
Cartesian GP in Optimization of Combinational
Circuits with Hundreds of Inputs and

Thousands of Gates

Zdenek Vasicek

Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence, Brno, Czech Republic

Email: vasicek@fit.vutbr.cz

Abstract. A new approach to the evolutionary optimization of large
digital circuits is introduced in this paper. In contrast with evolution-
ary circuit design, the goal of the evolutionary circuit optimization is
to minimize the number of gates (or other non-functional parameters)
of already functional circuit. The method combines a circuit simulation
with a formal verification in order to detect the functional inequivalence
of the parent and its offspring. An extensive set of 100 benchmarks cir-
cuits is used to evaluate the performance of the method as well as the
utilized evolutionary approach. Moreover, the role of neutral mutations
in the context of evolutionary optimization is investigated. In average,
the method enabled a 34% reduction in gate count even if the optimizer
was executed only for 15 minutes.

1 Introduction
One of the most serious problems of evolvable hardware, especially in the area
of evolutionary synthesis of logic circuits, is a very time consuming evaluation
of candidate circuits. This problem is known as the problem of scalability. It
causes that the evolutionary synthesis can handle only small and usually simple
problems that are far from real-world problem instances.

In order to improve the scalability of evaluation, application-specific hard-
ware as well as software methods were designed to increase the performance
of the evolutionary optimization and design of logic circuits, see e.g. [2, 4–6, 9].
These methods enabled to increase the complexity of problem instances that can
be solved in a reasonable time. Unfortunately, the methods are not scalable. The
time needed to evaluate a candidate solution usually grows exponentially with
the increasing number of primary inputs, but the accelerators are usually able to
deliver a linear speedup only. Introducing more domain knowledge and utilizing
more advanced evolutionary methods seem to be the only viable approach for
dealing with the real-world problem instances. A breakthrough in the field of
evolvable hardware was achieved with the introduction of a method which ties
formal verification together with evolutionary optimization and substantially
reduces the scalability issue of the evaluation [7]. Vasicek and Sekanina demon-
strated that the previous empirical limitation of evolutionary design represented
by a digital circuit having about 20 inputs can easily be overcome.



The goal of this paper is to introduce and evaluate a new approach which
extends the method published in [8]. The advantage of the improved approach,
which combines formal verification with simulation-based verification, is the abil-
ity to optimize digital circuits (i.e. to reduce the number of gates, improve power
consumption, delay, etc.) represented at the gate level having hundreds of in-
puts and consisting of thousands of gates. The circuits of such a complexity
have never been either evolved or optimized in the field of evolvable hardware
at the gate level directly. In contrast with previously published works which are
evaluated using a few benchmark circuits, an extensive set of 100 benchmarks
circuits is used to evaluate the performance the proposed method. In addition to
that, we would like to identify the key weaknesses of the evolutionary approach
and propose future directions that could help the evolutionary approaches to
penetrate into the area of real applications. In particular, we analyzed the role
of neutral mutations in the context of evolutionary optimization.

2 Evolutionary optimization of combinational circuits

2.1 Cartesian Genetic Programming

Cartesian Genetic Programming can be considered as one of the most efficient
methods for evolutionary design and optimization of digital combinational cir-
cuits [3]. A candidate circuit is represented using an array of gates arranged
in a matrix consisting of nc columns and nr rows. Each gate can be connected
either to the output of a gate placed in previous l columns or to one of the
circuit inputs. It means that no feedback is allowed. This requirement guaran-
tees that only the combinational circuits will arise. Each gate is programmed to
perform one of na-input functions defined in the set Γ . The number of circuit
inputs, ni, and outputs, no, is fixed. Every candidate circuit is encoded using
nc · nr · (na + 1) + no integers. The main advantage of the utilized encoding is
that the size of phenotype is variable even if the size of chromosome is fixed.
The variability is given by the fact that some nodes need not be employed in
encoded circuit.

CGP operates with the population of 1+λ individuals. The initial population
is usually seeded randomly. However, in order to optimize a known circuit (i.e.
to minimize the number of gates), it is useful to seed the initial population by
this circuit. Every new population consists of the best individual of the previous
population and its λ offspring individuals. The offspring individuals are created
using a point mutation operator which modifies h randomly selected genes of the
chromosome. An important rule for selection of the new parent is utilized. In the
case when two or more individuals can serve as the parent, an individual which
has not served as the parent in the previous generation will be selected as a new
parent. This strategy is important because it ensures the diversity of population
[3]. The algorithm is terminated when the maximum number of generations is
exhausted or a sufficient solution is obtained.

In case of digital circuit evolution, the fitness value of a candidate circuit
is defined as follows. If a fully functional solution is evolved, the fitness value



consist of the number of correct output bits obtained as response for all possible
assignments to the inputs plus the number of unused CGP nodes. Otherwise,
only the number of correct output bits is used. It means that the evolution has
to discover a perfectly working solution firstly while the size of circuit is not
important. Then, the number of gates is optimized. Similarly, delay or power
consumption may be optimized.

2.2 Speeding up the fitness evaluation using a SAT solver

Contrary to the evolutionary design, the evolutionary optimization of digital
circuits begins with the population seeded by a fully functional circuit. Usually,
the goal is to minimize the number of gates. The most important feature of the
evolutionary optimization is that each candidate solution created by means of
genetic operators must be functionally equivalent with its parent in order to be
further evaluated. This feature was utilized in [7] and furthermore elaborated
in [8]. Equivalence checking was applied to decide whether a candidate circuit
is functionally correct or not. In order to calculate the fitness value, the can-
didate circuit as well as its parent are converted to a Boolean formula whose
satisfiability is investigated using a SAT solver. In fact, the parent serves as
a golden reference for combinational equivalence checking. The advanced ver-
sion, introduced in [8], utilizes another feature of evolutionary-based approach
– the knowledge of the points in a candidate circuit that may break the correct
function. This information is available because each offspring was created by a
mutation from its parent. Hence, only a ‘difference‘ (so-called cone of influence)
between the candidate solution and its parent can be calculated. The Boolean
formula can be derived from this ‘difference‘. Since the cone of influence usually
represents only a small part of the candidate circuit, the time needed to decide
the satisfiability of the Boolean formula can significantly be reduced.

If the obtained Boolean formula is satisfiable, a negative fitness value is as-
signed to the candidate circuit because the candidate circuit captures a different
Boolean function. Otherwise, the candidate circuit is functionally equivalent with
the specification and the fitness value is calculated according to the objective of
the optimization. For example, the number of utilized gates was used in [7, 8].

The usage of SAT solver helped to reduce the most time consuming part of
the evolutionary algorithm, the evaluation of candidate solutions. In contrast
with a common fitness function based on computing a Truth table, the time of
evolution was reduced by several orders depending on the circuit parameters [8].

3 Proposed method

In order to improve the performance of the evolutionary optimizer, i.e. to increase
the number of candidate solutions that can be evaluated within a period of time,
we suggest to combine SAT solver with a circuit simulator which will be used
to disprove the equivalence between a candidate solution and its parent. This
approach is based on the assumption that the time needed to simulate a given



candidate circuit using NV (NV � 2ni) test vectors (tsim) is significantly lower
than the time which is consumed by a SAT solver (tsat).

The correctness of a candidate solution is determined as follows. Firstly, a
circuit simulator is applied to the difference circuit between a candidate solution
and its parent (difference circuit is calculated according to [8]). The simulator
can use up to NV randomly generated test vectors. If there is a test vector which
evaluates the output of the difference to one, the simulator is terminated and a
negative fitness value is assigned to the corresponding candidate solution. Since
it is guaranteed that the candidate solution is not functionally equivalent with
its parent, it is not necessary to call SAT solver to prove that fact. Otherwise,
when all NV test vectors are applied and the output of the difference evaluates
to zero in all the cases, a SAT solver has to be used to prove or disprove the
equivalence because the limited number of test vectors cannot guarantee that
there is not a vector that differentiates the circuits.

The speedup of the proposed method combining a simulator and SAT solver
can be defined as follows:

gain =
tsat

tsim + σfailtsat
=

1

tsim/tsat + σfail
, (1)

where σfail = [0, 1] is a coefficient which determines the fail-rate of the simulation-
based equivalence checking. The σfail may also be understood as the probability
of occurence of an undetected fault.

If we want to maximize the gain, i.e. the overall performance of the optimizer,
we need to minimize not only the value of the ratio tsim/tsat, but also the
value of σfail. Even if the simulator is e.g. 1000 times faster than SAT solver,
a neglible improvement will be achieved if the value of σfail is close to one.
The value of tsim as well as σfail depend on the number of test vectors that
can be used in the simulator to disprove the equivalence. While tsim increases
linearly with increasing NV and the size of the difference entering the simulator,
σfail decreases with increasing NV . Hence, appropriate value of NV has to be
determined in order to maximize the gain.

4 Experimental results

4.1 Benchmark circuits

In order to evaluate the performance of the proposed method, we utilized a set of
100 randomly chosen circuits form QUIP, WLSI and ACM/SIGDA benchmark
set (only circuits with 15 and more primary inputs are considered). These circuits
were synthesized and optimized by ABC 1 using ‘choice’ script. The result of
ABC was utilized as the input to the evolutionary optimizer.

The basic parameters of the benchmark circuits are given in Figure 1. The
circuits are arranged according to the increasing complexity. The complexity is
expressed as a time needed to evaluate a candidate solution using a common

1 ABC is a system for sequential synthesis and verification by A. Mishchenko.



1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

101

102

103

N
P
I,
 N

P
O

NPI

NPO

NG

102

103

104

105

106

N
G

Fig. 1. The number of primary inputs (NPI), primary outputs (NPO) and gates (NG,
right axis) for each benchmark circuit. The X-axis contains the index of benchmark
circuit. The benchmarks are arranged according to the increasing complexity expressed
as 2NPING. Note that both Y-axes have a logarithmic scale. 3

fitness function (i.e. the fitness function based on a truth table). In such a case,
the evaluation time is dependent on two factors: the number of primary inputs
(NPI), and the number of gates (NG). As the time needed to evaluate a candidate
solution increases exponentially with the increasing number of primary inputs,
NPI represents the key parameter which has a great impact on the total time.

The least complex circuit, ‘alcom‘ circuit with index 1, consists of 106 gates
and utilizes 15 primary inputs and 38 outputs. The most complex circuit, audio
codec controller ‘ac97 ctrl‘ with index 100, contains 16158 gates and uses 2176
inputs and 2136 outputs. One half of the benchmark circuits have more than 50
primary inputs and consist of more than 1000 gates.

4.2 Role of neutral mutations

The objective of the first experiment was to confirm or reject hypothesis about
the importance of neutral mutations in evolutionary optimization of combina-
tional circuits. Two variants of the mutation operator were implemented in order
to evaluate the significance of neutrality. The first implementation does not im-
pose any special limitations on the mutation operator. The only requirement is
to modify the value of a randomly chosen gene to a different one (but legal).
On the other hand, three restrictions are applied in the second implementation:
(1) inactive gates are never modified; (2) it is not possible to connect an active
gate (or primary output) to an inactive gate; (3) the gene which encodes the
connection of the second input of a single-input gate is never mutated. These
restrictions were introduced in order to mitigate the neutral mutations.

The CGP parameters were chosen as follows: nc = NG, nr = 1, l = NG,
λ = 1, h = 2, Γ = {BUF, INV, AND, OR, XOR, NAND, NOR, XNOR}. These
parameters were chosen according to the [8]. No redundancy in CGP encoding
is used; the number of nodes is equal to the size of a benchmark circuit obtained

3 The list of benchmark circuits is available at http://www.fit.vutbr.cz/∼vasicek/gp15



from ABC. The goal of CGP is to minimize the number of utilized gates, i.e.
the fitness value is equal to the number of active CGP nodes. The fitness func-
tion utilizes SAT solver only. In order to perform a statistical evaluation, fifteen
independent evolutionary runs were executed for each benchmark circuit. Note
that median value will be used to analyze the impact of a particular parameter
because no Gaussian distribution can be observed among the benchmarks. The
evolution is terminated after 15 minutes4. We do not use the number of evalu-
ations as a termination condition because this number is very sensitive to the
structural properties of an optimized circuit and it is impossible to determine
an appropriate value in advance.

The performance of both approaches is evaluated using the number of gener-
ations (Gimpr) that enabled an improvement of the fitness value. This parameter
can be seen as a measure of mutation operator’s performance (i.e. the ability to
generate a candidate solution which is valid and simultaneously improved). The
reason behind the usage of this metric is that the number of evaluations can-
not be compared directly because the neutral mutations are detected and the
created candidate solutions do not enter the time-consuming fitness evaluation
procedure (it is guaranteed that they have the same fitness value as their parent)
resulting in the fact that significantly more generations can be produced if the
occurrence of neutral mutations is high.

Let G = Gvalid + Ginvalid be the total number of generations where Gvalid

is the number of generations in which a valid candidate solution (i.e. func-
tionally equivalent with a parental circuit) is generated from a parental so-
lution by applying the mutation operator. Then, Gvalid can be expressed as
Gvalid = Gimpr + Gnoimpr + Gneutral, where Gneutral is the number of neutral
mutations in the sense defined in previous paragraphs. Gnoimpr represents the
candidate solutions in which at least a single gene was changed but the fitness
value remained unchanged. Note that Gneutral = 0 in the second implementation
because no neutral mutations are allowed.

The evaluation of both variants of the mutation operator is shown in Figure 2.
The performance is expressed as the ratio Gimpr/(Gvalid−Gneutral) calculated at
the end of each 15-minute evolutionary run, averaged over all fifteen runs. Despite
the stochastic nature of evolutionary algorithm which leads to some variances
(see the error bars in Figure 2 showing the magnitude of standard deviation), we
can conclude that the performance of both implementations is almost identical.
In average, 2.34% of valid generations were produced when the neutral mutations
were enabled and 2.42% for the opposite case. For 75 benchmarks, the variant
with disabled neutral mutations performs approx. (30± 35) % better in average.
The performance was worsened in 25 cases by approx. (9± 10) % in average.

According to the obtained results, we can conclude that it has no advantage
to support neutral mutations in this scenario (i.e. if the goal is to minimize the
number of gates in a fully functional circuit). In fact, the neutral mutations have
a negative impact on overall performance because the probability of mutation of

4 A PC equipped with Intel Xeon X5670 (24 cores, 2.93 GHz, 12 MB cache), 32 GB
RAM and 64-bit CentOS Linux was used.



1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0%

2%

4%

6%

8%

10%

12%

14% neutral mutations

enabled

disabled

Fig. 2. The mean number of generations that enabled an improvement of fitness
value when the neutral mutations were enabled (disabled). It is expressed as the ratio
Gimpr/(Gvalid−Gneutral). The mean value obtained as an average over all benchmarks
is represented by dotted line whereas the median value is depicted by dash-line.

an active gene decreases with the increasing number of inactive genes. Even if
the neutral mutations are detected and the corresponding candidate solutions do
not enter the time-consuming fitness evaluation procedure, the performance of
the evolutionary optimizer deteriorates as the circuit is reduced because a great
portion of neutral mutations is generated.

Looking at the results shown in Figure 2, we can identify that the perfor-
mance of the mutation operator is very sensitive to the optimized circuit. One
can admit that this issue could be related to the impossibility to improve the
number of gates of a given benchmark circuit, but this is certainly not the case.
It can be easily shown that the utilized circuits are not optimal if the number of
gates is considered. Taking into account that the ratio between Gvalid and G is
approx. 0.5% in average (see Figure 3), there are circuits for which the mutation
operator performs very poorly. Less than 0.007% of the total number of genera-
tions enabled the improvement of the fitness value for one half of the benchmark
circuits. On the other hand, there are instances showing a significantly better

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

Fig. 3. The number of generations in which a valid cadidate solution was produced,
represented as a ratio Gvalid/(Gvalid + Ginvalid). The results are obtained from the
second implementation, where the neutral mutations are disabled. The median value
is shown using a dash-line.



convergence, e.g. more than 0.12% of the total number of generations leading to
the improvement of the fitness value were produced in the case of circuit 66.

Unfortunately, there is no obvious relation between the circuit complexity
(as defined in Section 4.1) and performance of the mutation operator. Thus, we
believe that the performance of the mutation operator is in a close relation with
the internal structure of an optimized circuit. Hence there are two possibilities
how to improve the performance of the evolutionary optimizer. We can (a) in-
crease the number of generations that can be evaluated within a time period
and/or (b) to design a new mutation operator with better performance.

4.3 Efficiency of the proposed approach

To determine the value of σfail and its dependency on NV , three experiments
were performed. A 64-bit parallel simulator which is able to calculate response to
64 input combinations in a single pass was utilized. The simulator was enabled
to use (a) a single pass (NV = 64), (b) up to 16 passes (NV = 1024), and
(c) up to 32 passes (NV = 2048) to disprove the equivalence. Only the cone of
influence determined according to the points of mutation enters the simulator.
The experimental setup and CGP parameters were the same as described in
previous section. The mutation operator with suppressed neutral mutations was
employed.

The obtained results are shown in Figure 4. The value of σfail was calcu-
lated at the end of fifteen 15 minutes evolutionary runs. The median value of
NV can be approximated by the exponential trendline σfail ≈ 3.2693NV

−0.611

with R-squared equal to 0.9955. It means that σfail noticeably decreases at the
beginning (i.e for small NV ) and then, as NV increases, the yield is smaller and
smaller. In most cases, σfail is lower than 0.1 even if a single pass is used. How-
ever, there are cases with surprisingly high ratio of σfail that remains above 50%
even if 2048 randomly generated input combinations were utilized (see bench-
marks 26, 47, 55, 77 and 84). Considering the parameters of those circuits (see

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0.0

0.2

0.4

0.6

0.8

1.0
NV=64

NV=1024

NV=2048

NV=auto

Fig. 4. Fail-rate σfail of simulation-based equivalence checking shown for various num-
ber of randomly generated test vectors (NV ) that are utilized by the circuit simulator
to disprove functional equivalence between candidate solution and its parent.



1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0.1

1 µs

10

100

1 ms

10

100

mean tsat

mean tsim

Fig. 5. Average time needed to perform equivalence checking using (a) SAT solver (see
tsat) and (b) simulator with a single pass (see tsim).

Figure 1), we suppose that this issue is probably related to the high number of
utilized gates which may contribute to a fault masking effect.

The σfail corresponding to the number of test vectors that are used to max-
imize value of emquation 1 is represented by lines labeled as NV = auto in Fig-
ure 4. We can observe that less than 16 passes (i.e. less than 1024 test vectors)
were used in most cases. These instances can easily be identified by comparing
the value of σfail for NV = auto and NV = 1024; the lower number of test
vector implies higher σfail. Unfortunately, the ratio tsat/tsim remains very low
for the five benchmarks discussed in previous paragraph (see Figure 5). Hence
only a few test vectors can be utilized which results in the fact that the fail-rate
remains very high. Thus only a neglible speedup is expected in these cases.

The speedup of the proposed method combining SAT solver with simulator
is given in Figure 6. The speedup is calculated using the number of candidate
solutions that can be evaluated within 15 minutes. The number of test vectors

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
1×

10×

20×

40×

m
e
d
ia

n
N
V

=
64

m
e
d
ia

n
, 
N
V

=
a
u
to

NV =64

NV =auto

Fig. 6. Speedup of the proposed method which combines SAT-based and simulation-
based equivalence checking in the fitness function. For more than 50 benchmark circuits,
adaptive setting of the number of test vectors (see NV = auto) increased the speedup
approx. twice compared to a single-pass simulation (i.e. 64 test vectors). Note that the
y-axis has a logarithmic scale.



was determined adaptively during the evolution as follows. At the begining of
the evolution, a single pass (i.e. 64 test vectors) is utilized. Then, the number of
passes doubles every 10 seconds until a decrease in the performance is detected.
Finally, the best value is determined and used. The number of test vectors is
adaptively modified during evolution if there exists a different value which pro-
vides better performance.

According to the obtained results, the achieved speedup is higher than 5.28
for half of the benchmark circuits. The performance of the implementation
which utilizes the adaptive number of test vectors is approximately two times
higher compared to the implementation with fixed number of test vectors whose
speedup factor is approx. 2.34. This finding can be considered as a very posi-
tive result since the introduction of the simulator can remarkably improve the
performance of the evolutionary optimizer.

Similarly to our previous findings regarding σfail, the value of speedup no-
ticeably varies across the benchmarks. There are cases for which the speedup
factor exceeded 30. On the other hand, nearly no improvement was obtained for
benchmarks 26, 47, 55, 77, and 84. According to our expectation, the speedup
is close to 1.0 in these cases.

We analyzed the obtained results and identified that there is a relation be-
tween σfail and speedup. If σfail ≥ 0.05, the higher σfail implies a lower speedup.
However, this relation does not hold for σfail < 0.05 where the speedup varies
in one order independently on the value of σfail. In addition to that, we can
observe decreasing of the tsat/tsim ratio as the complexity of a benchmark cir-
cuit increases. Even if tsat remains relative stable across the benchmarks (see
Figure 5), tsim increases with the increasing complexity. The ratio tsat/tsim was
decreasing from approx. 350 for less complex circuits to 10 for the most complex
circuit. As a consequence of that, a relative small number of test vectors should
be used in the simulator.

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0%

20%

40%

60%

80%

100%
sat only

sat+sim

best obtained

Fig. 7. Reduction of the benchmark circuits (relative to the original size) obtained
after 15 minutes of the optimization is shown for (a) sat-based optimizer and (b)
the proposed approach which combines SAT solver with simulator. The best results
obtained from a 24-hour evolutionary optimization are denoted by triangles.



4.4 Performance of the circuit optimizer

The impact of the proposed method on the quality of optimization is shown
in Figure 7. The implementation which utilizes SAT solver and circuit simula-
tor with adaptive number of test vectors is compared against the SAT-based
implementation introduced in [8]. No neutral mutations were enabled. The ex-
perimental setup is the same as used in previous section.

In all cases, the combination of a SAT solver and circuit simulator brought
an improvement. The size was reduced by 13% in average. Still, there are cases
showing a very slow convergence caused mainly by the time consuming evalua-
tion. If we compare average Gvalid of the four aforementioned benchmarks (26,
47, 55, 77, and 84) with Gvalid of the rest of the benchmarks, we can observe
that the value is two orders of a magnitude lower. This explains why nearly no
improvement was achieved within 15 minutes in these cases.

5 Conclusion

We introduced a new approach to the evolutionary optimization of large digital
circuits which exploits the combination of a circuit simulator and a formal verifi-
cation. Due to the usage of a simulator with adaptive number of test vectors, the
time of evaluation was significantly reduced for 100 complex benchmark circuits
in comparison with a method published in [8]. In the worst case, the time of
evaluation remains the same.

In addition to that, we investigated the role of neutral mutations that are
believed to be an important part of CGP. According to the obtained results, we
have concluded that it has no advantage to support neutral mutations for circuit
optimization (i.e. in the case that the number of gates is minimized for a fully
functional circuit). This can be understood as an important result not only from
theoretical but also from practical point of view because the neutral mutations in
fact have negative impact on the performance of the evolutionary optimization.
Our findings related to the role of neutrality correspond with observations on
the evolutionary design of parity circuits [1].

The performance of the proposed method was evaluated on an extensive set
of real-world benchmark circuits having tens to hundreds of inputs and consisting
of hundreds to thousands of gates. For more than half of the benchmark circuits,
approximately five times higher number of evaluations was performed within the
same time period compared to the approach that utilizes only a formal approach.
While the latter method was able to reduce the circuits by 21% in average, the
proposed method is able to reduce the circuits by 34% using the same amount
of time. Considering the fact that the runtime of the optimization process was
15 minutes, the obtained results are very encouraging.

We demonstrated that the circuit optimization conducted by CGP is appli-
cable on complex real-world digital circuits. However, we simultaneously shown
that there are instances for which the proposed method can bring only a marginal



or none improvement in the performance. Our method is based on the assump-
tion that evolutionary-based approach generates a large number of invalid candi-
date solutions that can be detected very quickly by means of applying a few test
vectors on the inputs (i.e. that the time consuming formal verification can be re-
placed with a faster simulation-based approach). While this assumption is valid
and an enormous number of invalid candidate solutions are generated during
evolution, there exist circuits that are hard for the simulation-based verification.

We believe that the evolutionary-based approach requires to generate a large
number of candidate solutions to compensate the poor performance of the mu-
tation operator. We observed that at least 5 · 104 valid candidate solutions were
generated within 15 minutes for problem instances exhibiting a reasonable con-
vergence. Unfortunately, approx. two orders of a magnitude (i.e. 106) candidate
solutions have to be generated to obtain 5 · 104 valid candidate solutions.

One of the possibilities how to substantially improve performance of the
evolutionary optimization is to orient the future research towards improving of
the mutation’s operator performance. Another option is to replace the randomly
generated test vectors with a smart selection of test vectors which can quickly
detect the inequivalence. One of the possibilities is to build a database of test
vectors using the counter examples that are produced by a SAT solver during
verification.

Acknowledgments. This work was supported by the Czech science foundation
project 14-04197S.

References

1. M. Collins. Finding needles in haystacks is harder with neutrality. Genetic Pro-
gramming and Evolvable Machines, 7(2):131–144, 2006.

2. S. Harding, J. F. Miller, and W. Banzhaf. Self modifying cartesian genetic program-
ming: Parity. In 2009 IEEE Congress on Evolutionary Computation, pages 285–292.
IEEE Press, 2009.

3. J. F. Miller. Cartesian Genetic Programming. Springer-Verlag, 2011.
4. A. P. Shanthi and R. Parthasarathi. Practical and scalable evolution of digital

circuits. Applied Soft Computing, 9(2):618–624, 2009.
5. E. Stomeo, T. Kalganova, and C. Lambert. Generalized disjunction decomposition

for evolvable hardware. IEEE Transaction Systems, Man and Cybernetics, Part B,
36(5):1024–1043, 2006.

6. Z. Vasicek and L. Sekanina. Hardware accelerators for cartesian genetic program-
ming. Lecture Notes in Computer Science, 2008(4971):230–241, 2008.

7. Z. Vasicek and L. Sekanina. Formal verification of candidate solutions for post-
synthesis evolutionary optimization in evolvable hardware. Genetic Programming
and Evolvable Machines, 12(3):305–327, 2011.

8. Z. Vasicek and L. Sekanina. A global postsynthesis optimization method for com-
binational circuits. In Proc. of the Design, Automation and Test in Europe, DATE,
pages 1525–1528. IEEE Computer Society, 2011.

9. J. A. Walker and J. F. Miller. The Automatic Acquisition, Evolution and Re-use of
Modules in Cartesian Genetic Programming. IEEE Transactions on Evolutionary
Computation, 12(4):397–417, 2008.


