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Abstract: This article discusses problems and decisions related to scheduling of stream 
processing applications in heterogeneous clusters. An overview of the current state of the art of 
the stream processing on heterogeneous clusters with a focus on resource allocation and 
scheduling is presented first. Then, common scheduling approaches of various stream processing 
frameworks are discussed and their limited applicability in the heterogeneous environment  
is demonstrated on a simple stream application. Finally, the article presents a novel 
heterogeneity-aware scheduler for the stream processing frameworks based on design-time 
knowledge as well as benchmarking techniques. It is shown that the scheduler overcomes 
alternatives in resource-aware deployment over cluster nodes and thus it leads to a better 
utilisation of the clusters. 
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1 Introduction 

As the internet grows bigger, the amount of data that can be 
gathered, stored, and processed constantly increases. 
Traditional approaches to processing of big data, e.g., the 
data of crawled documents, web request logs, etc., involves 
mainly the batch processing techniques on very large shared 
clusters running in parallel across hundreds of commodity 
hardware nodes. Considering the static nature of such 
datasets, the batch processing appears to be a suitable 
technique both in terms of the data distribution and  
of the task scheduling. Consequently, the distributed  
batch processing frameworks, e.g., the frameworks that 
implement the MapReduce programming paradigm by Dean 
and Ghemawat (2008), have proved to be very popular. 

However, the traditional approaches developed for the 
processing of static datasets cannot provide the low latency 
responses, which are needed for the continuous and real-
time stream processing when the new data is constantly 
arriving even as the old data is being processed. In the data 
stream model, some or all of the input data to be processed 
are not available in a static dataset but rather they arrive as 
one or more continuous data streams, as described by 
Babcock et al. (2002). The traditional distributed processing 
frameworks like MapReduce are not well suited to process 
the data streams due to their batch orientation. The response 
times of those systems are typically greater than 30 seconds 
while the real-time processing requires the response times in 
the (sub)seconds range, as noted by Brito et al. (2011). 

To address the distributed stream processing, several 
platforms for data or event stream processing systems have 
been proposed, e.g., S4 by Neumeyer et al. (2010) and 
Storm by Marz (2014). In this article, we build upon one of 
these distributed stream processing platforms, namely 
Storm. Storm defines a distributed processing in terms of 
streams of data messages flowing from the data sources 
(referred to as spouts) through a directed acyclic graph 
(DAG) (referred to as a topology) of the interconnected data 
processors (referred to as bolts). A single Storm topology 
consists of the spouts that inject streams of data into the 
topology and the bolts that process and modify the data. 

Contrary to the distributed batch processing approach, 
the resource allocation and the scheduling in the distributed 
stream processing is much more difficult due to the dynamic 
nature of the input data streams. In both cases, the resource 
allocation deals mainly with a problem of gathering and 
assigning resources to the different requesters while 
scheduling cares about which tasks and when to place on 
which previously obtained resources, as described by 
Vinothina et al. (2012). 

In case of the distributed batch processing, both the 
resource allocation and the task scheduling can be done 
prior to the processing of a batch of jobs based on the 
knowledge of the data and the tasks to be processed and on 
the knowledge of the distributed environment. Moreover, 
during the batch processing, required resources are often 
simply allocated statically from the beginning to the end of 
the processing. 

In case of the distributed stream processing, which is 
typically continuous, the dynamic nature of the input data 
and unlimited processing time requires a dynamic allocation 
of shared resources and a real-time scheduling of tasks 
based on actual intensity of the input data flow, actual 
quality of the data, and actual workload of a distributed 
environment. For example, the resource allocation and the 
task scheduling in Storm involves a real-time decision 
making that considers how to replicate the bolts and spread 
them across the nodes of a cluster to achieve required 
scalability and fault tolerance. 

This article deals with problems of scheduling in 
distributed data stream processing on heterogeneous 
clusters. The article is organised as follows. In Section 2, 
the stream processing on heterogeneous clusters is discussed 
in detail with focus on the resource allocation and the task 
scheduling, along with that, the related work and the 
existing approaches are analysed. In Section 3, a use case of 
distributed stream processing is presented. Section 4 deals 
with scheduling decisions in the use case. Based on the 
analysis of the scheduling decisions, Section 5 proposes a 
concept of a novel scheduling advisor for the distributed 
stream processing on heterogeneous clusters. The 
implementation and evaluation of the proposed scheduling 
advisor is described in Section 6. Furthermore, Section 7 
describes possible utilisation of the scheduling advisor in 
development process of applications for distributed stream 
processing. Finally, Section 8 outlines future work on the 
scheduling advisor and provides conclusions of the article. 

2 Stream processing on heterogeneous clusters 

In homogeneous computing environments, all nodes have 
identical performance and capacity. Resources can be 
allocated evenly across all available nodes and effective 
task scheduling is determined by quantity of the nodes not 
by their individual quality. Typically, the resource 
allocation and the scheduling in the homogeneous 
computing environments balances workload across all the 
nodes which results in the identical workload on each 
particular node. 

Contrary to the homogeneous computing environments, 
there are different types of nodes with various computing 
performance and capacity in a heterogeneous cluster. The 
high-performance nodes then can complete the processing 
of identical data faster than the low-performance ones. 
Moreover, the performance of the nodes depends on the 
character of computation and on the character of input data. 
For example, graphic-intensive computations will run faster 
on nodes that are equipped with powerful GPUs while 
memory-intensive computation will run faster on nodes  
with large amount of RAM or disk space. To balance 
workload in a heterogeneous cluster optimally, a scheduler 
has to 
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1 know the performance characteristics of the individual 
types of nodes employed in the cluster for different 
types of computations 

2 know or to be able to analyse the computation 
characteristics of incoming tasks and input data. 

The first requirement, i.e., the performance characteristics 
for individual types of employed nodes, means the 
awareness of the infrastructure and the topology of a cluster 
including a detailed specification of its individual nodes. In 
most cases, this information is provided at cluster design-
time by its administrators and architects. Moreover, the 
performance characteristics of individual nodes employed in 
a cluster can be adjusted at the cluster’s run-time based on 
the historical data of the cluster’s performance monitoring 
and the statistical analysis of different combinations of the 
computations, the data, and the types of nodes. 

The second requirement is the knowledge or the ability 
to analyse the computation characteristics of incoming tasks 
and input data. In batch processing, tasks and data in a batch 
can be annotated or analysed in advance, i.e., before the 
batch is executed, and the knowledge acquired this way can 
be utilised to find the near optimal allocation of the 
resources and to find the efficient task scheduling. In the 
stream processing, the second requirement is much more 
difficult to meet due to continuous flow and unpredictable 
variability of the input data. These make the thorough 
analysis of the computation characteristics for the input data 
and the incoming tasks impossible especially with the  
real-time limitations in their processing. 

To address the above mentioned issues of the stream 
processing in the heterogeneous clusters with optimal 
performance, user-defined tasks that process (at least some 
of) the input data have to help the scheduler with its work. 
For example, to achieve a better scheduling, an application 
may include some user-defined helper-tasks tagging the 
input data at run-time by their expected computation 
characteristics (such as tagging parts of variable-bit-rate 
video streams with temporary high bit-rate for processing 
by special nodes with powerful video decoders, while 
average bit-rate parts can be processed by common  
nodes). Moreover, individual tasks of a stream application  
should be tagged according to their required computation 
resources and real-time constraints on the processing at the 
design-time to help with their future scheduling. The 
implementation of the mentioned design-time task tagging 
should be a part of the modelling (a meta-model) of the 
topology and the infrastructure of such applications. 

With knowledge of the performance characteristics for 
the individual types of nodes employed in a cluster and with 
knowledge or the ability to analyse the computation 
characteristics of incoming tasks and input data, the 
scheduler has enough information for balancing the 
workload of the cluster nodes and optimising the throughput 
of an application. Related scheduling decisions, e.g., 
rebalancing of the workload, are usually done periodically 
with an optimal frequency. Note that an intensive 
rebalancing of the workload across the nodes can cause high 

overhead while an occasional rebalancing may not utilise all 
nodes optimally. 

2.1 Related work 

Over the past decade, the stream processing has been the 
subject of a vivid research. Existing approaches can 
essentially be categorised by scalability into centralised, 
distributed, and massively-parallel stream processors. In this 
section, we will focus mainly on the distributed and the 
massively-parallel stream processors but also on their 
successors exploiting ideas of the MapReduce paradigm in 
the context of the stream processing. 

In the distributed stream processors, the related work is 
mainly based on Aurora*, which has been introduced by 
Cherniack et al. (2003) to address the scalable distributed 
processing of data streams. An Aurora* system is a set of 
Aurora* nodes that cooperate via an overlay network within 
the same administrative domain. The nodes can freely 
relocate the load by decentralised, pairwise exchange of the 
Aurora stream operators. Sites running the Aurora* systems 
from different administrative domains can be integrated into 
a single federated system by Medusa by Cherniack et al. 
(2003). Abadi et al. (2005) introduced a refined QoS 
optimisation model for Aurora*/Medusa where the effects 
of the load shedding on QoS can be computed at every point 
in the data flow, which enables better strategies for the load 
shedding. 

Massively-parallel data processing systems, in contrast 
to the distributed (and also centralised) stream processors, 
have been designed to run on and efficiently transfer large 
data volumes between hundreds or even thousands of nodes. 
Traditionally, those systems have been used to process finite 
blocks of data stored on distributed file systems. However, 
newer systems such as Dryad by Isard et al. (2007), Hyracks 
by Borkar et al. (2011), CIEL by Murray et al. (2011), 
DAGuE by Bosilca et al. (2012), or the Nephele framework 
by Warneke and Kao (2011) allow to assemble complex 
parallel data flow graphs and to construct pipelines between 
individual parts of the flow. Therefore, these parallel data 
flow systems in general are also suitable for the streaming 
applications. 

The latest related work is based mainly on the 
MapReduce paradigm or its concepts in the context of 
stream processing. At first, Condie et al. (2010) extended 
the original Hadoop to Hadoop Online by ability to stream 
intermediate results from the map tasks to the reduce tasks 
as well as the possibility to pipeline the data across different 
MapReduce jobs. To facilitate these new features, the 
semantics of the classic reduce function has been extended 
by time-based sliding windows. Li et al. (2011) picked  
up this idea and further improved the suitability of  
Hadoop-based systems for continuous streams by replacing 
the sort-merge implementation for partitioning by a new 
hash-based technique. Finally, in the Muppet system by 
Lam et al. (2012), the reduce function of MapReduce was 
replaced by a more generic and flexible update function. 

S4 by Neumeyer et al. (2010) and Apache Storm by 
Marz (2014), which is used in this article, can also be 



 Heterogeneity-aware scheduler for stream processing frameworks 73 

classified as massively-parallel data processing systems 
with a clear emphasis on a low latency. These systems are 
not based on MapReduce but allow developers to assemble 
an arbitrarily complex DAG of processing tasks. For 
example, Storm does not use the intermediate queues to 
pass the data items between tasks. Instead, the data items 
are passed directly between the tasks using batch messages 
on the network level to achieve a good balance between the 
latency and the throughput. 

The distributed and massively-parallel stream processors 
mentioned above usually do not explicitly solve adaptive 
resource allocation and task scheduling in heterogeneous 
environments. For example, Balazinska et al. (2004) 
analysed how Aurora*/Medusa handles time-varying load 
spikes and provides high availability in the face of network 
partitions. They concluded that Medusa with the Borealis 
extension does not distribute the load optimally but it 
guarantees acceptable allocations; i.e., either no participant 
operates above its capacity, or, if the system as a whole is 
overloaded, then all participants operate at or above 
capacity. The similar conclusions can be done also in the 
case of the previously mentioned massively-parallel data 
processing systems. For example, DAGuE does not target 
the heterogeneous clusters which utilise the commodity 
hardware nodes but can handle an intra-node heterogeneity 
of clusters of supercomputers where DAGuE scheduler 
decides at runtime which tasks to run on which resources, as 
described by Bosilca et al. (2012). 

Another already mentioned massively-parallel stream 
processing system, Dryad by Isard et al. (2007), is equipped 
with a robust scheduler which takes care of the nodes’ 
liveness, the rescheduling of failed jobs, and tracks the 
execution speed of different instances of each processor. 
When one of these instances under-performs the others, a 
new instance is scheduled in order to prevent slowdowns of 
the computation. Dryad scheduler works in greedy mode, 
i.e., it does not consider sharing of the cluster among 
multiple systems. 

Finally, in case of approaches based on the MapReduce 
paradigm or its concepts, resource allocation and scheduling 
of the stream processing on the heterogeneous clusters is 
necessary due to utilisation of the commodity hardware 
nodes. In the stream processing, data placement and 
distribution are given by a user-defined topology [e.g., by 
pipelines in Hadoop Online by Condie et al. (2010), or by a 
DAG of interconnected spouts and bolts in Apache Storm 
by Marz (2014)]. Therefore, the approaches to the adaptive 
resource allocation and scheduling have to discuss an initial 
distribution and a periodic rebalancing of a workload (i.e., 
tasks, not data) across the nodes according to the different 
processing performance and specialisation of the individual 
nodes in a heterogeneous cluster. 

For instance, S4 by Neumeyer et al. (2010) uses Apache 
ZooKeeper to coordinate all operations and for the 
communication between the nodes. Initially, a user defines 
in ZooKeeper the nodes that should be used for the 
particular tasks of a computation. Then, S4 employs 

additional nodes as the backups for possible node failures 
and for load balancing. 

An adaptive scheduling in Apache Storm has been 
addressed by Aniello et al. (2013). They proposed two 
generic schedulers that adapt their behaviour according to a 
topology and a run-time communication pattern of an 
application. Experiments shown an improvement in latency 
of the event processing in comparison to the default Storm 
scheduler. However, the proposed schedulers do not take 
into account the requirements discussed in the beginning of 
Section 2, i.e., the explicit knowledge of performance 
characteristics for individual types of nodes employed in a 
cluster for different types of computations and the ability to 
analyse the computation characteristics of incoming tasks 
and input data. By implementation of these requirements, 
the efficiency of the scheduling can be improved. 

3 Use case 

To demonstrate the scheduling problems anticipated in the 
current state of the art of the stream processing on the 
heterogeneous clusters, a sample application is presented in 
this section. The application ‘popular stories’ implements a 
use case of the processing of continuous stream of  
web-pages from thousands of RSS feeds. It analyses the 
web-pages in order to find the texts and photos identifying 
the most popular connections between persons and related 
keywords and pictures. The result is a list of triples  
(a person’s name, a list of keywords, and a set of photos) 
with meaning: a person frequently mentioned in the context 
of the keywords (e.g., events, objects, persons, etc.) and the 
photos in the recent time. The application holds a list of 
triples with the most often seen persons, keywords, and 
pictures in context of some period of time. This way, 
current trends of the persons related to the keywords with 
the relevant photos can be obtained. 

The application utilises Java libraries and components 
from various research projects and Apache Storm as the 
stream processing framework. Figure 1 depicts the spouts 
and bolts (components) of the application and its topology, 
as known from Apache Storm. The components can be 
scaled into multiple instances and deployed on different 
cluster nodes. 

The stream processing starts by the URL generator 
spout, which extracts URLs of web-pages from RSS feeds. 
After that, the downloader gets the (X)HTML source, 
styles, and pictures of each web-page and encapsulates them 
into a stand-alone message. The message is passed to the 
analyser bolt, which searches the web-page for person 
names and for keywords and pictures in context of the 
names found before. The resulting pairs of the  
name-keyword are stored in the tops list in the in-memory 
store NK, which is updated each time a new pair arrives, at 
the same time, excessively old pairs are removed from the 
computation of the list. In other words, the window of a 
time period is held for the tops list. All changes in the tops 
list are passed to the in-memory store NKP. 
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Figure 1 A Storm topology of the sample application (see online version for colours) 

 
Notes: ‘S’ – nodes are the Storm spouts generating data and ‘B’ – nodes are the Storm bolts processing the data. 

 
Moreover, pairs of the name-picture emitted by the analyser 
are processed in the image feature extractor to get indexable 
features of each image, which later allows to detect the 
different instances of the same pictures (e.g., the same photo 
in the different resolution or with the different cropping). 
The image features are sent to the in-memory store NP 
where the tops list of the most popular persons and the 
related unique image pairs is held. The memory stores 
employ the Apache Lucene search engine with distributed 
indexes by Hadoop-based storage Katta for Lucene to detect 
the different instances of the same pictures as was 
mentioned above. All modifications in the tops list of the  
in-memory store NP are emitted to the In-memory store 
NKP, which maintains a consolidated tops list of the 
persons with related keywords and pictures. This tops list is 
persistent and available for a further querying. 

The individual components of the application described 
above, both the spouts and the bolts, utilise the various 
types of resources to perform the various types of 
processing. More specifically, the URL generator and the 
downloader have low CPU requirements, the analyser 
requires fast CPU, the image feature extractor can employ a 
GPU using the OpenCL, and all the in-memory stores 
require a large amount of memory. Therefore, the 
application may utilise a heterogeneous cluster with an 
adaptive resource allocation and scheduling. 

4 Scheduling decisions in the stream processing 

Schedulers make their decisions on a particular level of 
abstraction. They do not try to schedule all live tasks to all 
possible cluster nodes but they just deal with units of equal 
or scalable size. For example, the YARN scheduler uses 
containers with various amounts of cores and memory and 
Apache Storm uses slots of equal size (one slot per CPU 
core) where, in each slot, multiple spouts or blots of the 
same topology may run. 

One of the important and commonly adopted scheduler 
decisions is data locality. For instance, the main idea of 
MapReduce is to perform the computations by the nodes 
where the required data are saved both to prevent intensive 
data loading to a cluster before the computations and to 
prevent removing of the data from the cluster after the 
computations. The data locality decisions from the stream 
processing perspective are different because the processors 
usually do not operate on a data already stored in a 
processing cluster but rather on the streams coming from 
remote sources. Thus, in the stream processing, we consider 
the data locality to be an approach to minimal 
communication costs, which results, for example, in 
scheduling of the most communicating processor instances 
together to the same node or the same rack. 

The optimal placement of tasks across cluster nodes 
may, moreover, depend on other requirements beyond the 
communication costs mentioned above. Typically, we 
consider the CPU performance or the overall node 
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performance that makes the processing faster. For example, 
the performance optimisation may lie in detection of tasks 
which are exceedingly slow in comparison to the others 
with the same signature. More sophisticated approaches are 
based on various kinds of benchmarks performed on each 
node in a cluster while the placement of a task is decided 
with respect to its detected performance on a particular node 
or a class of nodes. Furthermore, the presence of some kinds 
of resources, e.g., GPU or FPGA, can be taken into account. 

There are two essential kinds of the scheduling 
decisions: offline decisions and online decisions. The former 
is based on the knowledge the scheduler has before any task 
is placed and running. In context of stream processing, this 
knowledge is mostly the topology and the offline decisions 
can, for example, consider communication channels 
between nodes. Online decisions are made with information 
gathered during the actual execution of an application, i.e., 
after or during the initial placement of its tasks over a 
cluster nodes. So the counterpart for the offline topology-
based communication decision is a decision derived from 
the real bandwidths required between the running processor 
instances, as described by Aniello et al. (2013). In effect, 
the most of the scheduling decisions in the stream 
processing are made online or based on the historical online 
data. 

4.1 Storm’s default scheduler 

The Storm’s default scheduler uses a simple round-robin 
strategy. It deploys bolts and spouts (collectively called 
processors) so that each node in a topology has almost the 
equal number of processors running in each slot even for the 
multiple topologies sharing the same cluster. When tasks are 
scheduled, the round-robin scheduler simply counts all 
available slots on each node and puts the processor 
instances to be scheduled one at the time to each node while 
keeping the order of nodes constant. 

In a shared heterogeneous Storm cluster running 
multiple topologies of different stream processing 
applications, the round-robin strategy may, for the sample 
application described in Section 3, result in the scenario 
depicted in Figure 2. The portrayed cluster consists of four 
nodes with the different hardware configurations, i.e., fast 
CPU, slow CPU, lots of memory, and GPU equipped  
(see Figure 2), so the number of slots available at each node 
differs but the same portion (the same number of slots) of 
each node is utilised as the consequence of the round-robin 
scheduling. Moreover, the default scheduler did not respect 
different requirements of the processors. The analysers 
requiring the CPU performance were placed to the node 
with lots of memory while the memory greedy in-memory 
stores were scheduled to the nodes with the powerful GPU 
and the slow CPU, which led to the need of higher level of 
parallelism of ‘MS NP’. The fast CPU node then runs the 
undemanding downloaders and the URL generator. Finally, 
the image extractors were placed to the slow CPU node and 
the high memory node. Therefore, it is obvious that the 
scheduling decision was relatively wrong and it results into 
inefficient utilisation of the cluster. 

Figure 2 Possible results of the Storm default round-robin 
scheduler (see online version for colours) 

 
Notes: URL – URL generator; Dx – downloader;  

Ax – analyser; IEx – image feature extractor; 
MSx – in-memory store 

5 Proposed scheduling advisor 

The proposed scheduling advisor targets to the offline 
decisions derived from the results of performance test sets 
of each resource type in combination with a particular 
component (a processor). Therefore, every application 
should be benchmarked on a particular cluster prior to its 
run in a production. 

The benchmarking will run the application with 
production-like data and after the initial random or  
round-robin placement of processors over the nodes, it will 
reschedule the processors so that each processor is 
benchmarked on each class of hardware nodes. The 
performance of processors will be measured based on the 
number of tuples processed in a time period. Finally, with 
the data from the benchmarks, scheduling in the production 
will minimise the overall calculated loss of performance in 
the deployment on the particular resources in comparison to 
the performance in the ideal deployment, i.e., the one where 
each processor runs on the node with its top performance 
measured in the benchmarking phase. 

Later, the scheduler can also utilise the performance 
data captured during the production run. These data will be 
taken into consideration as the reflection of the possible 
changes of processed data, and the new scheduling 
decisions will (in some situations) prefer them over the 
performance information from the benchmarking phase. 
Moreover, with employment of the production performance 
data, an application can be deployed initially using the 
round-robin and then gradually rescheduled in reasonable 
intervals. The first few reschedules have to be random to 
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gather initial differences in the performance per processor 
and node class. Then, the scheduler can deploy some of the 
processors to currently best known nodes and other 
processors to nodes with yet unknown performance. 
However, when omitting the benchmarking phase, a new 
application without the historical performance data may 
temporarily under-perform and more instances of its 
processors may be needed to increase the degree of 
parallelism. On the other hand, without the benchmarking 
phase, the new application can be deployed with no delays 
and can utilise even the nodes that have not yet been 
benchmarked (e.g., the new nodes or the nodes occupied by 
other applications during the benchmark phase on a shared 
cluster). 

Figure 3 The advanced scheduling in a heterogeneous cluster 
(see online version for colours) 

 
Notes: High memory and Fast CPU nodes are mutually 

swapped in comparison with Figure 2. 
URL – URL generator; Dx – downloader;  
Ax – analyser; IEx – image feature extractor; 
MSx – in-memory store 

5.1 Scheduling of the example use case application 

The proposed scheduler is trying to deploy the processors to 
the available slots that are running on nodes with the most 
suitable resource profile. Therefore, the scheduler may 
possibly deploy fewer instances of the processors than the 
Storm’s default scheduler in the same cluster and probably 
even with higher throughput. In the case of the sample 
application, the deployment by the proposed scheduler may 
look like the one depicted in Figure 3. The in-memory stores 
were deployed on the node with a high amount of memory 
and the image feature extractors were deployed on the node 
with the two GPUs so it was possible to reduce the 
parallelism of the bolt. The undemanding downloaders were 
placed on the slow CPU node and the analysers utilise the 
fast CPU node. Possibly even more effective scheduling 

may be achieved by the combination of pre-production and 
production benchmarking discussed in Section 5. Then, the 
scheduling decisions can be based on the actual bandwidths 
between the processors with the consideration of the  
trade-offs between the bandwidth availability on particular 
nodes shared among the multiple applications and the 
availability of more suitable nodes in the perspective of 
performance. 

6 Implementation and evaluation of the 
scheduling advisor 

The scheduling advisor has been developed within the 
JUNIPER project as a part of a Java platform supporting the 
high-performance applications for the real-time access and 
processing of the streaming and stored data. 

The scheduling advisor consists of two main 
components (see Figure 4): the macroscheduling component 
and the advisor component. The macro-scheduling 
component takes care of the scheduling decisions made on 
the particular hardware platform in the production or  
pre-production deployment of a JUNIPER application. The 
advisor component, on the other hand, analyses the 
performance data gathered during the production or  
pre-production deployment, combines them with the 
information from the modelling provided by developers, 
and shows possible shortcomings in the application design. 
As this article deals primarily with the scheduling, the 
advisor component mentioned above will be omitted and the 
rest of this section discusses only the scheduling 
component. 

6.1 The macro-scheduling component 

The macro-scheduling component is further divided into 
three subcomponents (see Figure 4): the monitoring 
component, the analysis component, and the scheduling 
component. 

• The monitoring component gathers data about the 
performance of the individual instances of application 
components deployed on various hardware 
configurations. More precisely, it traces the execution 
times of program instances, which is the most 
important metric for the scheduling advisor prototype. 

• The analysis component computes the performance 
characteristics of application components running on 
individual hardware classes (i.e., pairs [component, 
HWclass]) based on the data gathered by the 
monitoring component. Along with that, this 
component produces the first output of the scheduling 
advisor, namely the profiling results of an application 
and the benchmarking results for its individual 
components for various deployments of the application. 

• The scheduling component utilises the data from the 
analysis component and prepares new deployments of 
the application components over the hardware platform 
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to either provide more data for the analysis component 
or to improve the overall performance of the 
application as a whole. The scheduling component 
produces the second output of the scheduling advisor, 
the best possible deployment of the application on a 
particular platform. 

The macro-scheduling component of the scheduling  
advisor prototype consumes three inputs in different  
sub-components. The first input is a deployment package of 
a particular implementation of a JUNIPER application and 
it is utilised by the scheduling component, which takes care 
of actual deployment of the application components over 
the JUNIPER platform. The second input is a description of 
a particular hardware platform, which is employed by the 
scheduling component and the analysis component. These 
two components need to know the hardware classes of the 
nodes in the hardware platform and the counts of the nodes 
belonging to particular hardware classes to correctly 
observe and use the performance data of the different 
application components. The third input is a defined degree 
of parallelism of each application component and it is 
utilised by the scheduler component to correctly deploy the 
JUNIPER application. 

6.2 Evaluation of the scheduling advisor prototype 

To evaluate the concept of the scheduling advisor described 
in this article, the prototype has been implemented as a 
pluggable scheduler for Apache Storm. Apache Storm was 
chosen as a substrate to the prototype of scheduling advisor 
because its model of computation is a subset of JUNIPER 
platform’s computation model with focus on the stream 
processing and the low latency, and, at the same time, it 
offers the way to easily implement our example application 
‘popular stories’ described in Section 3. 

Different schedulers make their decisions on specific 
level of abstraction (i.e., they do not schedule tasks to the 
computation node as a whole), usually a kind of units with 
equal or scalable size are used. Apache Storm uses the equal 
size slots (one slot per a CPU core), as it was mentioned in 
Section 4. In each slot, multiple executors (i.e., multiple 
components of the JUNIPER applications) of the same 
topology may run. Storm’s default scheduler then, using the 
round-robin strategy, deploys the executors in the way that 
each node in a topology has almost the same number of the 
executors running in each slot. The rule of almost the same 
number of the executors is maintained even when multiple 
topologies are running the same cluster. 

The scheduling advisor prototype is partly implemented 
inside of Apache Storm (scheduling component and  
analysis component) and partly inside of the example 
application itself (monitoring component). The monitoring 
data produced by each application component instance is 
currently saved in the centralised relational database, which 
brings the possibility of the easy statistical questioning over 
the data. As the centralised database is not suitable for the 
distributed environments, later, in the future versions of the 
Scheduling Advisor, the monitoring data will be stored 
together with the rest of the performance data gathered from 
the platform in the JUNIPER platform’s monitoring system. 

The scheduling component has straightforward access to 
the Storm’s APIs for the executor placement, removal and 
status so the scheduling can be easily decided by the 
executor type and host-name (host-names are mapped to the 
hardware classes using the hardware platform description). 
The analysis component then operates inside the Storm 
cluster’s supervisor system called Nimbus, the same place 
where the scheduler resides. The analysis component 
questions the database with the monitoring data and 
provides an API to the scheduler component to pass the  
per-hardware-class and application component performance 
data and known placements. 

Figure 4 Architecture of the scheduling advisor (see online version for colours) 
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The prototype implementation of the scheduling advisor is 
suitable for experiments with the heterogeneous clusters in 
the meaning of different hardware used over the cluster 
nodes (e.g., different CPUs, GPUs, amount of memory or 
static acceleration). It allows to periodically reschedule the 
application over the heterogeneous cluster and to observe 
the performance of the application components on the 
different hardware classes. 

Our experiments were made on a small cluster of seven 
machines with three different hardware classes. Two 
hardware classes are of the same CPU generations, namely 
‘class 1’ is Intel Xeon (12 cores, 3 nodes) and ‘class 2’ is 
Intel i7 (8 cores, 2 nodes). The last ‘class 3’ is a three years 
old Intel Xeon (12 cores, 2 nodes). Other parameters of the 
hardware classes such as amount of RAM or presence of 
GPU/FPGA are not important because the testing 
application currently does not employ them. The number of 
the Storm slots was set up based on the number of cores of 
each machine. We used multiple configurations of cluster 
with different numbers of machines of each class during the 
experiments. Our example application ‘popular stories’ with 
six different components in various degree of parallelism 
served as a test suite. 

Different components of ‘popular stories’ application 
have different demands on performance and process 
different amounts of tuples over time so we evaluated the 
performance improvement in two ways: 

1 based on the number of tuples computed by a whole 
application in the time interval 

2 based on the number of tuples computed by each 
component in the time interval. 

The performance is compared between the worst possible 
schedule, the standard schedule, and the best schedule 
where the worst and the best possible schedules are based 
on the profiling and benchmarking made by the scheduling 
advisor prototype and a standard schedule is made by the 
Storm’s ‘Even scheduler’. 

Results of experiments showed that the performance 
gain of the best scheduling based on the profiling and 
benchmarking depends on various factors where the most 
important one is the structure of the heterogeneous cluster. 
On a homogeneous cluster, all three scheduling techniques 
would give almost the same results because the worst 
scheduling nor the best scheduling can utilise the 
differences of the hardware classes. Having a cluster with a 
small amount of ‘slower’ nodes brings some difference 
between the scheduling techniques but the difference is still 
small. Finally, on the cluster with only a few nodes with 
greater performance, the best scheduling based on the 
profiling and benchmarking brings the greatest difference. 

At the same time, the architecture and demands of the 
application affect the difference between scheduling 
approaches too. The heterogeneity of the application’s 
components allows the scheduler to utilise the differences in 
a hardware for the better performance of a whole system. 
Generally, with the increasing heterogeneity of the 
application’s components, the performance gain caused by 
the benchmarking-based scheduler over the worst 
scheduling and the standard scheduling grows. 

In our experiments, the suitability of the profiling and 
benchmarking-based scheduling was proven on the 
application without components that could utilise a special 
hardware such as GPU or FPGA. Different components of 
our application only had different demands on the CPU and 
overall node performance (e.g., the memory speed). The 
performance gain of our scheduler in the terms of all tuples 
processed by the whole application was over Storm’s 
standard scheduler 4.1 % and over the ‘worst scheduler’ 
17.5 %. An average gain measured for each component type 
then was 6.8 % over the standard scheduler and 11.7 % over 
the ‘worst scheduler’. For more detailed statistics from 
multiple tests on different data see Table 1. The results of 
our scheduler are satisfying but they still strongly depends 
on the heterogeneity of a cluster and an application as 
described earlier. Finally, we assume that the applications 
employing the GPUs or the FPGAs for some of their 
components will benefit even more. 

Table 1 Scheduler performance comparison – cumulative results of multiple tests based on number of tuples processed in time interval 

Component W tuples S tuples B tuples S-W gain B-S gain B-W gain 

AnalyserBolt 135,096 163,993 164,714 121.39% 100.44% 121.92% 

DownloaderBolt 1,396 1,499 1,494 107.38% 99.67% 107.02% 

ExtractFeaturesBolt 39,745 41,867 47,991 105.34% 114.63% 120.75% 

FeedReaderBolt 1,580 1,576 1,576 99.75% 100.% 99.75% 

FeedUrlSpout 45,711 46,334 45,654 101.36% 98.53% 99.88% 

IndexBolt 39,744 41,866 47,989 105.34% 114.63% 120.75% 

Total 263,272 297,135 309,418 112.86% 104.13% 117.53% 

Notes: W – worst scheduler, S – standard scheduler, B – performance and benchmark-based scheduler, S-W gain – gain of 
standard scheduler over worst scheduler 
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Figure 5 The sequence of the individual steps in development and deployment of a JUNIPER application with utilisation of the 
scheduling advisor (see online version for colours) 

 

 
7 Utilisation of the scheduling advisor in 

development process 

Outputs of the macro-scheduling component, which were 
described in the previous section, are produced at run-time, 
processed by the advisor component, and utilised to 
improve the assessed JUNIPER applications at their  
design-time. Development and deployment of a JUNIPER 
application requires cooperation of different roles of 
responsible participants who can utilise the advisor’s 
outputs in the development process. These roles are namely: 

1 an analyst, who describes the required functionality of 
a JUNIPER application including its time-based 
constraints which have to be met at run-time 

2 an architect, who designs and describes the 
application’s architecture in details with respect to the 
JUNIPER platform 

3 a developer, who implements the application as a 
distributed system of the concurrently running 
components 

4 a system administrator, who deploys the application to 
a particular cluster with certain performance 
characteristics that runs the JUNIPER platform. 

The development process of a JUNIPER application and the 
utilisation of the scheduling advisor in the development and 
deployment of the application by the above mentioned roles 
is depicted in Figure 5. 

After the modelling and implementation of the 
application by an analyst and/or a developer, a system 
administrator defines the run-time platform where the 
application will be executed. Then, the developer performs 
the schedulability analysis to determine an initial 
deployment of the application. The application deployment 
has to meet the computation resources utilisation and  
a real-time constraints both defined at the design-time; 

otherwise, if it would not be possible to suitably deploy the 
application, the application has to be remodelled, 
reimplemented, and the platform redefined, so another 
schedulability analysis will result in a suitable deployment. 
Finally, the developer defines the degree of parallelism of 
the application’s components, i.e., the numbers of instances 
of the individual components) and the application is 
deployed. 

In the next step, the deployed application is executed 
and profiled by the scheduling advisor concurrently with 
benchmarking of the run-time platform. The results of the 
profiling and benchmarking are utilised by the scheduling 
advisor to optimise the deployment with the current degree 
of parallelism, as it has been described in Section 5. 
Moreover, the profiling and benchmarking results can be 
used by the developer in the repeated schedulability analysis 
to propose a better initial deployment with a new degree of 
parallelism. 

8 Conclusions 

This article described the problems of the adaptive 
scheduling of the stream processing applications on the 
heterogeneous clusters and presented an ongoing research 
towards the novel scheduling advisor. In the article, we 
outlined general requirements to the scheduling in the 
stream processing on heterogeneous clusters and analysed 
the state-of-the-art approaches introduced in the related 
works. We also described the sample application of the 
stream processing in heterogeneous clusters, analysed the 
scheduling decisions, and proposed the novel scheduler for 
the Apache Storm distributed stream processing platform 
based on the knowledge acquired in the previous phases. 

The sample application and the proposed scheduler are 
still work-in-progress. We are performing an evaluation of 
the proposed approach in practice. Our future work mainly 
aims at possible improvements of the scheduler 
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performance, which is important for the real-time 
processing, at addressing the problems connected with an 
automatic scaling of the processing components (i.e., their 
elasticity), and at addressing the issues related to the 
eventual decentralisation of the scheduler’s implementation. 
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