
70 Int. J. Big Data Intelligence, Vol. 2, No. 2, 2015

Copyright © 2015 Inderscience Enterprises Ltd.

Heterogeneity-aware scheduler for stream
processing frameworks

Marek Rychlý*
Department of Information Systems,
Faculty of Information Technology,
Brno University of Technology,
Brno, Czech Republic
Email: rychly@fit.vutbr.cz
*Corresponding author

Petr Škoda and Pavel Smrž
Department of Computer Graphics and Multimedia,
Faculty of Information Technology,
Brno University of Technology,
IT4Innovations Centre of Excellence,
Brno, Czech Republic
Email: iskoda@fit.vutbr.cz
Email: smrz@fit.vutbr.cz

Abstract: This article discusses problems and decisions related to scheduling of stream
processing applications in heterogeneous clusters. An overview of the current state of the art of
the stream processing on heterogeneous clusters with a focus on resource allocation and
scheduling is presented first. Then, common scheduling approaches of various stream processing
frameworks are discussed and their limited applicability in the heterogeneous environment
is demonstrated on a simple stream application. Finally, the article presents a novel
heterogeneity-aware scheduler for the stream processing frameworks based on design-time
knowledge as well as benchmarking techniques. It is shown that the scheduler overcomes
alternatives in resource-aware deployment over cluster nodes and thus it leads to a better
utilisation of the clusters.

Keywords: scheduling; resource-awareness; benchmarking; stream processing; Apache Storm;
heterogeneous clusters.

Reference to this paper should be made as follows: Rychlý, M., Škoda, P. and Smrž, P. (2015)
‘Heterogeneity-aware scheduler for stream processing frameworks’, Int. J. Big Data Intelligence,
Vol. 2, No. 2, pp.70–80.

Biographical notes: Marek Rychlý is an Assistant Professor at Brno University of Technology,
Faculty of Information Technology (BUT FIT). His research interests are in the area of software
architecture and include dynamic reconfiguration and component mobility in component-based
and service-oriented architectures, formal description of software architectures and their
evolution, functional and quality-driven automatic web services composition and testing, and on
distributed software systems. He authored more than 20 papers in scientific journals and in
conference proceedings on varied topics related to software engineering and software
architectures.

Petr Škoda is PhD student and junior researcher at BUT FIT. He is responsible for the design and
development of a large-scale applications based on the Hadoop and Storm frameworks. His
research further tackles resource allocation and scheduling, distributed computing, and
architecture of software systems. He authored three papers in scientific conference proceedings.

Pavel Smrž is an Associate Professor at BUT FIT. He leads the Knowledge Technology Research
Group that has participated in many European as well as national research and development
projects. His research interests include semantic technologies, large-scale distributed systems,
deep learning, hardware-accelerated computing, natural language processing and human machine
interaction. He has authored more than 60 papers in scientific journals and in conference
proceedings.

This paper is a revised and expanded version of a paper entitled ‘Scheduling decisions in stream
processing on heterogeneous clusters’ presented at the Eighth International Conference on
Complex, Intelligent, and Software Intensive Systems, Birmingham, GB, 2–4 July 2014.

 Heterogeneity-aware scheduler for stream processing frameworks 71

1 Introduction

As the internet grows bigger, the amount of data that can be
gathered, stored, and processed constantly increases.
Traditional approaches to processing of big data, e.g., the
data of crawled documents, web request logs, etc., involves
mainly the batch processing techniques on very large shared
clusters running in parallel across hundreds of commodity
hardware nodes. Considering the static nature of such
datasets, the batch processing appears to be a suitable
technique both in terms of the data distribution and
of the task scheduling. Consequently, the distributed
batch processing frameworks, e.g., the frameworks that
implement the MapReduce programming paradigm by Dean
and Ghemawat (2008), have proved to be very popular.

However, the traditional approaches developed for the
processing of static datasets cannot provide the low latency
responses, which are needed for the continuous and real-
time stream processing when the new data is constantly
arriving even as the old data is being processed. In the data
stream model, some or all of the input data to be processed
are not available in a static dataset but rather they arrive as
one or more continuous data streams, as described by
Babcock et al. (2002). The traditional distributed processing
frameworks like MapReduce are not well suited to process
the data streams due to their batch orientation. The response
times of those systems are typically greater than 30 seconds
while the real-time processing requires the response times in
the (sub)seconds range, as noted by Brito et al. (2011).

To address the distributed stream processing, several
platforms for data or event stream processing systems have
been proposed, e.g., S4 by Neumeyer et al. (2010) and
Storm by Marz (2014). In this article, we build upon one of
these distributed stream processing platforms, namely
Storm. Storm defines a distributed processing in terms of
streams of data messages flowing from the data sources
(referred to as spouts) through a directed acyclic graph
(DAG) (referred to as a topology) of the interconnected data
processors (referred to as bolts). A single Storm topology
consists of the spouts that inject streams of data into the
topology and the bolts that process and modify the data.

Contrary to the distributed batch processing approach,
the resource allocation and the scheduling in the distributed
stream processing is much more difficult due to the dynamic
nature of the input data streams. In both cases, the resource
allocation deals mainly with a problem of gathering and
assigning resources to the different requesters while
scheduling cares about which tasks and when to place on
which previously obtained resources, as described by
Vinothina et al. (2012).

In case of the distributed batch processing, both the
resource allocation and the task scheduling can be done
prior to the processing of a batch of jobs based on the
knowledge of the data and the tasks to be processed and on
the knowledge of the distributed environment. Moreover,
during the batch processing, required resources are often
simply allocated statically from the beginning to the end of
the processing.

In case of the distributed stream processing, which is
typically continuous, the dynamic nature of the input data
and unlimited processing time requires a dynamic allocation
of shared resources and a real-time scheduling of tasks
based on actual intensity of the input data flow, actual
quality of the data, and actual workload of a distributed
environment. For example, the resource allocation and the
task scheduling in Storm involves a real-time decision
making that considers how to replicate the bolts and spread
them across the nodes of a cluster to achieve required
scalability and fault tolerance.

This article deals with problems of scheduling in
distributed data stream processing on heterogeneous
clusters. The article is organised as follows. In Section 2,
the stream processing on heterogeneous clusters is discussed
in detail with focus on the resource allocation and the task
scheduling, along with that, the related work and the
existing approaches are analysed. In Section 3, a use case of
distributed stream processing is presented. Section 4 deals
with scheduling decisions in the use case. Based on the
analysis of the scheduling decisions, Section 5 proposes a
concept of a novel scheduling advisor for the distributed
stream processing on heterogeneous clusters. The
implementation and evaluation of the proposed scheduling
advisor is described in Section 6. Furthermore, Section 7
describes possible utilisation of the scheduling advisor in
development process of applications for distributed stream
processing. Finally, Section 8 outlines future work on the
scheduling advisor and provides conclusions of the article.

2 Stream processing on heterogeneous clusters

In homogeneous computing environments, all nodes have
identical performance and capacity. Resources can be
allocated evenly across all available nodes and effective
task scheduling is determined by quantity of the nodes not
by their individual quality. Typically, the resource
allocation and the scheduling in the homogeneous
computing environments balances workload across all the
nodes which results in the identical workload on each
particular node.

Contrary to the homogeneous computing environments,
there are different types of nodes with various computing
performance and capacity in a heterogeneous cluster. The
high-performance nodes then can complete the processing
of identical data faster than the low-performance ones.
Moreover, the performance of the nodes depends on the
character of computation and on the character of input data.
For example, graphic-intensive computations will run faster
on nodes that are equipped with powerful GPUs while
memory-intensive computation will run faster on nodes
with large amount of RAM or disk space. To balance
workload in a heterogeneous cluster optimally, a scheduler
has to

72 M. Rychlý et al.

1 know the performance characteristics of the individual
types of nodes employed in the cluster for different
types of computations

2 know or to be able to analyse the computation
characteristics of incoming tasks and input data.

The first requirement, i.e., the performance characteristics
for individual types of employed nodes, means the
awareness of the infrastructure and the topology of a cluster
including a detailed specification of its individual nodes. In
most cases, this information is provided at cluster design-
time by its administrators and architects. Moreover, the
performance characteristics of individual nodes employed in
a cluster can be adjusted at the cluster’s run-time based on
the historical data of the cluster’s performance monitoring
and the statistical analysis of different combinations of the
computations, the data, and the types of nodes.

The second requirement is the knowledge or the ability
to analyse the computation characteristics of incoming tasks
and input data. In batch processing, tasks and data in a batch
can be annotated or analysed in advance, i.e., before the
batch is executed, and the knowledge acquired this way can
be utilised to find the near optimal allocation of the
resources and to find the efficient task scheduling. In the
stream processing, the second requirement is much more
difficult to meet due to continuous flow and unpredictable
variability of the input data. These make the thorough
analysis of the computation characteristics for the input data
and the incoming tasks impossible especially with the
real-time limitations in their processing.

To address the above mentioned issues of the stream
processing in the heterogeneous clusters with optimal
performance, user-defined tasks that process (at least some
of) the input data have to help the scheduler with its work.
For example, to achieve a better scheduling, an application
may include some user-defined helper-tasks tagging the
input data at run-time by their expected computation
characteristics (such as tagging parts of variable-bit-rate
video streams with temporary high bit-rate for processing
by special nodes with powerful video decoders, while
average bit-rate parts can be processed by common
nodes). Moreover, individual tasks of a stream application
should be tagged according to their required computation
resources and real-time constraints on the processing at the
design-time to help with their future scheduling. The
implementation of the mentioned design-time task tagging
should be a part of the modelling (a meta-model) of the
topology and the infrastructure of such applications.

With knowledge of the performance characteristics for
the individual types of nodes employed in a cluster and with
knowledge or the ability to analyse the computation
characteristics of incoming tasks and input data, the
scheduler has enough information for balancing the
workload of the cluster nodes and optimising the throughput
of an application. Related scheduling decisions, e.g.,
rebalancing of the workload, are usually done periodically
with an optimal frequency. Note that an intensive
rebalancing of the workload across the nodes can cause high

overhead while an occasional rebalancing may not utilise all
nodes optimally.

2.1 Related work

Over the past decade, the stream processing has been the
subject of a vivid research. Existing approaches can
essentially be categorised by scalability into centralised,
distributed, and massively-parallel stream processors. In this
section, we will focus mainly on the distributed and the
massively-parallel stream processors but also on their
successors exploiting ideas of the MapReduce paradigm in
the context of the stream processing.

In the distributed stream processors, the related work is
mainly based on Aurora*, which has been introduced by
Cherniack et al. (2003) to address the scalable distributed
processing of data streams. An Aurora* system is a set of
Aurora* nodes that cooperate via an overlay network within
the same administrative domain. The nodes can freely
relocate the load by decentralised, pairwise exchange of the
Aurora stream operators. Sites running the Aurora* systems
from different administrative domains can be integrated into
a single federated system by Medusa by Cherniack et al.
(2003). Abadi et al. (2005) introduced a refined QoS
optimisation model for Aurora*/Medusa where the effects
of the load shedding on QoS can be computed at every point
in the data flow, which enables better strategies for the load
shedding.

Massively-parallel data processing systems, in contrast
to the distributed (and also centralised) stream processors,
have been designed to run on and efficiently transfer large
data volumes between hundreds or even thousands of nodes.
Traditionally, those systems have been used to process finite
blocks of data stored on distributed file systems. However,
newer systems such as Dryad by Isard et al. (2007), Hyracks
by Borkar et al. (2011), CIEL by Murray et al. (2011),
DAGuE by Bosilca et al. (2012), or the Nephele framework
by Warneke and Kao (2011) allow to assemble complex
parallel data flow graphs and to construct pipelines between
individual parts of the flow. Therefore, these parallel data
flow systems in general are also suitable for the streaming
applications.

The latest related work is based mainly on the
MapReduce paradigm or its concepts in the context of
stream processing. At first, Condie et al. (2010) extended
the original Hadoop to Hadoop Online by ability to stream
intermediate results from the map tasks to the reduce tasks
as well as the possibility to pipeline the data across different
MapReduce jobs. To facilitate these new features, the
semantics of the classic reduce function has been extended
by time-based sliding windows. Li et al. (2011) picked
up this idea and further improved the suitability of
Hadoop-based systems for continuous streams by replacing
the sort-merge implementation for partitioning by a new
hash-based technique. Finally, in the Muppet system by
Lam et al. (2012), the reduce function of MapReduce was
replaced by a more generic and flexible update function.

S4 by Neumeyer et al. (2010) and Apache Storm by
Marz (2014), which is used in this article, can also be

 Heterogeneity-aware scheduler for stream processing frameworks 73

classified as massively-parallel data processing systems
with a clear emphasis on a low latency. These systems are
not based on MapReduce but allow developers to assemble
an arbitrarily complex DAG of processing tasks. For
example, Storm does not use the intermediate queues to
pass the data items between tasks. Instead, the data items
are passed directly between the tasks using batch messages
on the network level to achieve a good balance between the
latency and the throughput.

The distributed and massively-parallel stream processors
mentioned above usually do not explicitly solve adaptive
resource allocation and task scheduling in heterogeneous
environments. For example, Balazinska et al. (2004)
analysed how Aurora*/Medusa handles time-varying load
spikes and provides high availability in the face of network
partitions. They concluded that Medusa with the Borealis
extension does not distribute the load optimally but it
guarantees acceptable allocations; i.e., either no participant
operates above its capacity, or, if the system as a whole is
overloaded, then all participants operate at or above
capacity. The similar conclusions can be done also in the
case of the previously mentioned massively-parallel data
processing systems. For example, DAGuE does not target
the heterogeneous clusters which utilise the commodity
hardware nodes but can handle an intra-node heterogeneity
of clusters of supercomputers where DAGuE scheduler
decides at runtime which tasks to run on which resources, as
described by Bosilca et al. (2012).

Another already mentioned massively-parallel stream
processing system, Dryad by Isard et al. (2007), is equipped
with a robust scheduler which takes care of the nodes’
liveness, the rescheduling of failed jobs, and tracks the
execution speed of different instances of each processor.
When one of these instances under-performs the others, a
new instance is scheduled in order to prevent slowdowns of
the computation. Dryad scheduler works in greedy mode,
i.e., it does not consider sharing of the cluster among
multiple systems.

Finally, in case of approaches based on the MapReduce
paradigm or its concepts, resource allocation and scheduling
of the stream processing on the heterogeneous clusters is
necessary due to utilisation of the commodity hardware
nodes. In the stream processing, data placement and
distribution are given by a user-defined topology [e.g., by
pipelines in Hadoop Online by Condie et al. (2010), or by a
DAG of interconnected spouts and bolts in Apache Storm
by Marz (2014)]. Therefore, the approaches to the adaptive
resource allocation and scheduling have to discuss an initial
distribution and a periodic rebalancing of a workload (i.e.,
tasks, not data) across the nodes according to the different
processing performance and specialisation of the individual
nodes in a heterogeneous cluster.

For instance, S4 by Neumeyer et al. (2010) uses Apache
ZooKeeper to coordinate all operations and for the
communication between the nodes. Initially, a user defines
in ZooKeeper the nodes that should be used for the
particular tasks of a computation. Then, S4 employs

additional nodes as the backups for possible node failures
and for load balancing.

An adaptive scheduling in Apache Storm has been
addressed by Aniello et al. (2013). They proposed two
generic schedulers that adapt their behaviour according to a
topology and a run-time communication pattern of an
application. Experiments shown an improvement in latency
of the event processing in comparison to the default Storm
scheduler. However, the proposed schedulers do not take
into account the requirements discussed in the beginning of
Section 2, i.e., the explicit knowledge of performance
characteristics for individual types of nodes employed in a
cluster for different types of computations and the ability to
analyse the computation characteristics of incoming tasks
and input data. By implementation of these requirements,
the efficiency of the scheduling can be improved.

3 Use case

To demonstrate the scheduling problems anticipated in the
current state of the art of the stream processing on the
heterogeneous clusters, a sample application is presented in
this section. The application ‘popular stories’ implements a
use case of the processing of continuous stream of
web-pages from thousands of RSS feeds. It analyses the
web-pages in order to find the texts and photos identifying
the most popular connections between persons and related
keywords and pictures. The result is a list of triples
(a person’s name, a list of keywords, and a set of photos)
with meaning: a person frequently mentioned in the context
of the keywords (e.g., events, objects, persons, etc.) and the
photos in the recent time. The application holds a list of
triples with the most often seen persons, keywords, and
pictures in context of some period of time. This way,
current trends of the persons related to the keywords with
the relevant photos can be obtained.

The application utilises Java libraries and components
from various research projects and Apache Storm as the
stream processing framework. Figure 1 depicts the spouts
and bolts (components) of the application and its topology,
as known from Apache Storm. The components can be
scaled into multiple instances and deployed on different
cluster nodes.

The stream processing starts by the URL generator
spout, which extracts URLs of web-pages from RSS feeds.
After that, the downloader gets the (X)HTML source,
styles, and pictures of each web-page and encapsulates them
into a stand-alone message. The message is passed to the
analyser bolt, which searches the web-page for person
names and for keywords and pictures in context of the
names found before. The resulting pairs of the
name-keyword are stored in the tops list in the in-memory
store NK, which is updated each time a new pair arrives, at
the same time, excessively old pairs are removed from the
computation of the list. In other words, the window of a
time period is held for the tops list. All changes in the tops
list are passed to the in-memory store NKP.

74 M. Rychlý et al.

Figure 1 A Storm topology of the sample application (see online version for colours)

Notes: ‘S’ – nodes are the Storm spouts generating data and ‘B’ – nodes are the Storm bolts processing the data.

Moreover, pairs of the name-picture emitted by the analyser
are processed in the image feature extractor to get indexable
features of each image, which later allows to detect the
different instances of the same pictures (e.g., the same photo
in the different resolution or with the different cropping).
The image features are sent to the in-memory store NP
where the tops list of the most popular persons and the
related unique image pairs is held. The memory stores
employ the Apache Lucene search engine with distributed
indexes by Hadoop-based storage Katta for Lucene to detect
the different instances of the same pictures as was
mentioned above. All modifications in the tops list of the
in-memory store NP are emitted to the In-memory store
NKP, which maintains a consolidated tops list of the
persons with related keywords and pictures. This tops list is
persistent and available for a further querying.

The individual components of the application described
above, both the spouts and the bolts, utilise the various
types of resources to perform the various types of
processing. More specifically, the URL generator and the
downloader have low CPU requirements, the analyser
requires fast CPU, the image feature extractor can employ a
GPU using the OpenCL, and all the in-memory stores
require a large amount of memory. Therefore, the
application may utilise a heterogeneous cluster with an
adaptive resource allocation and scheduling.

4 Scheduling decisions in the stream processing

Schedulers make their decisions on a particular level of
abstraction. They do not try to schedule all live tasks to all
possible cluster nodes but they just deal with units of equal
or scalable size. For example, the YARN scheduler uses
containers with various amounts of cores and memory and
Apache Storm uses slots of equal size (one slot per CPU
core) where, in each slot, multiple spouts or blots of the
same topology may run.

One of the important and commonly adopted scheduler
decisions is data locality. For instance, the main idea of
MapReduce is to perform the computations by the nodes
where the required data are saved both to prevent intensive
data loading to a cluster before the computations and to
prevent removing of the data from the cluster after the
computations. The data locality decisions from the stream
processing perspective are different because the processors
usually do not operate on a data already stored in a
processing cluster but rather on the streams coming from
remote sources. Thus, in the stream processing, we consider
the data locality to be an approach to minimal
communication costs, which results, for example, in
scheduling of the most communicating processor instances
together to the same node or the same rack.

The optimal placement of tasks across cluster nodes
may, moreover, depend on other requirements beyond the
communication costs mentioned above. Typically, we
consider the CPU performance or the overall node

 Heterogeneity-aware scheduler for stream processing frameworks 75

performance that makes the processing faster. For example,
the performance optimisation may lie in detection of tasks
which are exceedingly slow in comparison to the others
with the same signature. More sophisticated approaches are
based on various kinds of benchmarks performed on each
node in a cluster while the placement of a task is decided
with respect to its detected performance on a particular node
or a class of nodes. Furthermore, the presence of some kinds
of resources, e.g., GPU or FPGA, can be taken into account.

There are two essential kinds of the scheduling
decisions: offline decisions and online decisions. The former
is based on the knowledge the scheduler has before any task
is placed and running. In context of stream processing, this
knowledge is mostly the topology and the offline decisions
can, for example, consider communication channels
between nodes. Online decisions are made with information
gathered during the actual execution of an application, i.e.,
after or during the initial placement of its tasks over a
cluster nodes. So the counterpart for the offline topology-
based communication decision is a decision derived from
the real bandwidths required between the running processor
instances, as described by Aniello et al. (2013). In effect,
the most of the scheduling decisions in the stream
processing are made online or based on the historical online
data.

4.1 Storm’s default scheduler

The Storm’s default scheduler uses a simple round-robin
strategy. It deploys bolts and spouts (collectively called
processors) so that each node in a topology has almost the
equal number of processors running in each slot even for the
multiple topologies sharing the same cluster. When tasks are
scheduled, the round-robin scheduler simply counts all
available slots on each node and puts the processor
instances to be scheduled one at the time to each node while
keeping the order of nodes constant.

In a shared heterogeneous Storm cluster running
multiple topologies of different stream processing
applications, the round-robin strategy may, for the sample
application described in Section 3, result in the scenario
depicted in Figure 2. The portrayed cluster consists of four
nodes with the different hardware configurations, i.e., fast
CPU, slow CPU, lots of memory, and GPU equipped
(see Figure 2), so the number of slots available at each node
differs but the same portion (the same number of slots) of
each node is utilised as the consequence of the round-robin
scheduling. Moreover, the default scheduler did not respect
different requirements of the processors. The analysers
requiring the CPU performance were placed to the node
with lots of memory while the memory greedy in-memory
stores were scheduled to the nodes with the powerful GPU
and the slow CPU, which led to the need of higher level of
parallelism of ‘MS NP’. The fast CPU node then runs the
undemanding downloaders and the URL generator. Finally,
the image extractors were placed to the slow CPU node and
the high memory node. Therefore, it is obvious that the
scheduling decision was relatively wrong and it results into
inefficient utilisation of the cluster.

Figure 2 Possible results of the Storm default round-robin
scheduler (see online version for colours)

Notes: URL – URL generator; Dx – downloader;

Ax – analyser; IEx – image feature extractor;
MSx – in-memory store

5 Proposed scheduling advisor

The proposed scheduling advisor targets to the offline
decisions derived from the results of performance test sets
of each resource type in combination with a particular
component (a processor). Therefore, every application
should be benchmarked on a particular cluster prior to its
run in a production.

The benchmarking will run the application with
production-like data and after the initial random or
round-robin placement of processors over the nodes, it will
reschedule the processors so that each processor is
benchmarked on each class of hardware nodes. The
performance of processors will be measured based on the
number of tuples processed in a time period. Finally, with
the data from the benchmarks, scheduling in the production
will minimise the overall calculated loss of performance in
the deployment on the particular resources in comparison to
the performance in the ideal deployment, i.e., the one where
each processor runs on the node with its top performance
measured in the benchmarking phase.

Later, the scheduler can also utilise the performance
data captured during the production run. These data will be
taken into consideration as the reflection of the possible
changes of processed data, and the new scheduling
decisions will (in some situations) prefer them over the
performance information from the benchmarking phase.
Moreover, with employment of the production performance
data, an application can be deployed initially using the
round-robin and then gradually rescheduled in reasonable
intervals. The first few reschedules have to be random to

76 M. Rychlý et al.

gather initial differences in the performance per processor
and node class. Then, the scheduler can deploy some of the
processors to currently best known nodes and other
processors to nodes with yet unknown performance.
However, when omitting the benchmarking phase, a new
application without the historical performance data may
temporarily under-perform and more instances of its
processors may be needed to increase the degree of
parallelism. On the other hand, without the benchmarking
phase, the new application can be deployed with no delays
and can utilise even the nodes that have not yet been
benchmarked (e.g., the new nodes or the nodes occupied by
other applications during the benchmark phase on a shared
cluster).

Figure 3 The advanced scheduling in a heterogeneous cluster
(see online version for colours)

Notes: High memory and Fast CPU nodes are mutually

swapped in comparison with Figure 2.
URL – URL generator; Dx – downloader;
Ax – analyser; IEx – image feature extractor;
MSx – in-memory store

5.1 Scheduling of the example use case application

The proposed scheduler is trying to deploy the processors to
the available slots that are running on nodes with the most
suitable resource profile. Therefore, the scheduler may
possibly deploy fewer instances of the processors than the
Storm’s default scheduler in the same cluster and probably
even with higher throughput. In the case of the sample
application, the deployment by the proposed scheduler may
look like the one depicted in Figure 3. The in-memory stores
were deployed on the node with a high amount of memory
and the image feature extractors were deployed on the node
with the two GPUs so it was possible to reduce the
parallelism of the bolt. The undemanding downloaders were
placed on the slow CPU node and the analysers utilise the
fast CPU node. Possibly even more effective scheduling

may be achieved by the combination of pre-production and
production benchmarking discussed in Section 5. Then, the
scheduling decisions can be based on the actual bandwidths
between the processors with the consideration of the
trade-offs between the bandwidth availability on particular
nodes shared among the multiple applications and the
availability of more suitable nodes in the perspective of
performance.

6 Implementation and evaluation of the
scheduling advisor

The scheduling advisor has been developed within the
JUNIPER project as a part of a Java platform supporting the
high-performance applications for the real-time access and
processing of the streaming and stored data.

The scheduling advisor consists of two main
components (see Figure 4): the macroscheduling component
and the advisor component. The macro-scheduling
component takes care of the scheduling decisions made on
the particular hardware platform in the production or
pre-production deployment of a JUNIPER application. The
advisor component, on the other hand, analyses the
performance data gathered during the production or
pre-production deployment, combines them with the
information from the modelling provided by developers,
and shows possible shortcomings in the application design.
As this article deals primarily with the scheduling, the
advisor component mentioned above will be omitted and the
rest of this section discusses only the scheduling
component.

6.1 The macro-scheduling component

The macro-scheduling component is further divided into
three subcomponents (see Figure 4): the monitoring
component, the analysis component, and the scheduling
component.

• The monitoring component gathers data about the
performance of the individual instances of application
components deployed on various hardware
configurations. More precisely, it traces the execution
times of program instances, which is the most
important metric for the scheduling advisor prototype.

• The analysis component computes the performance
characteristics of application components running on
individual hardware classes (i.e., pairs [component,
HWclass]) based on the data gathered by the
monitoring component. Along with that, this
component produces the first output of the scheduling
advisor, namely the profiling results of an application
and the benchmarking results for its individual
components for various deployments of the application.

• The scheduling component utilises the data from the
analysis component and prepares new deployments of
the application components over the hardware platform

 Heterogeneity-aware scheduler for stream processing frameworks 77

to either provide more data for the analysis component
or to improve the overall performance of the
application as a whole. The scheduling component
produces the second output of the scheduling advisor,
the best possible deployment of the application on a
particular platform.

The macro-scheduling component of the scheduling
advisor prototype consumes three inputs in different
sub-components. The first input is a deployment package of
a particular implementation of a JUNIPER application and
it is utilised by the scheduling component, which takes care
of actual deployment of the application components over
the JUNIPER platform. The second input is a description of
a particular hardware platform, which is employed by the
scheduling component and the analysis component. These
two components need to know the hardware classes of the
nodes in the hardware platform and the counts of the nodes
belonging to particular hardware classes to correctly
observe and use the performance data of the different
application components. The third input is a defined degree
of parallelism of each application component and it is
utilised by the scheduler component to correctly deploy the
JUNIPER application.

6.2 Evaluation of the scheduling advisor prototype

To evaluate the concept of the scheduling advisor described
in this article, the prototype has been implemented as a
pluggable scheduler for Apache Storm. Apache Storm was
chosen as a substrate to the prototype of scheduling advisor
because its model of computation is a subset of JUNIPER
platform’s computation model with focus on the stream
processing and the low latency, and, at the same time, it
offers the way to easily implement our example application
‘popular stories’ described in Section 3.

Different schedulers make their decisions on specific
level of abstraction (i.e., they do not schedule tasks to the
computation node as a whole), usually a kind of units with
equal or scalable size are used. Apache Storm uses the equal
size slots (one slot per a CPU core), as it was mentioned in
Section 4. In each slot, multiple executors (i.e., multiple
components of the JUNIPER applications) of the same
topology may run. Storm’s default scheduler then, using the
round-robin strategy, deploys the executors in the way that
each node in a topology has almost the same number of the
executors running in each slot. The rule of almost the same
number of the executors is maintained even when multiple
topologies are running the same cluster.

The scheduling advisor prototype is partly implemented
inside of Apache Storm (scheduling component and
analysis component) and partly inside of the example
application itself (monitoring component). The monitoring
data produced by each application component instance is
currently saved in the centralised relational database, which
brings the possibility of the easy statistical questioning over
the data. As the centralised database is not suitable for the
distributed environments, later, in the future versions of the
Scheduling Advisor, the monitoring data will be stored
together with the rest of the performance data gathered from
the platform in the JUNIPER platform’s monitoring system.

The scheduling component has straightforward access to
the Storm’s APIs for the executor placement, removal and
status so the scheduling can be easily decided by the
executor type and host-name (host-names are mapped to the
hardware classes using the hardware platform description).
The analysis component then operates inside the Storm
cluster’s supervisor system called Nimbus, the same place
where the scheduler resides. The analysis component
questions the database with the monitoring data and
provides an API to the scheduler component to pass the
per-hardware-class and application component performance
data and known placements.

Figure 4 Architecture of the scheduling advisor (see online version for colours)

78 M. Rychlý et al.

The prototype implementation of the scheduling advisor is
suitable for experiments with the heterogeneous clusters in
the meaning of different hardware used over the cluster
nodes (e.g., different CPUs, GPUs, amount of memory or
static acceleration). It allows to periodically reschedule the
application over the heterogeneous cluster and to observe
the performance of the application components on the
different hardware classes.

Our experiments were made on a small cluster of seven
machines with three different hardware classes. Two
hardware classes are of the same CPU generations, namely
‘class 1’ is Intel Xeon (12 cores, 3 nodes) and ‘class 2’ is
Intel i7 (8 cores, 2 nodes). The last ‘class 3’ is a three years
old Intel Xeon (12 cores, 2 nodes). Other parameters of the
hardware classes such as amount of RAM or presence of
GPU/FPGA are not important because the testing
application currently does not employ them. The number of
the Storm slots was set up based on the number of cores of
each machine. We used multiple configurations of cluster
with different numbers of machines of each class during the
experiments. Our example application ‘popular stories’ with
six different components in various degree of parallelism
served as a test suite.

Different components of ‘popular stories’ application
have different demands on performance and process
different amounts of tuples over time so we evaluated the
performance improvement in two ways:

1 based on the number of tuples computed by a whole
application in the time interval

2 based on the number of tuples computed by each
component in the time interval.

The performance is compared between the worst possible
schedule, the standard schedule, and the best schedule
where the worst and the best possible schedules are based
on the profiling and benchmarking made by the scheduling
advisor prototype and a standard schedule is made by the
Storm’s ‘Even scheduler’.

Results of experiments showed that the performance
gain of the best scheduling based on the profiling and
benchmarking depends on various factors where the most
important one is the structure of the heterogeneous cluster.
On a homogeneous cluster, all three scheduling techniques
would give almost the same results because the worst
scheduling nor the best scheduling can utilise the
differences of the hardware classes. Having a cluster with a
small amount of ‘slower’ nodes brings some difference
between the scheduling techniques but the difference is still
small. Finally, on the cluster with only a few nodes with
greater performance, the best scheduling based on the
profiling and benchmarking brings the greatest difference.

At the same time, the architecture and demands of the
application affect the difference between scheduling
approaches too. The heterogeneity of the application’s
components allows the scheduler to utilise the differences in
a hardware for the better performance of a whole system.
Generally, with the increasing heterogeneity of the
application’s components, the performance gain caused by
the benchmarking-based scheduler over the worst
scheduling and the standard scheduling grows.

In our experiments, the suitability of the profiling and
benchmarking-based scheduling was proven on the
application without components that could utilise a special
hardware such as GPU or FPGA. Different components of
our application only had different demands on the CPU and
overall node performance (e.g., the memory speed). The
performance gain of our scheduler in the terms of all tuples
processed by the whole application was over Storm’s
standard scheduler 4.1 % and over the ‘worst scheduler’
17.5 %. An average gain measured for each component type
then was 6.8 % over the standard scheduler and 11.7 % over
the ‘worst scheduler’. For more detailed statistics from
multiple tests on different data see Table 1. The results of
our scheduler are satisfying but they still strongly depends
on the heterogeneity of a cluster and an application as
described earlier. Finally, we assume that the applications
employing the GPUs or the FPGAs for some of their
components will benefit even more.

Table 1 Scheduler performance comparison – cumulative results of multiple tests based on number of tuples processed in time interval

Component W tuples S tuples B tuples S-W gain B-S gain B-W gain

AnalyserBolt 135,096 163,993 164,714 121.39% 100.44% 121.92%

DownloaderBolt 1,396 1,499 1,494 107.38% 99.67% 107.02%

ExtractFeaturesBolt 39,745 41,867 47,991 105.34% 114.63% 120.75%

FeedReaderBolt 1,580 1,576 1,576 99.75% 100.% 99.75%

FeedUrlSpout 45,711 46,334 45,654 101.36% 98.53% 99.88%

IndexBolt 39,744 41,866 47,989 105.34% 114.63% 120.75%

Total 263,272 297,135 309,418 112.86% 104.13% 117.53%

Notes: W – worst scheduler, S – standard scheduler, B – performance and benchmark-based scheduler, S-W gain – gain of
standard scheduler over worst scheduler

 Heterogeneity-aware scheduler for stream processing frameworks 79

Figure 5 The sequence of the individual steps in development and deployment of a JUNIPER application with utilisation of the
scheduling advisor (see online version for colours)

7 Utilisation of the scheduling advisor in

development process

Outputs of the macro-scheduling component, which were
described in the previous section, are produced at run-time,
processed by the advisor component, and utilised to
improve the assessed JUNIPER applications at their
design-time. Development and deployment of a JUNIPER
application requires cooperation of different roles of
responsible participants who can utilise the advisor’s
outputs in the development process. These roles are namely:

1 an analyst, who describes the required functionality of
a JUNIPER application including its time-based
constraints which have to be met at run-time

2 an architect, who designs and describes the
application’s architecture in details with respect to the
JUNIPER platform

3 a developer, who implements the application as a
distributed system of the concurrently running
components

4 a system administrator, who deploys the application to
a particular cluster with certain performance
characteristics that runs the JUNIPER platform.

The development process of a JUNIPER application and the
utilisation of the scheduling advisor in the development and
deployment of the application by the above mentioned roles
is depicted in Figure 5.

After the modelling and implementation of the
application by an analyst and/or a developer, a system
administrator defines the run-time platform where the
application will be executed. Then, the developer performs
the schedulability analysis to determine an initial
deployment of the application. The application deployment
has to meet the computation resources utilisation and
a real-time constraints both defined at the design-time;

otherwise, if it would not be possible to suitably deploy the
application, the application has to be remodelled,
reimplemented, and the platform redefined, so another
schedulability analysis will result in a suitable deployment.
Finally, the developer defines the degree of parallelism of
the application’s components, i.e., the numbers of instances
of the individual components) and the application is
deployed.

In the next step, the deployed application is executed
and profiled by the scheduling advisor concurrently with
benchmarking of the run-time platform. The results of the
profiling and benchmarking are utilised by the scheduling
advisor to optimise the deployment with the current degree
of parallelism, as it has been described in Section 5.
Moreover, the profiling and benchmarking results can be
used by the developer in the repeated schedulability analysis
to propose a better initial deployment with a new degree of
parallelism.

8 Conclusions

This article described the problems of the adaptive
scheduling of the stream processing applications on the
heterogeneous clusters and presented an ongoing research
towards the novel scheduling advisor. In the article, we
outlined general requirements to the scheduling in the
stream processing on heterogeneous clusters and analysed
the state-of-the-art approaches introduced in the related
works. We also described the sample application of the
stream processing in heterogeneous clusters, analysed the
scheduling decisions, and proposed the novel scheduler for
the Apache Storm distributed stream processing platform
based on the knowledge acquired in the previous phases.

The sample application and the proposed scheduler are
still work-in-progress. We are performing an evaluation of
the proposed approach in practice. Our future work mainly
aims at possible improvements of the scheduler

80 M. Rychlý et al.

performance, which is important for the real-time
processing, at addressing the problems connected with an
automatic scaling of the processing components (i.e., their
elasticity), and at addressing the issues related to the
eventual decentralisation of the scheduler’s implementation.

Acknowledgements

This work was supported by the BUT FIT Grant
FIT-S-14-2299, the European Regional Development Fund
in the Project CZ.1.05/1.1.00/02.0070 ‘The IT4Innovations
centre of excellence’, and by the EU 7FP ICT Project
No. 318763 ‘Java platform for high performance and
real-time large scale data management’ (JUNIPER).

References
Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U.,

Cherniack, M., Hwang, J-H., Lindner, W., Maskey, A.S.,
Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y. and Zdonik, S.
(2005) ‘The design of the borealis stream processing engine’,
in CIDR, Vol. 5, pp.277–289.

Aniello, L., Baldoni, R. and Querzoni, L. (2013) ‘Adaptive online
scheduling in Storm’, in Proceedings of the 7th ACM
International Conference on Distributed Event-based
Systems, ACM, pp.207–218.

Babcock, B., Babu, S., Datar, M., Motwani, R. and Widom, J.
(2002) ‘Models and issues in data stream systems’,
in Proceedings of the Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, ACM, pp.1–16.

Balazinska, M., Balakrishnan, H. and Stonebraker, M. (2004)
‘Load management and high availability in the Medusa
distributed stream processing system’, in Proceedings of the
ACM SIGMOD International Conference on Management of
Data, ACM, pp.929–930.

Borkar, V., Carey, M., Grover, R., Onose, N. and Vernica, R.
(2011) ‘Hyracks: a flexible and extensible foundation for
data-intensive computing’, in IEEE 27th International
Conference on Data Engineering (ICDE), IEEE,
pp.1151–1162.

Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P.
and Dongarra, J. (2012) ‘DAGuE: a generic distributed
DAG engine for high performance computing’, Parallel
Computing, Vol. 38, No. 1, pp.37–51.

Brito, A., Martin, A., Knauth, T., Creutz, S., Becker, D.,
Weigert, S. and Fetzer, C. (2011) ‘Scalable and low-latency
data processing with stream mapreduce’, in IEEE Third
International Conference on Cloud Computing Technology
and Science (CloudCom), IEEE, pp.48–58.

Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D.,
Cetintemel, U., Xing, Y. and Zdonik, S.B. (2003) ‘Scalable
distributed stream processing’, in CIDR, Vol. 3, pp.257–268.

Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M.,
Elmeleegy, K. and Sears, R. (2010). Mapreduce online’, in
Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, USENIX Association.

Dean, J. and Ghemawat, S. (2008) ‘MapReduce: simplified data
processing on large clusters’, Communications of the ACM,
Vol. 51, No. 1, pp.107–113.

Isard, M., Budiu, M., Yu, Y., Birrell, A. and Fetterly, D. (2007)
‘Dryad: distributed data-parallel programs from sequential
building blocks’, ACM SIGOPS Operating Systems Review,
Vol. 41, No. 3, pp.59–72.

Lam, W., Liu, L., Prasad, S., Rajaraman, A., Vacheri, Z. and
Doan, A. (2012) ‘Muppet: MapReduce-style processing of
fast data’, Proceedings of the VLDB Endowment, Vol. 5,
No. 12, pp.1814–1825.

Li, B., Mazur, E., Diao, Y., McGregor, A. and Shenoy, P. (2011)
‘A platform for scalable one-pass analytics using
MapReduce’, in Proceedings of the ACM SIGMOD
International Conference on Management of Data, ACM,
pp.985–996.

Marz, N. (2014) Apache Storm, Git Repository [online]
https://git-wip-us.apache.org/repos/asf?p=incubatorstorm.git.

Murray, D.G., Schwarzkopf, M., Smowton, C., Smith, S.,
Madhavapeddy, A. and Hand, S. (2011) ‘CIEL: a universal
execution engine for distributed data-flow computing’, in
Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, USENIX Association.

Neumeyer, L., Robbins, B., Nair, A., and Kesari, A. (2010)
‘S4: distributed stream computing platform’, in IEEE
International Conference on Data Mining Workshops
(ICDMW), IEEE, pp.170–177.

Vinothina, V., Rajagopal, S. and Ganapathi, P. (2012) ‘A survey
on resource allocation strategies in cloud computing’,
International Journal of Advanced Computer Science and
Applications, Vol. 3, No. 6, pp.97–104.

Warneke, D. and Kao, O. (2011) ‘Exploiting dynamic resource
allocation for efficient parallel data processing in the cloud’,
IEEE Transactions on Parallel and Distributed Systems,
Vol. 22, No. 6, pp.985–997.

