenance operation.

Figure 3 shows the same situation as in 2, when the GIN in-
dex on data column d was created. The problem of this ap-
proach is shown in Figure 3 a). There are many insertion execu-
tion time peaks between 110,000 and 180,000 records. The
cause of this phenomenon is the necessity to re-build the index
structure. The maximum execution time of queries exceeded the
value 0.3s of the TS MAX constraint many times.

The results for ReTIn are presented in Figure 4. They show
the benefit of the proposed indexing schema. Maximum inser-
tion execution times in figure 4 a), were all below the value 0.3s
of the TI MAX constraint. Execution times were slower only when
the indexing schema maintenance operation was performed. Ex-
ecution times of queries shown in Figure 4 b) demonstrate the
benefit of our approach - the ReTIn indexing schema combines
a stable time of insertion with balanced query processing.

Figure 5 provides a more detailed view of the behavior of
the ReTIn schema with respect to tables D0 and DI. Figure 5 a)
shows the decomposition of the average execution times from
Figure 4 b) to the times spent by partial queries accessing data
in tables D0 and DI. Figure 5 b) shows the dependency of the
size of the D0 table on the number of executions of the indexing
schema maintenance operations. At the beginning, the full-scan
search is very fast but grows linearly. As the number of records
grow, more data is searched using the index and the total execu-
tion times grows logarithmically. It has proved our hypotheses
stated in section 2.

The second experiment was focused on the concurrency
properties of the ReTIn. We simulated concurrent transactions
by two groups of clients. The first one generated transactions
containing an insert operation, the other queries. There were
several threads running in parallel. We used the same set of data
as in the first experiment. We evaluated the dependency of con-
straint violations on the number of parallel queries and inser-
tions performed three times a second.

Table 1 shows main results of the experiment. We expected
maximum violation rate about 0.3% by setting the confidence
factor R = 3σ. The experiment showed that ReTIn limit for
TI MAX on this hardware is about 150 transactions a second – 25
parallel insertions and 25 parallel queries 3 times a second (the
row picked in bold in Table 1). This value also determines the
maximum size of the data stream sliding window. For more
transactions, the window size would have to be reduced to about
200,000 items for 300 transactions a second in our case. If we
compare the same experiment with data stored only in table
with a GIN index – see the last row in Table 1, which corre-
sponds 150 transactions a second, we can see the benefit of
ReTIn. It fails about twice less for querying and 10 times less
for the data insertion.

TABLE I. THE CONCURRENCY EXPERIMENT

Threads Queries failed Inserts failed
Using ReTIN indexing schema

10+10 0.00% 0.03%
25+25 0.52% 0.31%
 50+50 1.13% 0.54%

Using simple GIN index
25+25 1.23% 3.84%

IV. CONCLUSIONS

We have proposed, implemented and evaluated a soft real-
time indexing schema called ReTIn. It makes it possible to in-
dex a portion of a data stream stored in a database effectively
and to meet real-time constraints for insert and select operations
with some confidence. It combines storing the most recent data
unindexed and indexing less recent data. The former is advanta-
geous from insert operation point of view, but results in a full
scan access for select operations. The latter provides more ef-
fective access to the rest of data. The indexing schema mainte-
nance operation optimizes the balance between unindexed and
indexed data access with respect to the real-time constraints. It
is performed asynchronously to clients' insert and select opera-
tions, which are standard SQL queries.

The experimental evaluation showed advantages in compari-
son with indexing all data stored in the database. We used the
efficient PostgreSQL's GIN index both in our ReTIn implemen-
tation and as a competitive access method in the experiments.
They showed that ReTIn behaves appropriately for insertion and
selection operations on both indexed and unindexed data in the
database. Moreover, it changes its behavior automatically ac-
cording to the system load – it changes the width of the sliding
window that defines the number of data stream elements stored
in the database.

The ReTIn framework does not specify the type of index
used for indexing. Current DBMSs usually provide several
types, some of them are suitable for indexing complex data,
similarity search etc., for example KD-tree or R-tree. Their dis-
advantage often is high overhead of insertions. ReTIn can cush-
ion this problem and allow indexing data streams containing
complex data, e.g. spatio-temporal and arrays.

In the future, we intent to continue experimental evaluation
of ReTIn with other types of indexes. In addition, we will focus
on the ReTIn deployment and optimization for our surveillance
network system SUNAR and the network security project, for
which it was originally designed.

ACKNOWLEDGMENTS

This work has been supported by the research project Secu-
rity-Oriented Research in Information Technology CEZ
MSM0021630528, grant VG20102015006 of the Ministry of
the Interior of the Czech Republic, the European Regional De-
velopment Fund in the IT4Innovations Centre of Excellence
(CZ.1.05/1.1.00/02.0070) and with a financial support from the
Czech Republic state budget through the Ministry of Industry
and Trade.

REFERENCES

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models

and issues in data stream systems,” in Proceedings of the twenty-first

ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems, Madison, Wisconsin, 2002, pp. 1–16.

[2] T.-W. Kuo and K.-Y. Lam, “Real-time Database Systems: An

Overview of System Characteristics and Issues,” in Real-Time Database

Systems, 2001, pp. 3–8.

[3] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query

language: semantic foundations and query execution,” The VLDB

Journal, vol. 15, no. 2, pp. 121–142, 2006.

[4] J. Krämer and B. Seeger, “Semantics and implementation of continuous

sliding window queries over data streams,” ACM Trans. Database Syst.,

vol. 34, no. 1, pp. 1–49, 2009.

[5] M.-J. Hsieh, M.-S. Chen, and P. S. Yu, “Approximate Query

Processing in Cube Streams,” IEEE Transactions on Knowledge and

Data Engineering, vol. 19, pp. 1557–1570, 2007.

[6] C. C. Aggarwal, Data Streams: Models and Algorithms. Springer US,

2007.

[7] J. Feng, Y. Wang, J. Yao, and T. Watanabe, “Multi-Granularity

Aggregation Index for Data Stream,” in Cyberworlds, International

Conference on, Los Alamitos, CA, USA, 2008, pp. 767–771.

[8] G. No, S. Servigne, and R. Laurini, “The Po-tree: a Real-time

Spatiotemporal Data Indexing Structure,” in Developments in Spatial

Data Handling, Springer Berlin Heidelberg, 2005, pp. 259–270.

[9] P. Chmelar, A. Lanik, and J. Mlich, “SUNAR: Surveillance Network

Augmented by Retrieval,” in ACIVS 2010, 2010, pp. 155–166.

[10] B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying update streams

in a soft real-time database system,” SIGMOD Rec., vol. 24, no. 2, pp.

245–256, 1995.

[11] T. Chiueh and L. Huang, “Efficient Real-Time Index Updates in Text

Retrieval Systems,” EXPERIMENTAL COMPUTER SYSTEMS LAB,

DEPARTMENT OF COMPUTER SCIENCE, STATE UNIVERSITY OF

NEW, 1999.

[12] Q. Zhu, B. Dunkel, N. Soparkar, S. Chen, B. Schiefer, and T. Lai, “A

piggyback method to collect statistics for query optimization in database

management systems,” in Proceedings of the 1998 conference of the

Centre for Advanced Studies on Collaborative research, Toronto,

Ontario, Canada, 1998, p. 25.

[13] “Global Surface Summary of the Day - GSOD.” NOAA.

	I. Introduction
	II. ReTIn indexing schema concepts
	A. Problem formulation
	B. Proposed solution
	C. ReTIn Schema
	D. Operations of ReTIn

	III. Experimental Results
	IV. Conclusions

