2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems

FPGA Prototyping and Accelerated Verification of
ASIPs

Jakub Podivinsky, Marcela Simkova, Ondrej Cekan, Zdenek Kotasek
Faculty of Information Technology, Brno University of Technology
Bozetechnova 2, 612 66 Brno, Czech Republic
Tel.: +420 54114-{1361, 1362, 1361, 1223}

Email: {ipodivinsky, isimkova, icekan, kotasek} @fit.vutbr.cz

Abstract—In current SoC verification, the trend is to create
verification solutions that are tailored to specific issues in SoC
or to specific architectures. The reason is that the complexity
of these systems makes it difficult to use general verification
approaches such as formal or simulation-based verification. This
paper presents a solution that is targeted to one particular
area - Application-Specific Instruction-Set Processors (ASIP) and
multi-processor systems containing several ASIPs. We propose
automated FPGA prototyping and accelerated verification of
these systems while the accelerated verification environment
corresponds to the principles of UVM (Universal Verification
Methodology) therefore can easily be integrated. Automated
generation of verification environments and acceleration of ver-
ification runnning on a real hardware platform makes this
solution very unique and beneficial, not only in speed, but also
in debugging specific hardware issues.

Keywords—UVM, Acceleration, FPGA Prototyping, ASIP.

I. INTRODUCTION

The current embedded systems, such as Systems on Chip
(SoC), multi-processor systems (MPSoC) or equipment for
Internet of Things (10T), are more and more complex. They
usually consist of one or more processors (either General Pur-
pose Processors (GPPs) or Application Specific Instruction-
set Processors (ASIPs)) and various types of peripherals. An
important phase in the development cycle of these systems
is the verification of their functionality. Various approaches
for verification currently exist, such as formal verification,
assertion-based verification or simulation-based verification
(also called functional verification). But in general, functional
verification is easier to apply for hardware engineers as they
are familiar with simulation tools and this approach does not
require a deep knowledge of formal specifications. Moreover,
standard languages, methodologies and libraries were defined
for functional verification. The most commonly known are
the SystemVerilog IEEE language standard [1], Universal
Verification Methodology (UVM) [2] and the open-source
UVM library (with all the basic components of verification
environments). They work well for unit level verification, but
for processors, SoC or MPSoC, they do not scale well. The
reason is not only in the complexity of these systems, but also
the fact that software embedded into processors must be taken
into account as well [3], [4]. Moreover, their verification is
time consuming and this can lead to undesirable prolongation
of the time to market.

Therefore, because of its complexity, it seems to be the
current state-of-the-art in SoC verification to come with a

978-1-4799-6780-3/15 $31.00 © 2015 IEEE
DOI 10.1109/DDECS.2015.33

145

verification solution that is adjusted to SoC (digital vs. analogy,
verification IPs, graph-based IP connections, etc.); or their
application domain (e.g. multimedia, DSP applications, smart
devices, etc.) and is often connected to the development
tool of these systems. For example, Breker [5] introduces a
graph-based approach to functional verification. Users capture
with graphs the IP level scenarios as nodes and connections
make the SoC level scenario. Cadence [6], Synopsys [7]
or Mentor Graphics [8] provides verification IPs for more
than 40 communication protocols and 60 memory interfaces
in order to facilitate SoC verification. Duolog [9] focuses
on IP integration problems and generates UVM verification
environments from interface-based executable specification.
Codasip company [10] provides Codasip Framework that is
targeted to ASIP and MPSoC development and offers auto-
mated generation of UVM verification environments for these
systems that are customized for a class of applications that run
on their embedded processor(s).

In our previous work we focused on automated generation
of UVM verification environments for ASIPs and MPSoC
from their high-level description in architecture description
language (ADL) [11]. This feature is now integrated into the
Codasip Framework. Moreover, we designed an open-source
framework HAVEN for FPGA acceleration of simulation-
based verification of various systems [12].

Our current research is a continuation of our previous work.
We designed and implemented a new feature for automated
FPGA prototyping and accelerated verification of ASIPs and
MPSoC. We realised that simulation-based verification of
ASIPs and MPSoC is valuable, but it runs slowly when we
need to evaluate thousands of embedded software applica-
tions. Therefore, in the accelerated version of verification
we replicate the main principle of HAVEN and move the
Device Under Test (DUT), which is ASIP or MPSoC, from
the software simulation into an FPGA. All other parts such as
loading package applications, a running reference model and
scoreboarding, remain in the software. If a bug is detected in
the accelerated version, we can use the pure software version
of the verification environment running in the simulator (the
non-accelerated version) for easier debugging of the problem.
Another important benefit of using FPGA is that the ASIP
prototype will run on real hardware. This helps us to uncover
bugs, which are related to the placement of the design into
real hardware and which are not detectable in simulation.

Regarding acceleration of verification in general (not nec-
essarily for processors), there already exist some commercial

solution which are quite similar to our work. Mentor Graphics
Veloce technology [13] accelerates simulation by synthesising
the DUT and placing it into a proprietary emulator. Emulation
and acceleration of verification also offers Cadence company
in their Cadence Palladium Series [14]. However, our solution
is different as it aims exclusively at verification and FPGA-
prototyping of ASIPs and MPSoC. But as mentioned above,
targeting verification to a specific domain can be much more
precise. At the same time, we support system-level verification
as we are able to verify not only the hardware architecture of
ASIPs, but also various software applications that are executed
on them.

This paper is organized as follows. The architecture of the
accelerated verification environment is described in Section II.
The case study in Section III shows the process of generating
the verification environment for a selected ASIP (the accel-
erated and non-accelerated version) as well as experimental
results for different verification runs. Section IV summarizes
the results and proposes our plans for future research.

II. ARCHITECTURE OF THE ACCELERATED

ENVIRONMENT

In order to get an idea on how the accelerated verification
environment may look like, we prepared a simple demonstra-
tion model. The verified system (DUT) is a simple MPSoC
consisting of two ASIPs: ASIP1 and ASIP2. ASIPI1 receives
input data and functions as a pre-processor for ASIP2, ASIP2
sends results to its output ports. But of course, DUT can be
represented by any other ASIP or MPSoC.

The non-accelerated UVM verification environment in Fig-
ure 1 (in SystemVerilog) for the demonstrated MPSoC is
generated automatically in Codasip Framework. The accel-
erated verification environment in Figure 2 is derived from
the non-accelerated version. It should be noted that almost
all UVM components are moved into the FPGA, except for
the Reference Model and Scoreboard. Nevertheless, we aim
at designing consistent verification architecture in FPGA too.
Therefore, UVM Agents and their inbuilt components are just
replaced by HW Agents. We believe that consistent FPGA
verification architecture is beneficial not only for the automated
generation of the accelerated version, but it also remains
understandable for verification engineers.

L
Memory Agent UuvM Enwrotment
Apps 77 Reference
{ 3 Model
Input f ;
Data MEMORY
|
I R Reg. Agent
I AsIP1 | & { Monitor H—
Platform S Scoreboard
Agent L R Reg. Agent
Monitor £ ASIP2 | £ -1 Monitor H—
: ¢
DUT Platform

Fig. 1. The architecture of the non-accelerated verification environment.

146

In the accelerated version, UVM testbench, Reference
Model and Scoreboard are running in software simulation and
the remaining parts are running in FPGA. Communication
between the software and hardware parts of the verification
environment is accomplished using the framwork HAVEN
(for more details please see [12]). More details about the
components of both parts are provided below in the following
subsections.

H Apps

Input ||
Data

UVM Envirgnment

HW Memory Agent

L || Apps .

| i

Reference
Model

Input Wrapper

HW Reg. Agent

— [
Driver

R
ASIP1 | & { Monitor }
HW Platform S Scoreboard
Agent L 3 HW Reg. Agent
Monitor £ ASIP2 é»
DUT Platform

Fig. 2. The architecture of accelerated verification environment.

A. Software Part of the Verification Environment

The main components of the software part are Refer-
ence Model and Scoreboard. Reference Model is generated
automatically from the high-level specification. Scoreboard
compares results of the Reference Model to the results of DUT
(received from the hardware part through the Output Wrapper
component). In particular, we compare the content of memories
and register fields when the specific data set is processed, and
we continuously check data from the output ports. The role
of Input Wrapper is to send applications (they are loaded to
ASIPs and define their functionality) and input data.

The applications are obtained from our designed and im-
plemented stimuli generator which is also at the forefront of
our overall research plan. The stimuli generator is especially
expected to be used in functional verification. The conception
of the stimuli generator is designed for versatile purposes.
The aim of the generator is changing its input parameters and
achieving its different behavior and thus its different outputs.
The generator is based on constraint solving [15] and it takes
problem specification as an input. For our purposes of the
ASIPs verification, the generator takes the assembly instruction
set specification and constraints for this instruction set as the
input. Instruction set defines what is to be generated and
constraints defines how it has to be generated. When generator
is operating, it must deal with numerous conditions and
restrictions (constraints). At a processor, it is needed to deal
mainly with jump instructions, memory access instructions
and latencies for each instruction. Thanks to the constraints,
there are reduced possible invalid outputs. The output from
the generator is an assembly program (stimulus) which is
transformed into machine code and passed into the Input
Wrapper. The basic principle of the presented generator are
show in Figure 3.

The key part of the generator is the definition of the con-
straints and their fast interpretation. We defined 20 constraints
for valid generating an assembly code. For example absolute
jump instructions need 6 types of constraints for ensuring valid
and unique label generation in whole program. The generator
does not work with semantics of instructions. This allows
to focus on more application domains with different stimuli.
Therefore the generator is not limited only for processors and
can be used in many areas. We are able to generate valid
assembly programs for RISC (Reduced Instruction Set Com-
puting) and VLIW (Very Long Instruction Word) processors
so far. Some more information about the presented generator
is in [16].

Problem Specification

Instruction Set

T Apps

Constraints X

il_‘

Assembly
—| Programs

Machine Code
Transformation

Stimuli
Generator

Fig. 3. The basic principle of the generator.

B. Hardware Part of the Verification Environment

Hardware components are currently implemented manually
in VHDL. During the following months we plan to generate
them automatically in VHDL/Verilog from the high-level spec-
ification (similarly as we generate UVM verification environ-
ments in the non-accelerated version). A short description of
the main hardware components follows.

Hardware Agents are similar to UVM Agents and their
main components are Drivers and Monitors. Drivers drive
input ports of DUT and Monitors, which on the other hand,
collect data from output ports. In Figure 2 you can see the
Hardware Memory Agent, two Hardware Register Agents and
the Hardware Platform Agent. The Hardware Memory Agent
is connected to the main memory. It contains the Driver called
the Application Loader that drives the loading of applications
into the program part of the memory at the beginning of
computation. The second component is the Monitor that takes
an image of the memory at the end of computation and sends it
to the software Scoreboard for comparison to reference results.
The Hardware Register Agent contains only the Monitor that
takes an image of register fields at the end of computation and
sends it to the software Scoreboard. The Hardware Platform
Agent is active during the whole computation; it contains the
Driver that during the computation stimulates input ports of
ASIP1 with data and Monitor that sends the valid output data
of ASIP2 to the software Scoreboard.

147

III. THE CASE STUDY

We performed our experiments and measures with the
DUT consisting of one ASIP called Codix RISC [17]. The
aim of these experiments was to evaluate and compare the
performance of the non-accelerated version of verification to
the FPGA-accelerated version.

The non-accelerated verification environment is generated
automatically in Codasip Framework. All parts are in Sys-
temVerilog (except of DUT in VHDL or Verilog) and are sim-
ulated in Mentor Graphics ModelSim SE-64 10.0c simulator
on the server with two quad-core Intel Xeon E5620@2.40 GHz
processors and 24 GiB of RAM. The accelerated verification
environment contains the DUT, Hardware Platform Agent,
Hardware Monitor Agent and Hardware Register Agent on
the FPGA site (Xilinx Virtex-5 FPGA) and Scoreboard and
Reference Model on the software site (simulated again in
ModelSim on the server). The amount of consumed FPGA
resources (slices) is the following: 1,428 (5.8%) for the Codix
RISC processor and 1,669 (6.9%) for the hardware verification
environment.

Results of these experiments are depicted in Table 1. We
have the measured verification time (the accelerated and the
non-accelerated version) for a different number of application
programs. Moreover, the acceleration ratio was computed.

TABLE 1. THE ACCELERATION RATIO AND THE RUN TIME OF
VERIFICATION.

Number of | Run time | Acceleration
programs [-] | Non-accelerated [s] | FPGA-accelerated [s] | ratio [-]

500 3458 2010 1.719

1,000 6841 3974 1.721

2,000 13634 7917 1.722

4,000 27208 15784 1.723

6,000 40845 23682 1.724

8,000 54384 31451 1.729

10,000 67965 39372 1.726

The measured values are also presented in the graphs
of Figure 4 and 5. The acceleration ratio is on average
1,7x and slowly grows up with the number of the evaluated
test programs. Because we expected better results, we have
performed some specific additional measurements and have
identified candidates for further improvements.

Run time [s]

80000

70000

60000

50000

pd
o~

40000

=

P

30000

20000
== Non-accelerated [s]

10000 - —
0 :

500 1000 2000

«=@==FPGA-accelerated [s]

4000 6000 8000 10000

Number of programs [-]

Fig. 4. The relation between the runtime of the non-accelerated and the
FPGA-accelerated verification and the number of processor programs.

Acc. rate [-]

1,73

1,728

AN

1,726

g

1,724

1,722 //
1,72 ~
g [g8 «=fll= Acceleration rate [-]
1,718 + 4 ! |
500 1000 2000 4000 6000 8000 10000

Number of programs [-]

Fig. 5. The relation between the acceleration ratio and the number of
processor programs.

The software site of the verification environment is still
too complex and the runtime of the accelerated verification
depends on the speed of the SW verification environment. The
graphical reprezentation of this analysis is shown in Figure
6. The DUT consumes longest time in the non-accelerated
verification. But on the other hand, the time consumption of
DUT in the FPGA-accelerated verification is shortest. In this
case, the runtime of the whole verification is based on the time
consumption of the SW verification environment which is the
same for both the FPGA-accelerated and the non-accelerated
version. There we see a space for possible improvments.

Runtime of the non-accelerated verification
AN

4

DUT running in
SW simulation

SW verification
environment

Space for possible

, impro R
N 4

\ J

Runtime of the FPGA-accelerated verification

DUT running
on FPGA

Fig. 6. The graphical representation of the time consuption of the SW
verification environment, the simuletd DUT and FPGA-accelerated DUT.

The second problem is that we have executed a huge
number of small applications, but only with the basic data sets.
For precise verification, every application should be evaluated
with more transaction data. The computation burden will be
higher, so the acceleration will be more beneficial.

IV. CONCLUSIONS AND FUTURE RESEARCH

In this paper, the environment for FPGA-prototyping and
accelerated verification of ASIPs and MPSoC were presented.
The case study shows that by means of acceleration on FPGA
we are able to detect errors faster (1,7x) and debug not only the
software model but directly the hardware prototype on FPGA.
As for the great advantage of the accelerated verification
environment we see its correspondence to UVM, so it is
easily understandable for verification engineers. However, the
acceleration ratio was not so good as we expected so we should
find a way how to optimize the SW verification environment
even more so it will not be a bottlenck in the whole system.

148

In our future research we intend to interconnect the ac-
celerated verification environment with our fault injector that
also operates on FPGA. In this way we will connect our
research in the verification area to our research in fault-tolerant
systems design [16]. The aim is to create a robust platform for
validation of FT methodologies in which the introduced stimuli
generator will be also applied.

ACKNOWLEDGMENT

This work was supported by the following projects:
National COST LD12036 - “"Methodologies for Fault Tol-
erant Systems Design Development, Implementation and
Verification”, project Centre of Excellence IT4Innovations
(ED1.1.00/02.0070), EU COST Action IC1103 - MEDIAN
- Manufacturable and Dependable multlcore Architectures at
Nanoscale and BUT project FIT-S-14-2297.

REFERENCES
[1] IEEE Std. 1800-2005, IEEE Standard for
SystemVerilog— Unified Hardware Design, Specification,
and Verification ~ Language, 2005. [Online]. Available:

http://ieeexplore.ieee.org/xpl/standardstoc.jsp?isnumber=33132&is Year=2005

[2] S. Rosenberg and K. Meade, A practical guide to adopting the universal
verification methodology (UVM). Cadence Design Systems, 2013.

R. Backasch, C. Hochberger, A. Weiss, M. Leucker, and R. Lasslop,
“Runtime verification for multicore soc with high-quality trace data,”
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 18, no. 2, p. 18, 2013.

R. Drechsler, C. Chevallaz, F. Fummi, A. J. Hu, R. Morad,
F. Schirrmeister, and A. Goryachev, “Future soc verification method-
ology: Uvm evolution or revolution?” in Proceedings of the conference
on Design, Automation & Test in Europe. — European Design and
Automation Association, 2014, p. 372.

[3]

[4]

[5] Breker. (2014, Dec.) Treksoc. [Online]. Available:
http://www.brekersystems.com/products/treksoc/

[6] Cadence. (2014, Dec.) Verification IP. [Online]. Available:
http://ip.cadence.com/ipportfolio/verification-ip

[7]1 Synopsys. (2014, Dec.) Verification IP. [Online]. Available:

http://www.synopsys.com/Tools/Verification/Functional Verification
/VerificationIP/Pages/default.aspx

[8] Mentor Graphics. (2014, Dec.) Mentor verification IP. [Online].
Available: http://www.mentor.com/products/fv/verification-ip

[9] Duolog. (2014, Dec.). [Online]. Auvailable:
http://www.duolog.com/products/

[10] Codasip. (2014, Dec.) Codasip framework. [Online]. Available:
http://www.codasip.com

[11] M. §imkové, Z. Prikryl, Z. Kotdsek, and T. Hruska, “Automated
functional verification of application specific instruction-set processors,”
in Embedded Systems: Design, Analysis and Verification. — Springer,
2013, pp. 128-138.

[12] M. Simkové and O. Lengdl, “Towards beneficial hardware acceleration
in haven: evaluation of testbed architectures,” in Hardware and Soft-
ware: Verification and Testing. Springer, 2013, pp. 266-273.

[13] Mentor Graphics. (2014, Dec.) Veloce2. [Online]. Available:
http://www.mentor.com/products/fv/emulationsystems/veloce

[14] Cadence. (2014, Dec.) Palladium xp series. [Online]. Available:
http://www.cadence.com/products/sd/palladium_xp_series

[15] L. Kotthoff, “Constraint solvers: An empirical evaluation of design
decisions,” CoRR, vol. abs/1002.0134, 2010. [Online]. Available:
http://arxiv.org/abs/1002.0134

[16] J. Podivinsky, O. Cekan, M. Simkova, and Z. Kotasek, “The evaluation

platform for testing fault-tolerance methodologies in electro-mechanical
applications,” in Digital System Design (DSD), 2014 17th Euromicro
Conference on. IEEE, 2014, pp. 312-319.

Codasip. (2014, Dec.) Codix RISC.
https://www.codasip.com/products/codixrisc/

[17] [Online]. Available:

