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Abstract: The Modern Taylor Series Method (MTSM) is employed here to solve initial value
problems of linear ordinary differential equations. An automatic computation of higher Taylor
series terms and an efficient, vectorized coding of explicit and implicit schemes enables a very
fast computation of the solution to specified accuracy. For a set of benchmark problems from
literature, the MTSM significantly outperforms standard solvers. Finally, ideas of parallelizing

the MTSM computations are discussed.
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1. INTRODUCTION

The “Modern Taylor Series Method” (MTSM) is used for
numerical solution of differential equations. The MTSM is
based on a recurrent calculation of the Taylor series terms
for each time interval. An important part of the MTSM is
an automatic integration order setting, i.e. using as many
Taylor series terms as the defined accuracy requires. Thus
it is usual that the computation uses different numbers of
Taylor series terms for different steps of constant length.
The MTSM has been implemented in the TKSL software
package (Kunovsky, 1994).

Several papers focus on computer implementations of the
Taylor series method in a variable-order and variable-step
context (see, for instance, Barrio et al. (2005), the TIDES
software implemented in Wolfram (2014), or in Jorba and
Zou (2005)). The reduction of rounding errors (Rodriguez
and Barrio, 2012) and utilization of multiple arithmetics
(Barrio et al., 2011) improve the applicability of Taylor
series based algorithms.

This paper demonstrates that the MTSM, specialized to
directly solving linear ODE systems, solves non-stiff and
stiff systems very fast (in explicit and implicit formula-
tions, respectively) and outperforms standard solvers in
the considered benchmark problems.

2. EXPLICIT SCHEME OF TAYLOR SERIES

In this article, we have focused on effective solution of lin-
ear systems of ODEs using Taylor series scheme. The best-
known and most accurate method of calculating a new
value of a numerical solution of ordinary differential equa-
tion ¥y = f(t,y), w(0) = yo is to construct the Taylor
series (Hairer et al., 1987).
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The n—th order method uses n Taylor series terms in the
explicit form

h2
Vi1 = yi + hf(ti,yi) + gf[l](tuyi) +oee

1)
h" (
2 opln=1g. o

+ ! f (ti, yi)-
Equation (1) for linear systems of ODEs in the form
y' = Ay + b could be rewritten

h2
Yiy1 = Y; +h(A-y, +b) + jA(Ayi +b)+
h" '
AT (Ay 4+ b),
n!
where A is the constant Jacobian matrix and b is the
constant right-hand side.

Vectorized MATLAB code of explicit Taylor series exp-
Tay with a variable order and variable step size scheme
for linear systems of ODEs (2) has been implemented.
This algorithm was compared on a set of “non-stiff” linear
systems (see Enright and Pryce (1987)) with vectorized
MATLAB explicit odeNN solvers. Benchmarking results
are shown in Table 1 (each reported runtime is the median
value of 100 computations). Ratios of computation times
ratio. = ode23/expTay > 1 indicate faster compu-
tation of the MTSM in all test cases. Exact solutions
were obtained by the Maple software package (Maplesoft,
2014). All solvers’ tolerances were set to obtain relative
and absolute tolerances of 10~* with respect to the exact
solutions.

3. IMPLICIT SCHEME OF TAYLOR SERIES

The implicit Taylor series scheme for linear systems of
ODEs are constructed as follows:
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Table 1. Median computation time: ex-
plicit Taylor expTay and MATLAB explicit
odeNN solver comparison

ode23 ode45 odell3 expTay

[s] [s] [s] [s] ratioe
Al 0.00497 0.00537  0.00751  0.000831 5.98
B2 0.00633 0.00758 0.0128 0.00218 2.9
Cl1 0.00653 0.00574 0.0111 0.00114 5.72
C2 0.01 0.0147 0.0277 0.00651 1.54
C3  0.00636  0.00805 0.0156 0.003 2.11
C4  0.00679  0.00836 0.0166 0.00359 1.89

h2
Yir1 = Y; +h(Ay; 41 +b) — SA(AyH—l +b)— 3)
—h)" B :
T %Aw V(Ay; i +b).

Implicit Taylor series method with recurrent calculation
of Taylor series terms and Newton method (impTay)
based on (3) was implemented in MATLAB using vector-
ization. The Jacobian matrix is computed using Broyden’s
method.

A benchmark problem set of “stiff” linear ODEs from
Enright and Pryce (1987) was used for tests. Comparisons
of the problems Al, A3, A4, and B1-B5 whose analytic
solutions are known (from the Maple software package
(Maplesoft, 2014)) have been completed. The simulated
intervals were adopted from Enright and Pryce (1987), and
the integration time step was set to the entire time interval
(just 1 integration step was needed). Relative and absolute
tolerances for the computations were again set to 1074,
Comparisons of MATLAB “stiff” odeNNs solvers with
impTay are shown in Table 2. High ratios of computation
times ratio; = odel5s/impTay show that the MTSM
method significantly outperforms the standard solvers.

Table 2. Time of solutions: implicit Taylor
impTay and MATLAB implicit odeNNs

solvers comparisons

odel5s ode23s ode23tb impTay

[s] [s] [s] [s] ratio;
Al 0.0605 0.169 0.101 0.0003 194.6
A3 0.085 0.243 0.144 0.00001 263
A4 0.111 0.478 0.192 0.0003 294.8
B1 0.268 1.473 0.8 0.0003 244.4
B2 0.069 0.285 0.134 0.00003 172.4
B3 0.073 0.308 0.146 0.00003 211.4
B4 0.117 0.549 0.242 0.00003 348.4
B5 1.155 1.529 0.664 0.00003  3306.7

4. PARALLEL IMPLEMENTATION

As can be seen from (2), each term of Taylor Series for
a linear system can be computed independently. So their
computation can be distributed into multiple computation
units (utilizing a distributed memory architecture). Hence
thread j € {1...m} evaluates

no_q .
m hmk-i—]
Aj =

= (mk + j)!

and the final sum is computed afterwards. Therefore
expression (2) can be transformed to

mk+j—1 (4)

710

Y= (DA |A+T |y, + (D A |b (5
j=1 j=1

where I is the identity matrix.
5. CONCLUSION

The Taylor series scheme is highly efficient in solving linear
ODEs. It significantly outperforms standard solvers on
the considered benchmark problems. Results for double
precision arithmetics and a maximum Taylor series order
of 90 have been shown. Multiple arithmetics is needed for
higher orders. Future studies will address the efficiency
and scalability of MTSM ODE solvers in different paral-
lelization architectures.
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