
Software Defined Monitoring
of Application Protocols

Luk�a�s Kekely, Jan Ku�cera, Viktor Pu�s, Jan Ko�renek, and Athanasios V. Vasilakos

Abstract—With the ongoing shift of network services to the application layer also the monitoring systems focus more on the data from

the application layer. The increasing speed of the network links, together with the increased complexity of application protocol

processing, require a new way of hardware acceleration. We propose a new concept of hardware acceleration for flexible flow-based

application level traffic monitoring which we call Software Defined Monitoring. Application layer processing is performed by monitoring

tasks implemented in the software in conjunction with a configurable hardware accelerator. The accelerator is a high-speed application-

specific processor tailored to stateful flow processing. The software monitoring tasks control the level of detail retained by the hardware

for each flow in such a way that the usable information is always retained, while the remaining data is processed by simpler methods.

Flexibility of the concept is provided by a plugin-based design of both hardware and software, which ensures adaptability in the evolving

world of network monitoring. Our high-speed implementation using FPGA acceleration board in a commodity server is able to perform a

100 Gb/s flow traffic measurement augmented by a selected application-level protocol analysis.

Index Terms—Network monitoring, acceleration, security, FPGA, L7

Ç

1 INTRODUCTION

MODERN network engineering and security heavily rely
on the network traffic monitoring. The requirements

imposed on the quality of network security monitoring
information often lead to the requirement to process
unsampled network traffic. That ability is crucial in order to
detect even single-packet attacks. A golden standard in the
area of network monitoring is a flow measurement. A moni-
toring device collects basic statistics about the network
flows at the Internet and Transport layers and reports them
to a central storage collector using a handover protocol such
as NetFlow [1] or IPFIX [2]. Flow measurement is a stateful
process, because for each packet the flow state record is
updated in the device (e.g. packet counters are incre-
mented), and only the resulting numbers are exported. This
also implies that some information is lost in the monitoring
process and that the flow collector (where further data proc-
essing is usually done) has a limited view on the network.
While a number of researchers focus on harvesting knowl-
edge from the existing flow data, we argue that the ability
to analyze application layer in the monitoring process is cru-
cial for improvement of the quality and flexibility of net-
work monitoring. This is illustrated by the recent infamous
Heartbleed bug in the SSL implementation. While it is

impractical (if not impossible at all) to detect the Heartbleed
attack by analyzing the transport layer flow data, its detec-
tion at the application layer is trivial.

The ongoing trend in the field of application layer moni-
toring is towards creation of richer flow records [3], [4], [5],
carrying some extra information in addition to the basic
flow size and timing statistics. The added information often
include values from the application layer protocol headers,
such as HTTP, DNS etc. It seems that the ability to analyze
application layer in the monitoring process is crucial for
improvement of the quality of network threat detection,
because more and more of the network functionality is
being shifted up in the protocol stack.

Implementation of the application level flow monitoring
with a commodity CPU is certainly possible, yet its through-
put is limited mainly by the performance of the processors
[6]. It should be noted that every newly arrived packet is
inevitably a cache miss in the CPU. On the other hand,
ASICs and FPGAs offer much better possibilities in terms of
throughput. However, a fixed solely hardware implementa-
tion may face the flexibility issues, since the evolving nature
of network threats implies the need for fast changes of the
monitoring process, quickly making fixed hardware devices
obsolete. Many papers proposing high-speed hardware
architectures for the most timing-critical operations neces-
sary in flow monitoring were published. Those operations
include packet header parsing, packet classification, coun-
ters management and pattern matching. However, most of
the proposed architectures have never been practically
deployed. We conceive that this is because the effort is usu-
ally spent only on the improvement of the performance fea-
tures, but flexibility, ease of use and speed of response to
newly emerged problems are neglected.

The aim of this paper is to (1) strike a balance between
the system throughput and flexibility/programmability
and to (2) offer a configurable trade-off to the above, but

� L. Kekely, J. Ku�cera and V. Pu�s are with CESNET a. l. e., Zikova 4, 160 00
Prague, Czech Republic. E-mail: {kekely, jan.kucera, pus}@cesnet.cz.

� J. Ko�renek is with the IT4Innovations Centre of Excellence, Faculty of
Information Technology, Brno University of Technology, Bo�zetêchova 2,
612 66 Brno, Czech Republic. E-mail: korenek@fit.vutbr.cz.

� A. V. Vasilakos is with the Department of Computer Science, Electrical
and Space Engineering, Lulea University of Technology, Sweden.
E-mail: athanasios.vasilakos@ltu.se.

Manuscript received 17 June 2014; revised 20 Feb. 2015; accepted 6 Apr. 2015.
Date of publication 15 Apr. 2015; date of current version 15 Jan. 2016.
Recommended for acceptance by Y.-D. Lin.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2423668

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016 615

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mainly to (3) endorse a progressive adoption of network
monitoring subtasks to the hardware accelerator, motivated
solely by the real needs of the networking community.

Our key idea is that even the advanced application-layer
processing task usually need to observe only some network
flows, representing only a small fraction of traffic. An exam-
ple can be a DNS analyzer, since DNS traffic typically repre-
sents no more than 1 percent of all network packets. Other
applications may utilize even better offload, since they need
to observe only a small amount of packets within each flow
for their full functionality. Let a HTTP header analyzer be
an example, since the HTTP header is typically located in
the first few packets of the network flow. Please note that
our method never discards packets that are relevant for the
particular monitoring application.

We only offload the processing of bulk traffic that is not
(or no longer) interesting for the application-layer processing
tasks into the hardware accelerator. The offload of measure-
ment is controlled on a per flow basis by the monitoring soft-
ware and adjusted in real time to its current needs. Offload
control is realized through unified interface by dynamically
specifying a set of rules. These rules are installed into the
accelerator to determine the type of packet offload (=prepro-
cessing acceleration) used for individual network flows. The
preprocessing method that best aids the performance and
does not decrease the required precision of advanced soft-
ware processing is selected. Due to the unified control inter-
face the proposed system is very flexible and can be used for
a wide range of networkmonitoring applications.

Furthermore, the whole system is designed to be easily
extensible at two different levels. At the software side, moni-
toring plugins can be easily added to the system. This brings
the possibility of rapid development and deployment of new
monitoring applications, for example as a reaction to a new
network security threat. Once the functionality of software
task is verified and stable enough, the second level of system
extensibility can be employed to further speed-up the task.
Various packet processing and data aggregation routines
can be relocated directly into the hardware accelerator.

The paper is structured as follows: The following section
provides analysis of real-life network traffic from the appli-
cation monitoring point of view. In Section 3 we make use
of the analysis outcomes to design the concept of hardware
accelerator tightly coupled to monitoring software applica-
tions. Section 4 provides experimental results of our work.
Section 5 presents notable related work and Section 6 con-
cludes our paper.

2 ANALYSIS

We start the paper with an analysis of traffic properties in a
real high-speed backbone network. Based on the measured
characteristics we then optimize the design of our SDM sys-
tem to achieve optimal performance when deployed in real
networks. All of the measurements in this paper were con-
ducted in the high-speed CESNET backbone network. CES-
NET is Czech National Research and Educational Network
which has optical links operating at speeds up to 100 Gbps
and routes mainly IP traffic. It serves around 200,000 users.
We conduct all of our measurements during the standard
working hours. To get a basic view of the network traffic

character, we measure mean size of packets in bytes, mean
size of flows in packets and mean time duration of flows.
Because we aim for the application protocols, we measure
these characteristics not only for the whole network traffic
on the link, but also for the selected applications. We select
some of the most commonly used application protocols and
services such as HTTP, HTTPS, DNS, email (SMTP, POP3
and IMAP), SSH, RTMP, FTP and others. Furthermore, we
measure the percentage of these protocols in the captured
traffic in terms of flows, packets and bytes.

Table 1 shows the results of the basic network traffic
analysis. The table shows that the observed statistics dif-
fer greatly depending on the specific service. The largest
portion of network traffic is conveyed by the HTTP pro-
tocol which accounts for more than a quarter of all flows
and around half of all packets and bytes. Moreover we
can see that HTTP flows and packets are generally larger
(heavier) in number of packets and bytes and longer in
time than average. Another large amount of total traffic
belongs to HTTPS, which has very similar observed char-
acteristics as HTTP. These two protocols (HTTP and
HTTPS) together cover majority of all network traffic—
nearly a half of all flows and around four fifths of the
data. Therefore, the possibility of their further analysis is
certainly desirable. A large amount of flows also belong
to the DNS protocol (nearly one quarter), but this number
is highly disproportional to the DNS total packet and
bytes percentage. DNS flows are generally very small
(light) with majority of them consisting of only one small
packet. Also ICMP, which covers majority of non-TCP/
non-UDP flows on the network, has similar character of
flows as DNS with very small and short flows. The oppo-
site type of disproportional flows and packets percen-
tages as DNS and ICMP has RTMP protocol (Flash
multimedia streaming), which covers only a tiny portion
of flows, but they are all extremely heavy and long.

The distribution of packet lengths is another interesting
characteristic of the network. The majority of packets are
either very long (over 1.300 B: 57 percent) or very short
(under 100 B: 35 percent). Especially dominant are both
extremes from the range of lengths supported by the

TABLE 1
Basic Statistical Characteristics of Network Data Grouped by

the Service

Traffic portion in Average

flows
[%]

packets
[%]

bytes
[%]

flow size
[packets]

flow
time [s]

pckt size
[Bytes]

H
̰
TTP 26.62 48.33 51.81 59.2 7.137 983.0

HTTPS 18.18 31.12 29.75 51.3 8.591 816.7
SSH 2.66 1.42 1.09 11.7 17.167 241.2
RTMP 0.02 1.01 1.24 2,066.8 57.432 1,001.2
DNS 24.10 0.79 0.19 1.1 0.153 205.9
Email 1.00 0.72 0.56 16.8 2.957 581.6
ICMP 1.91 0.60 0.50 1.9 3.206 91.3
RDP 3.37 0.53 0.31 4.7 2.731 468.4
NTP 1.53 0.41 0.21 8.8 4.142 359.5
FTP 0.38 0.01 0.01 2.3 1.234 75.8
SIP 0.00 0.00 0.00 5.0 23.611 421.1
others 20.23 15.06 14.33 27.2 7.536 839.6

a
̰
ll 32.0 6.432 872.2

616 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016

Ethernet standard—42 and 1,500 B. Medium sized packets
are not very common.

In Table 1 we have already shown basic information
about mean flow durations. Further information about the
flow time durations for the selected application protocols
can be seen in Fig. 1. Each line in the graph shows the per-
centage of flows that last shorter than the given duration.
Generally (red thick line) over 2

3 of all flows are shorter than
100 ms and only a tenth of them exceed 10 s. Also majority
of DNS and SIP flows have a duration under 10 ms.

While Fig. 1 shows further information about flow dura-
tion, it does not say anything about time distribution of
packets inside the flows. Weights of individual flows are
also not considered. A better look at packet timing inside
the flows can be shown by measuring the relative arrival
times of packets from the start of the flow. Thus, the first
packet of each flow has the zero relative arrival time and its
absolute arrival time marks the starting time of that flow.
Then, each subsequent packet has a relative arrival time
equal to the difference of its absolute arrival time and the
marked start of the flow. Results of this measurement are
shown in Fig. 2. The graph shows that on average (red thick
line) only a small portion of all packets arrive right after the
start of the flow—;only a fifth of all packets arrive during
the first second of the flow. This fact leads to the conclusion
that flows with short duration carry only a very few packets.
The conclusion is further strengthened by the fact that the
majority of flows have a very short duration.

Table 1 contains the information about mean flow sizes
for selected application protocols and services. Further
information about flow sizes can be seen in Fig. 3. Each line
of the graph shows the percentage of flows that consists of
fewer packets than a given number. On average (red thick
line) only a tenth of all network flows have more than
10 packets. Also, virtually all DNS and SIP flows consist of a
single packet.

Fig. 3 does not clearly say anything about the percentage
of all packets carried by flows of different sizes. It is known
that high-speed network traffic has a heavy-tailed character
of flow size distribution [7], [8]. The heavy-tailed character
of flow size distribution derived from the measured values
is shown in Fig. 4. The graph shows the portions of all
packets carried by the specified percentage of the heaviest
flows on the network. It can be seen that on average (red
thick line) 0.1 percent of the heaviest flows carry around
60 percent of all packets and 1 percent carry even around
85 percent. An exception to the heavy-tailed distribution of
flow sizes is the DNS protocol. On the other hand, SIP and
SSH protocols have a heavier tail than average.

Our work relies on the following consequence of the
heavy-tailed character of network traffic: by selecting a small
percentage of the heaviest flows, we can cover the majority
of packets. The problem then lies in an effective prediction
of which flows are the heaviest. More accurately, it lies in a
capability to recognize the heaviest flows only from the
properties of their first few packets. The simplest method of

Fig. 1. Cummulative distribution functions of flow durations.

Fig. 2. Cummulative distribution functions of packet arrival times.

Fig. 3. Cummulative distribution functions of flow sizes.

Fig. 4. Portions of packets carried by the percentage of the heaviest
flows.

KEKELY ET AL.: SOFTWARE DEFINED MONITORING OF APPLICATION PROTOCOLS 617

this recognition is based on a rule that every flow is consid-
ered heavy after arrival of its first k packets for some selected
decision threshold k. The main advantage of this method is
just its simplicity—no additional packet analysis nor
advanced stateful information for the flows is needed.

Figs. 5 and 6 show the measured accuracy of the heaviest
flow selection by the described simple method. These
graphs show the relations between the value of threshold k
to the portion of heavy marked flows (first graph) and pack-
ets covered by them (second graph). By a combination of
values from both graphs we can see that with the rising
decision threshold the portion of flows marked heavy dra-
matically decreases, but the percentage of covered packets
decreases rather slowly. For example, decision threshold
k ¼ 20 leads to only 5 percent of heavy marked flows while
covering around 85 percent of all packets on average.
Exceptions are DNS and to some extent also HTTPS and
SMTP protocols, where the percentage of covered packets
decreases quickly.

Fig. 7 shows a different view on the simple heavy flow
prediction method effectiveness. It shows the average num-
ber of packets covered by one heavy marked flow for differ-
ent values of the decision threshold k. Values shown in the
graph rise with the decision threshold to a considerably
higher number than the average sizes of the flows from
Table 1. For example the average size of flow with more
than k ¼ 20 packets is over 500 packets, while Table 1

reports overall average of 32.0 packets per flow. This clearly
proves that even our simple heavy flow prediction method
effectively predicts the heaviest flows. Certainly there are
many more advanced methods of heavy flow prediction,
but these are out of scope of this paper.

3 SYSTEM DESIGN

Many 10 Gbps flow measurement systems have adopted a
common scheme. A hardware network interface card per-
forms packet capture, sometimes enhanced by packet distri-
bution among several CPU cores. The captured traffic is
then sent over the host bus to the memory, where packets
are processed by the software applications running at the
CPU cores [6]. This model cannot be applied to 100 Gbps
networks due to major performance bottlenecks. The main
bottleneck lies in limited computational power of CPU
which is insufficient for advanced monitoring tasks.

We propose a new acceleration model that overcomes the
above-mentioned bottlenecks by a well-designed hard-
ware/software system. The main idea is to give the hard-
ware the ability to handle basic traffic processing. Only the
control of the HW and advanced processing of a fraction of
the traffic are left for the software. Although the preprocess-
ing is done by the firmware in FPGA, it is fully controlled
by the software applications. Therefore, the first few packets
of each new flow are sent to the software, which selects a
type of hardware preprocessing used for the subsequent
packets of that flow. Complete software control of the moni-
toring process is also the reason why we called the pro-
posed model Software Defined Monitoring (SDM).

The types of data preprocessing in the SDM hardware
suitable for the area of network monitoring can be divided
into three basic groups:

� Extraction of the interesting data from packets and
sending only those data to the software in a prede-
fined format, which we call a Unified Header (UH).
Then only a few bytes for each packet are transferred
from hardware to software, thus reducing the PCIe
utilization. Also the CPU has lower load, because the
packet parsing is done in the hardware.

� Aggregation of packets into flow records directly in the
hardware, which brings even higher performance
savings for the CPU. This aggregation may range

Fig. 5. Heavy flow detection using the simple method—portions of
selected flows.

Fig. 6. Heavy flow detection using the simple method—portions of cap-
tured packets.

Fig. 7. Mean number of captured packets per flow in flows selected using
the simple method.

618 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016

from basic flow statistics to very specific actions
according to the needs of particular applications.

� Filtration of unnecessary packets and forwarding
only the interesting ones to the software. This can
aid advanced monitoring applications, which per-
form various analyses and detections oriented only
to some specific subgroup of network traffic (e.g.
DNS threat detector or HTTP header analyzer).

Top-level conceptual scheme of the proposed SDM
model is shown in Fig. 8. Forward path is represented by
solid arrows and an offload control feedback path by
dashed arrows. The system is composed of two main parts
(FPGA firmware and software on general CPU) connected
together through a data bus. The bus can be PCI Express in
case of using commodity PC with a hardware accelerator,
or any other interface (e.g. ATCA backplane or internal bus
of a single die CPU+FPGA chip).

The processing of all incoming packets starts with pars-
ing a header and extracting packet’s metadata (Parser).
Extracted metadata is then used to classify the packet based
on a software defined set of rules (Rule Lookup). Each rule
identifies one concrete flow and specifies the type of packet
preprocessing and the target software channel for packets
of that flow. Packets can be processed in a firmware flow
cache (i.e., aggregated to the selected type of flow record),
dropped, trimmed or sent to the software unchanged or in
the form of a Unified Header. Flow records residing in the
firmware flow cache are periodically exported to the soft-
ware. The periodic checking is not shown in Fig. 8 for clar-
ity. The data from the firmware is sent over the bus to the
software using multiple independent channels. Data for
each channel is stored in a software buffer in the form of
whole packets, Unified Headers or flow records.

This data is processed by the set of user specific software
applications such as the flow exporter [1] which analyzes the
received data and exports the flow records to a collector. User
applications read the data from the selected channels. They
also specify which types of traffic they want to inspect and
which flows can be preprocessed in hardware. Definitions of
uninteresting traffic from all applications are passed to a soft-
ware SDM controller daemon. The SDM controller aggregates
the definitions (requests) into rules and configures the firm-
ware preprocessing in order to achieve the maximal possible
reduction of traffic while preserving the required level of

information so that not a single piece of application interest-
ing information is lost. This mechanism realizes the feedback
control loop, which is the important concept in ourwork.

Network traffic preprocessing in the firmware is entirely
controlled from the software and the core of the controlling
software consists of the monitoring applications (App 1..N).
Each monitoring application has the form of a software
plugin. The main input to the plugin is the data path carry-
ing the packets, extracted UHs or aggregated flow records.
The plugin output is whichever data that the plugin has
parsed/detected/measured. This output data is added to
the exported IPFIX flow record, so it is enriched by the infor-
mation from the plugin. Each monitoring application also
has the interface to the SDM controller.

3.1 SDM Controller

SDM controller accepts the preprocessing requests from
multiple applications and aggregates them into rules for the
firmware. It also manages timed expiration of application
requests and periodical export of aggregated flow records
from hardware. The aggregation of preprocessing rules is
based on different degrees of data reduction. Ordered from
the lowest degree of data reduction the preprocessing types
are: none (whole packets), trim (shortened packets), partial
(UH), complete (flow record) and elimination (packet
drops). Therefore, aggregation of rules in the SDM control-
ler is done simply by the selection of the lowest preprocess-
ing degree (highest data preservation) for particular flows
which satisfy the information level requirements of all mon-
itoring applications. In order to maintain a proper function-
ality of the SDM firmware, the controller must carry out the
following operations:

� Management of rules activated in the firmware
(rule add/delete/update) based on the application
demands.

� Decision about offloading particular flows based on
the estimated flow size and the free space in the firm-
ware flow cache.

� Cyclic export of active flow records computed in the
firmware flow cache.

� Allocation of records in the firmware flow cache.
In the previous section we have presented the method of

heavy flow estimation based on the simple packet count
threshold. In the design for practical implementation, we
further extend this idea by using adaptive threshold that auto-
matically reacts to the changing characteristics of network
traffic in time. The adaptation is based on current load of
the firmware flow cache, which has a limited size. For the
best offload ratio, it is advantageous to keep the flow cache
nearly full at all times. That way, there is still some space
left for the new flows, while the amount of offloaded traffic
is maximized. Therefore, SDM controller periodically
checks the flow cache state, decreases the heavy flow deci-
sion threshold when the flow cache utilization drops below
a specified point, and increases the threshold when the flow
cache utilization rises.

3.2 SDM Firmware

Top level implementation scheme of the SDM accelerator
firmware for FPGA is shown in Fig. 9. The main firmware

Fig. 8. Conceptual top-level scheme of SDM system.

KEKELY ET AL.: SOFTWARE DEFINED MONITORING OF APPLICATION PROTOCOLS 619

functionality is realized by a processing pipeline that pro-
cesses incoming network traffic and creates an outgoing
data flow for the software. Packets do not flow directly
through the processing pipeline, but are rather stored in a
parallel FIFO buffer. The processing pipeline uses only
meta-information (UH) extracted from packet headers by
Parser. Whole software control of the processing pipeline is
realized through SW Access module which conveys the pre-
processing rules to be used in Flow Search unit.

The SDM firmware is realized by five main modules:
Parser extracts interesting information from headers of

packets, especially fields that clearly identify network flows.
To identify the flows, we use the five-tuple: IP addresses,
TCP/UDP ports and protocol. Furthermore, our implemen-
tation is modular and enables easy extensions of default
packet parsing process by additional application-specific
parser modules (P1..Pn). This way, the information
extracted from each packet can be enhanced when required.
Further information about this parser can be found in [9].

Rule Lookup assigns an action (processing instruction) to
every packet based on its flow identifier and a set of soft-
ware defined rules. Management of the rule set is done
through a control interface capable of atomic on the fly add,
remove and update of the rules.

Execution Unit manages stateful flow records in Flow
Cache. It mainly actualizes their values by execution of
instructions from flow associated actions. Every action
specifies an instruction that should be executed and the
address of the flow record to work with. Furthermore, the
instruction has access to data extracted from packet (UH).
Special type of instruction is an export of the record values,
possibly followed by a reset of the record. Records can be
exported not only at the flow end but also in a periodical
manner, so that the software applications can have actual
information about flows in the firmware. Control of mem-
ory allocation for records and their periodical export is left
to the SDM controller. The Execution Unit supports multi-
ple user-defined instruction sub-modules (I1..In). More
details about the execution and implementation of instruc-
tions are in Section 3.3.

Export pairs together corresponding UH transaction with
frame data from FIFO buffer. Then it chooses the required
channel and format for the data based on action assigned by
Rule Lookup module.

SW Access is the main configuration access point into the
SDM firmware from the software side. Its primary function
is to manage the rules and to initiate export of the flow

records based on controller commands. Besides, it contains
all configuration and control registers.

3.3 Execution Unit Functionality

As already mentioned, Execution Unit realizes the main
stateful behavior of the hardware by execution of flow record
updating instructions. To improve the overall flexibility of
the system, we use modular architecture within the Execu-
tion Unit that allows us to implement custom read-modify-
write aggregation operations (instructions). Thanks to these
custom instructions, the nature of the flow records main-
tained by the hardware in Flow Cache can be customized
according to a target application. Furthermore, we use high-
level synthesis (HLS) tools to generate custom hardware
modules from an instruction description in C or C++. Thanks
to that, SDM hardware functionality can be customized
faster and even without the knowledge of HDL program-
ming (e.g. by network security experts). Also an incremental,
performance driven design of new hardware accelerated
applications is much easier. The process starts with a soft-
ware implementation of the application, accelerated only by
the default SDM instructions. Then the performance bottle-
neck is identified and the critical piece of code is moved into
the FPGA as a new instructionwithminimal extra effort.

We have already implemented and evaluated five differ-
ent Execution Unit instructions to test the feasibility of the
described concept with HLS usage:

� NetFlow instruction is used for standard NetFlow
aggregation. Its execution increases flow packet and
byte counters, updates flow end timestamp and com-
putes logical OR of the observed TCP flags.

� NetFlow Extended instruction has the same basic func-
tionality as NetFlow. In addition, it stores TCP flags
of the first five packets. This additional information
may become very useful for analysis of TCP hand-
shake or for detection of network attacks like DoS
(Denial of Service).

� TCP Flag Counters instruction performs increment of
counters of individual observed TCP flags. For
example, one can see the number of ACK flags trans-
mitted during the whole TCP connection. Informa-
tion from this aggregate can be used to support
advanced flow analysis [10].

� Timestamp Diff instruction maintains records of inter-
arrival times of the first 11 packets of the flow. These
times have nanosecond precision and can be used as
network discriminators for flow-based classification
[10] or for identification of application protocol [11].

� CPD instruction (Change-Point Detection) shows
implementation of more complex operation. CPD is
an algorithm designed to detect an anomaly in the
processed network flow. Description of this method
is out of scope of this paper, more details can be
found in [12], [13].

4 RESULTS

We have implemented the whole SDM prototype in order to
verify the proposed concept. The hardware part of the pro-
totype is realized on an accelerator board with a powerful
Virtex-7 H580T FPGA (Fig. 10). The FPGA firmware realizes

Fig. 9. Detailed firmware scheme.

620 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016

the SDM functionality, such as packet header parsing and
NetFlow statistics updating, but also 100 Gbps Ethernet,
PCI-Express and QDR external memory interface control-
lers. The software is realized as a set of plugins for the
Invea-Tech’s Flowmon exporter software [14]. This exporter
allows us to modify its functionality to the extent required
by the SDM concept.

We follow by measurement of the real effectivity of the
heavy flow detection. Control of the hardware preprocess-
ing is mainly realized by the monitoring applications
through on the fly defined dynamic rules for particular
flows. These rules are generated as a reaction to the first few
packets of the flow. Therefore, there is some delay between
the flow start and offload rule application. The duration of
this delay influences a portion of packets affected by the
rules. The basic view of achievable SDM effectiveness can
be gained from an examination of an achievable portion of
packets whose preprocessing was influenced by the
dynamic flow rules.

We have created a simple use case in order to test the
described ability of the SDM concept. In this use case, only
a specified number of the first packets from each flow are
interesting to the software. All packets from unknown
(new) flows are, therefore, forwarded into the software
application by default. SDM controller software counts the
number of packets in each flow. Right after the reception of
the specified number of packets for a flow, the application
creates a rule for the firmware to drop all the following
packets from this flow. This decision method is absolutely
the same as the simple heavy flow detection method defined
in the previous section, but the adaptive threshold is not
employed in this use case.

We have measured the portion of packets dropped by the
SDM firmware in the described test case. The results are
projected into the graph in Fig. 11. The graph shows the per-
centage of dropped (influenced) packets (solid lines) and
the percentage of flows for which the rule was created
(dashed lines). For comparison, analytical results from
graphs 5 and 6 in the previous section are also shown (red).
The result is that the SDM can influence preprocessing of

up to 85 percent of all packets from real network traffic by
dynamic flow rules. A visible difference of about 10 percent
of influenced packets between analytical and real results is
caused by neglecting the duration of rule creation and acti-
vation process in the analytical result.

The portions of offloaded packets and flows are similar to
the analysis in Section 2—there is a considerably faster
decline in the percentage of flows than in the percentage of
packets. A different view is provided in Fig. 12. There, a
relation of the mean number of packets influenced by one
created rule over the decision threshold value is shown
(blue). The red line is analytical result of simple heavy flow
detection method effectiveness taken from Fig. 7. The graph
shows that real measured effectiveness of this method is
slightly worse than the analysis suggests, but still suitable
for real usage.

We also provide a test of SDM acceleration abilities in
more realistic use cases. We test the performance of the con-
cept prototype in the following four cases:

� Standard NetFlow measurement. In this use case, all
packets from a network line are taken into account.
Since NetFlow measurement is based on counting
statistics of packet headers only, the packets are sent
to the software in the form of UH by default. The
software then adds dynamic rules to offload the Net-
Flow measurement of heavy flows (predicted by our
simple method) into the hardware accelerator.

Fig. 10. COMBO-100 G accelerator used for our prototype
implementation.

Fig. 11. Portions of offloadable packets and flows using the simple heavy
flow detection method.

Fig. 12. Mean number of offloadable packets per flow in flows selected
using the simple heavy flow detection method.

KEKELY ET AL.: SOFTWARE DEFINED MONITORING OF APPLICATION PROTOCOLS 621

� Port scan detection. This use case demonstrates a mea-
surement that is flow-based, yet not directly Net-
Flow. The software plugin observes UHs of first
several packets of each flow and installs drop rules
for the subsequent packets of heavy flows. This
information is typically enough to detect port scan
attacks through various methods.

� Heartbleed detection. clearly demonstrates the need for
application-layer processing in the network security
monitoring. The software application first instructs
the accelerator to drop all non-SSL packets (i.e., other
than TCP port 443). Then further rules to drop pack-
ets of heavy SSL flows are installed in the runtime,
because the Heartbleed attack can be detected by
observing first few packets of each flow.

� HTTP header analysis. From application layer proto-
cols we choose HTTP because our network analysis
in Section 2 shows that HTTP traffic is dominant in
current networks. Therefore, acceleration of its anal-
ysis is of high importance. In this use case we test an
application that parses HTTP headers and extracts
some interesting information (e.g. URL, host, user-
agent) from them. Because the application works
with the data of HTTP packets, only the packets with
a source or destination port 80 are sent into the soft-
ware by default. Others are dropped in the hard-
ware. Furthermore, the application adds dynamic
rules to drop the packets of HTTP flows in which it
already detected and parsed the HTTP header.

� Standard NetFlow enriched by HTTP analysis. This case
combines two of the previous use cases. Both Net-
Flow exporter and HTTP parser are active at the
same time without the need of any changes in them.
Their traffic preprocessing requirements are auto-
matically combined by the SDM controller.

Tables 2 and 3 show the results of the SDM system test-
ing in the described use cases. The tables show portions of

all incoming packets and bytes preprocessed in the hard-
ware by each preprocessing method. These hardware pre-
processing utilizations lead to a reduction of software
application load displayed in Table 4. The table shows por-
tions of incoming packets and bytes that are processed by
software applications in each use case relative to the state
without the SDM accelerator. It also shows a percentage of
flows for which a rule was created in the hardware.

Standard NetFlow measurement is significantly acceler-
ated by the hardware flow cache. In this way, the software
application load is reduced to one fifth of all packets (in the
form of UH or flow record). Further acceleration rises from
the fact that only UHs and flow records are sent to the soft-
ware, instead of complete packets. The software, therefore,
does not parse packets anymore and the PCI Express bus
load is reduced to less than one percent.

The unnecessary packets are dynamically dropped in the
Port scan scenario. Furthermore, the detector do not require
whole packets—UHs are sufficient. This constellation leads to
considerable savings of both bus bandwidth andCPU load.

Dropping the packets based on static and dynamic rules
is also the preferred method of acceleration in both Heart-
bleed detection and HTTP protocol analysis scenarios. This
leads to the HTTP parser load being reduced to only about
a quarter of all packets and bytes and even more significant
reduction in the Heartbleed detection. Due to the fact that
both static and dynamic rules are used, the percentage of
dropped packets is split in two parts. In the HTTP use case
51.84 percent of all packets were dropped by a static TCP
port 80 check, and 21.34 percent of packets belonged to
heavy TCP port 80 flows for which the dynamic rule has
been installed by the SDM controller.

In the standard NetFlow measurement together with the
application protocol parsing scenario, the load of the appli-
cation protocol parser is the same as when used alone
thanks to the DMA channel traffic splitting supported by
SDM. The HTTP parser software still receives only the pack-
ets on the TCP port 80. The load of the software NetFlow
measurement slightly rises compared to the NetFlow only
measurement, because of the packets that are sent to the
software for the HTTP analysis (NetFlow measurement sees
also the HTTP packets).

Graphs in Figs. 13, 14, and 15 show results of SDM proto-
type testing in the NetFlow use case in more details. In the
graphs we can see courses of various parameters of SDM
system during whole day of NetFlow measurement. Packets
preprocessing ability of the accelerator is presented in the
first graph. During the whole day, the majority of all

TABLE 2
Usage of Hardware Preprocessing

Preprocessing method
[% of packets]

Use case Packet Header NetFlow Drop

N
̰
etFlow – 20.55 79.45 –

Port scan – 17.54 – 82.46
Heartbleed 4.91 – – 95.09
HTTP 22.82 – – 77.18
HTTP+NetFlow 23.34 10.56 66.10 –

TABLE 3
Usage of Hardware Preprocessing

Preprocessing method
[% of bytes]

Use case Packet Header NetFlow Drop

N
̰
etFlow – 12.03 87.97 –

Port scan – 10.35 – 89.65
Heartbleed 3.77 – – 96.23
HTTP 27.82 – – 72.18
HTTP+NetFlow 28.50 3.63 68.87 –

TABLE 4
Software Applications Load Using SDM in Tested

Use Cases, Relative to the State without
the SDM Accelerator

SW load [%] Flows covered
by rules [%]Use case Packets Bytes

N
̰
etFlow 20.66 0.98 6.37

Port scan 17.54 0.86 6.53
Heartbleed 4.91 3.77 0.95
HTTP 22.82 27.82 1.98
HTTP+NetFlow 34.02 29.00 6.04

622 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016

received packets (black line) are processed in the firmware
flow cache (red line), leaving only a small portion for soft-
ware processing (blue line). Offloaded percentage of pack-
ets is always in the range from 70 to 85 percent of total
traffic and is shown in gray shade bar at the bottom of the
grid. The second graph shows the number of active rules
maintained in the SDM firmware compared to the number
of active flows in the network. Black dashed lines demarcate
a desired flow cache load maintained by the adaptation of
heavy flow decision threshold. There is a significant spike
in the total number of flows in the network at around 10:55
pm. After further analysis, we have found that the spike
was caused by a mid-sized DoS attack with randomly gen-
erated port numbers. Each attacking packet represented a
separate flow and was therefore not offloaded to the acceler-
ator. That is a desired behavior, since we want to retain as
much information about the attack as possible.

The adaptation of the threshold value during the mea-
surement is illustrated in the third graph. During heavy net-
work load, the threshold value raises to keep the number of
offloaded flows within the given range. When the load starts
to decline at around 3 pm, the threshold value follows until it
reaches a chosen reasonableminimal value (five packets).

For the NetFlow use case, we have also measured a SDM
performance curve after system startup in heavy network
traffic. The results are depicted in Fig. 16. At the start of the
test, the SDM functionality is disabled and all packets are
sent for processing into CPU (0 % offload). When SDM is

enabled (time 0), we immediately see quick increase in the
percentage of offloaded packets as the accelerator is swiftly
learning the active heavy flows from the software controller.
Around one minute mark, the rise starts to slow down, but
still steadily continues for 4 more minutes. After that, the
SDM performance is stabilized. Described trend of SDM
startup performance curve is very similar also in other
tested use cases.

Finally, in Fig. 17 we examine the trade-off in CPU load,
since the management of rules in SDM controller represents
an additional load to the CPU. We show the effect of SDM
acceleration on CPU utilization savings. For this purpose
we use the most difficult of our use cases—Netflow mea-
surement together with HTTP analysis. Left half of the
graph in Fig. 17 shows measured CPU load with enabled
SDM in a stabilized state, right half shows CPU load after
SDM was disabled (all processing starts to be done on
CPU). According to Table 4, the software load in HTTP
+NetFlow use case is up to one third of received packets
and bytes when using SDM. This perfectly corresponds to
the observed increase in CPU load for packet processing
(red line) from 20 to 60 percent after SDM disabling. How-
ever, when SDM functionality is enabled, the SDM control-
ler brings some additional overhead (blue line) for
configuring the accelerator and aggregating the applications
requests. In the end then, total CPU load is two-times lower
when using SDM in HTTP+NetFlow use case (black line).
This graph also suggests that SDM is best suited for highly

Fig. 13. 24 hours NetFlow measurement with SDM—processed packets.

Fig. 14. 24 hours NetFlow measurement with SDM—active rules.

Fig. 15. 24 hours NetFlow measurement with SDM—decision threshold.

Fig. 16. SDM performance after heavy duty startup.

KEKELY ET AL.: SOFTWARE DEFINED MONITORING OF APPLICATION PROTOCOLS 623

advanced software tasks which consume significant CPU
resources. Due to the fact that SDM controller CPU load
(blue line) is independent on the application, its share in the
total CPU load decreases with the complexity of the applica-
tion (red line).

4.1 FPGA Implementation Results

Our high-speed SDM FPGA firmware runs at 200 MHz and
occupies less than half of the available FPGA (Virtex-7
H580T) resources. Closer look at the FPGA resources of the
firmware is shown in Table 5. Using the same SDM core
with a data width of 512 bits and throughput of 100 Gbps,
we have created three different FPGA architectures for
boards with three different arrangements of Ethernet ports:
one 100 GbE port, two 40 GbE ports and eight 10 GbE ports.

In addition to the high-performance 100 Gbps solution,
we also provide an analysis of the SDM core with narrower
data width. These solutions can be used in applications
with lower throughput requirements, e.g. in embedded 1 or
10 Gbps probes. Note that the results for data widths other
than 512 bits were obtained by simple downscaling of the
SDM core. Further optimizations are certainly possible to
achieve significantly lower FPGA resource utilization for
lower throughputs.

Table 6 shows the resource utilization of the individual
instruction sub-modules for the Execution Unit. It can be
seen that the additional instruction sub-modules are rela-
tively small, compared to the whole firmware, and therefore
adding new instruction should not involve any major
refinements of the FPGA firmware. Furthermore, a

comparison between high-level synthesis and handmade
implementation can be seen from the first two rows of the
table. Handmade implementation occupies less than a half
of LUTs and a bit less registers compared to HLS result. On
the other hand, the creation of C implementation of the
instruction and its subsequent automatic synthesis to HDL
is much faster and simpler than HDL implementation.

5 RELATED WORK

We discuss several approaches that may to some extent
resemble the SDM concept. However, we show that our
work has significant differences to those works.

Snort [15] is an open source software network intrusion
prevention and detection system. It relies heavily on regular
expression matching, while our work does not enforce nor
assume any particular type of software processing. While
many papers dealing with hardware acceleration of Snort
have been published, they typically restrict their focus to
regular expression matching only. We argue that network
security monitoring is much more complex task than that
and the limitation to RE matching makes those systems
unfeasible for practical use. L7-filter [16] is a Linux packet
classifier software aiming at protocol identification. It
resembles Snort as it also relies on regular expressions.

A good example of a complex software library for applica-
tion layer traffic processing (showing that REmatching is not
sufficient) is nDPI [17].While this open source library is prob-
ably too complex to be hardware accelerated, we envision
that similar software can be used as a basis of a SDMplugin.

The OpenSketch architecture [18] defines a configurable
pipeline of hashing, classification and counting stages.
These stages can be configured to perform the computation
of various statistics. OpenSketch is tailored to compute
sketches—probabilistic structures allowing to measure and
detect various aspects of the network communication with
a defined error rate. It is not intended for complete Net-
Flow-like monitoring, nor for exact, error-free measure-
ments. Also, OpenSketch does not allow for application
level protocol parsing.

FlowContext system [19] provides a flexible way to imple-
ment stateful network traffic processing in an FPGA.
NetFlow monitoring is among the examples of its use. How-
ever, it does not provide tight control feedback loop to a soft-
ware application, and therefore cannot be effectively used
for problems exceeding the capabilities of a single FPGA.

There have been efforts to implement NetFlow traffic
monitoring in FPGAs, most recently even as an open source
project [20] for the NetFPGA platform. Our work is however
more flexible by allowing application protocol processing in

Fig. 17. CPU load in HTTP+NetFlow use case with and without SDM
support.

TABLE 5
Resources of the SDM Firmware

Firmware/Module Regs LUTs Throughput

C
̰
omplete SDM 197,758 249,214 1 � 100 Gbps

134,172 178,984 2 � 40 Gbps
184,084 222,745 8 � 10 Gbps

S
̰
DM core 512 b 30,497 51,333 100 Gbps

256 b 25,866 42,793 50 Gbps
128 b 23,534 39,006 25 Gbps
64 b 22,384 37,233 12.5 Gbps
32 b 21,908 36,803 6.25 Gbps

V
̰
irtex-7 H580T

FPGA
725,600 362,800

TABLE 6
Resources of the Instruction Blocks

Instruction Regs LUTs

N
̰
etFlow (handmade VHDL) 1,754 325

NetFlow 1,846 824
NetFlow Extended 2,070 1,113
TCP Flag Counters 0 1,046
Timestamp Diff 5,199 2,556
Change-Point Detection 5,296 3,919

624 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016

the software and further acceleration through extensions of
the Execution Unit.

The Shunt system [21] is a hardware accelerator with sup-
port to divert a suspicious/interesting traffic to a software
for further analysis. To this end it resembles our work, how-
ever, Shunt accelerates only packet forwarding and does not
include any possibilities to offload/accelerate the flow mea-
surement tasks. Our work is also more complete by defining
the software architecture with the plugin support.

Xilinx has recently announced SDNet [22] environment
for software defined, hardware accelerated networking. The
system uses high level language(s) to describe a network
application, which is then compiled to a form of hardware
accelerator for a Xilinx FPGA. From the limited information
available at the time of writing, we envision that SDNet
could be used to improve SDM by custom application pars-
ers or instruction modules.

The proposed arrangement of SDM resembles OpenFlow
[23]: Packets of an unknown flow are passed from a data
path to a control software, which in turn may choose to
install processing rules into the data path. Similar to plugins
for an OpenFlow controller, SDM is also designed to sup-
port various software plugins. In addition to that, newer
versions of OpenFlow standard define monitoring primi-
tives for the data path. The main difference with OpenFlow
is that, for the sake of performance, our system is not dis-
tributed, but our controller is rather very tightly coupled
with the hardware accelerator—within the same box, or
even at the same chip. That allows implementing applica-
tions which would be impractical when built as a distrib-
uted system. We also propose user-defined modifications to
the data plane through the modular Execution Unit—a con-
cept that is unparalleled in OpenFlow. Our system is an
instance of Software Defined Networking in a broader
sense, yet it is different from OpenFlow.

6 CONCLUSION

We propose a new concept of application level flowmonitor-
ing acceleration called Software Defined Monitoring. The
concept is able to support application level monitoring and
high-speed flow measurements at speeds over 100 Gbps at
the same time. Our system focuses on a high speed and high
quality flow based measurement with the support of a hard-
ware accelerator. The accelerator is fully controlled by the
software feedback loop and offloads the simple monitoring
tasks of bulk, uninteresting traffic. The software, on the other
hand, decides about the traffic processing on a per-flow basis
and performs the advanced monitoring tasks such as appli-
cation protocol parsing. The softwareworkswithmonitoring
plugins, therefore, SDM is by design ready for extensions by
new high-speed monitoring tasks without the need to mod-
ify its hardware. Moreover, the FPGA accelerator itself can
also be improved to support new types of offload.

Our detailed analysis of the backbone network traffic
parameters demonstrates the feasibility of the concept. We
have also implemented thewhole SDM system using the Vir-
tex-7 FPGA accelerator board, including some extensions to
the firmware offload engine. The system is ready to handle
100 Gbps traffic. Using the SDM prototype, we have evalu-
ated several use cases for SDM. It is clear from the obtained

results that SDM is able to offload a significant part of net-
work traffic to the hardware accelerator and therefore to sup-
port a much higher throughput than a pure software
solution. The results show amajor speed-up in all test cases.

ACKNOWLEDGMENTS

This research has been partially supported by the “CESNET
Large Infrastructure” project no. LM2010005 funded by the
Ministry of Education, Youth and Sports of the Czech
Republic, the research programme MSM 0021630528, the
grant BUT FIT-S-14-2297 and the IT4Innovations Centre
of Excellence CZ.1.05/1.1.00/02.0070. V. Pu�s is the
corresponding author.

REFERENCES

[1] B. Claise, “Cisco systems netflow services export version 9,” RFC
3954, Internet Engineering Task Force, Oct. 2004.

[2] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP flow
information export (IPFIX) protocol for the exchange of flow
information,” RFC 7011, Internet Engineering Task Force, Sep.
2013.

[3] L. Deri, L. Trombacchi, M. Martinelli, and D. Vannozzi, “A dis-
tributed dns traffic monitoring system,” in Proc. 8th Int. Wireless
Commun. Mobile Comput. Conf., 2012, pp. 30–35.

[4] M. Elich, P. Velan, T. Jirsik, and P. Celeda, “An investigation
into teredo and 6to4 transition mechanisms: Traffic analysis,”
in Proc. 38th Conf. Local Comput. Netw. Workshops, 2013,
pp. 1018–1024.

[5] P. Velan, T. Jirsik, and P.�Celeda, “Design and evaluation of http
protocol parsers for ipfix measurement,” in Proc. Adv. Commun.
Netw., 2013, vol. 8115, pp. 136–147.

[6] F. Fusco and L. Deri, “High speed network traffic analysis with
commodity multi-core systems,” in Proc. 10th ACM SIGCOMM
Conf. Internet Meas., 2010, pp. 218–224.

[7] C. Estan and G. Varghese, “New directions in traffic measure-
ment and accounting: Focusing on the elephants, ignoring the
mice,” ACM Trans. Comput. Syst., vol. 21, no. 3, pp. 270–313,
Aug. 2003.

[8] K.-C. Lan and J. Heidemann, “A measurement study of correla-
tions of internet flow characteristics,” Comput. Netw., vol. 50, no. 1,
pp. 46–62, Jan. 2006.

[9] V. Pu�s, L. Kekely, and J. Ko�renek, “Low-latency modular packet
header parser for FPGA,” in Proc. 8th ACM/IEEE Symp. Arch.
Netw. Commun. Syst., 2012, pp. 77–78.

[10] A. W. Moore, D. Zuev, and M. L. Crogan, “Discriminators for
use in flow-based classification,” Department of Computer Sci-
ence, Queen Mary University of London, London, U.K., Tech.
Rep. RR-05-13, 2005.

[11] P. Piskac and J. Novotny, “Using of time characteristics in data
flow for traffic classification,” in Managing Dynamics Netw. Serv.,
2011, vol. 6734, pp. 173–176.

[12] A. Tartakovsky, A. Polunchenko, and G. Sokolov, “Efficient com-
puter network anomaly detection by changepoint detection meth-
ods,” Sel. Topics Signal Process., vol. 7, no. 1, pp. 4–11, 2013.

[13] R. B. Blazek, H. Kim, B. Rozovskii, and A. Tartakovsky, “A novel
approach to detection of “denial of service” attacks via adaptive
sequential and batch-sequential change-point detection methods,”
in Proc. 2nd IEEE Workshop Syst., Man, Cybernetics, 2001, pp. 220–
226.

[14] INVEA-TECH a.s.. (2014). FlowMon Exporter-Community Pro-
gram. [Online]. Available: http://www.invea.cz

[15] Snort. (2014). [Online]. Available: http://www.snort.org
[16] l7-filter. (2014). [Online]. Available: http://l7-filter.clearfounda-

tion.com/
[17] ntop, nDPI. (2014). [Online]. Available: http://www.ntop.org/

products/ndpi/
[18] M. Yu, L. Jose, and R. Miao, “Software defined traffic measure-

ment with opensketch,” in Proc. 10th USENIX Conf. Networked
Syst. Des. Implementation, 2013, pp. 29–42.

[19] M. Ko�sek and J. Ko�renek, “Flowcontext: Flexible platform for mul-
tigigabit stateful packet processing,” in Proc. Int. Conf. Field Pro-
gramm. Logic Appl., 2007, pp. 804–807.

KEKELY ET AL.: SOFTWARE DEFINED MONITORING OF APPLICATION PROTOCOLS 625

[20] M. Forconesi, G. Sutter, S. Lopez-Buedo, and J. Aracil, “Accurate
and flexible flow-based monitoring for high-speed networks,” in
Proc. 23rd Int. Conf. Field Programm. Logic Appl., Sep. 2013, pp. 1–4.

[21] N. Weaver, V. Paxson, and J. M. Gonzalez, “The shunt: An FPGA-
based accelerator for network intrusion prevention,” in Proc. 15th
Int. Symp. Field Programm. Gate Arrays, 2007, pp. 199–206.

[22] Xilinx Inc., SDNet. (2014). [Online]. Available: http://www.xilinx.
com/applications/wired-communications/sdnet.html

[23] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, and J. Turner, “Openflow:
Enabling innovation in campus networks,” SIGCOMM, vol. 38,
no. 2, pp. 69–74, Mar. 2008.

Luk�a�s Kekely is working towards the PhD
degree at the Faculty of Information Technology,
Brno University of Technology since 2013 and
also a researcher at CESNET since 2011. His
research is focused mainly on hardware acceler-
ated solutions for high-speed networks, particu-
larly in the area of monitoring and security. He is
an author of several research papers published
at renowned international conferences.

Viktor Pu�s received the PhD degree from the
Faculty of Information Technology, Brno Univer-
sity of Technology in 2012. He is a researcher
with focus on hardware acceleration of timing-
critical operations in the network, particularly in
the network security monitoring. He is an author
of one US patent and many research papers pub-
lished at renowned international conferences.

Jan Ko�renek received the PhD degree in 2010
from the Brno University of Technology, Czech
Republic. He has substantial experiences in the
hardware acceleration of network applications
which was obtained by working on a number of
European and locally funded projects. He is an
author of many papers and novel hardware archi-
tectures. In May 2007, he co-founded INVEA-
TECH which is a successful spin-off company
focused on high speed network monitoring and
security applications. In 2009, he formed Acceler-

ated Network Technologies (ANT) research group at Brno University of
Technology.

Jan Ku�cera graduated with a bachelor’s degree
at the Faculty of Information Technology, Brno
University of Technology in 2014. He continues
his studies in the follow-up master’s degree pro-
gramme. Since 2012, he works as a researcher
at CESNET and is interested in FPGA design,
especially in hardware acceleration for the pur-
pose of high-speed networks monitoring.

Athanasios V. Vasilakos served or is serving as
an editor or/and guest editor for many technical
journals,such as the IEEE Transactions on Net-
work and Service Management; IEEE Transac-
tions on Cloud Computing, IEEE Transactions on
Information Forensics and Security, IEEE Trans-
actions on Cybernetics; IEEE Transactions on
Nanobioscience; IEEE Transactions on Informa-
tion Technology in Biomedicine; ACM Transac-
tions on Autonomous and Adaptive Systems; the
IEEE Journal on Selected Areas in Communica-

tions. He is also general chair of the European Alliances for Innovation
(www.eai.eu).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

626 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

