
Absolutely Unlimited Deep Pushdown Automata

Jǐŕı Kučera, Alexander Meduna, and Ondřej Soukup

Brno University of Technology, Faculty of Information Technology, IT4Innovations
Centre of Excellence, Božetěchova 1/2, 612 66 Brno, Czech Republic

ikucera@fit.vutbr.cz, meduna@fit.vutbr.cz, isoukup@fit.vutbr.cz

Abstract. This paper introduces an absolutely unlimited deep push-
down automata and studies their computational power. These automata
are generalized versions of recently introduced deep pushdown automata
in the terms of the depth of expansions. They can expand nontermi-
nal pushdown symbol despite its depth. It is shown that propagating
and erasing versions of absolutely unlimited deep pushdown automata
characterize type 1 and type 0 languages, respectively.

Keywords: deep pushdown automata, unlimited deep pushdown automata,
computational power, absolutely unlimited deep expansions

1 Introduction

Deep pushdown automata (DPDA for short) as a generalization of classical push-
down automata and the automata counterpart to n-limited state grammars were
introduced in [3]. State grammars were introduced in [2], however, not only their
n-limited versions. The main idea behind DPDA comes from LL syntax analysis,
where the topmost symbol on the pushdown can be either popped or expanded.
As it was proved in [3], allowing the expansions to be performed deeper in the
pushdown will increase the accepting power of classical pushdown automata.
With this feature, LL parsers are able to parse languages that are not context-
free, but not every context-sensitive language, since the depth of expansions is
limited. As a natural extension of DPDA, in this study we consider DPDA with
no limit imposed on the depth of expansions, which are also a counterpart to
unlimited state grammars.

We introduce unlimited deep pushdown automata (UDPDA for short), which
stays as an automata counterpart to unlimited state grammars. An unlimited
deep pushdown automaton can expand nonterminal pushdown symbols, regard-
less how deep in the pushdown stack they occur. We distinguish two types of
determination of nonterminal to be expanded based on its position within the
pushdown—absolute and relative. However, in this paper, we consider only the
absolutely unlimited deep pushdown expansions, the study on the relatively un-
limited deep pushdown expansions is currently being prepared.

Absolutely unlimited deep pushdown expansions are very natural generaliza-
tion of n-limited deep pushdown expansions. The topmost nonterminal specified

by applied rule is expanded independently of its depth. It is proved that abso-
lutely unlimited deep pushdown expansions provide the power of linear bounded
automata for propagating versions and the power of Turing machines for erasing
versions.

2 Preliminaries

We assume that the reader is familiar with formal language theory (see [4, 5]).
For a set W , card(W) denotes its cardinality. Let V be an alphabet (finite
nonempty set). V ∗ is the set of all strings over V . Algebraically, V ∗ represents
the free monoid generated by V under the operation of concatenation. The unit
of V ∗ is denoted by ε. Set V + = V ∗ − {ε}. Algebraically, V + is thus the free
semigroup generated by V under the operation of concatenation. For w ∈ V ∗,
|w| denotes the length of w. The alphabet of w, denoted by alph(w), is the set
of symbols appearing in w.

Let⇒ be a relation over V ∗. The transitive and transitive-reflexive closure of
⇒ are denoted ⇒+ and ⇒∗, respectively. Unless we explicitly stated otherwise,
we write x⇒ y instead of (x, y) ∈ ⇒.

The families of context-free, context-sensitive and recursively enumerable
languages are denoted by CF, CS and RE, respectively.

A state grammar (see [2]) is a 6-tuple G = (K,V, T, P, S, s), where K is
a nonempty finite set of states, V is a total alphabet, T ⊂ V is a terminal
alphabet, P ⊆ K × (V − T) × K × V ∗ is a finite relation called the set of
productions, S ∈ V − T is the initial symbol, and s ∈ K is the initial state.
Instead of (p,A, q, x) ∈ P , we write (p,A)→ (q, x) ∈ P . Let ⇒ be a relation of
direct derivation on K × V ∗ defined as follows: (p, uAv)⇒ (q, uxv) iff (p,A)→
(q, x) ∈ P and (p,A′) → α /∈ P , where p, q ∈ K, A ∈ V − T , u, v, x ∈ V ∗,
A′ ∈ alph(u) − T , and α ∈ K × V ∗. By (p, uAv) ⇒ (q, uxv) [(p,A) → (q, x)],
we express that (p, uAv) directly derives (q, uxv) according to (p,A) → (q, x).
In the standard manner, we extend ⇒ to ⇒m, where m ≥ 0; then, based on
⇒m, we define ⇒+ and ⇒∗. The language generated by G, denoted as L(G),
is defined as L(G) = {w ∈ T ∗ | (s, S) ⇒∗ (q, w), q ∈ K}. A state grammar G
is called propagating, if for every production (p,A) → (q, w) ∈ P , w 6= ε. By
ST and pST, we denote the family of languages of all state grammars and the
family of languages of all propagating state grammars, respectively.

Recall that ST = RE (see [1]) and pST = CS (see [2]).

3 Definitions and Examples

In this section, we define an absolutely unlimited deep pushdown automata and
demonstrate them by examples.

Informally, during every computational step an absolutely unlimited deep
pushdown automaton either pops or expands its pushdown. In the case, the
topmost pushdown symbol is a terminal, it is compared with the current input

symbol and if they correspond, the pushdown symbol is popped and the input
symbol is read. Otherwise, the pushdown may be expanded. With an absolutely
unlimited deep pushdown expansion, a nonterminal symbol is chosen and its
topmost occurrence is rewritten.

The following definition is based on the original definition of deep pushdown
automata, which can be found in [3].

Definition 1. An absolutely unlimited deep pushdown automaton (AUDPDA
for short) is an 8-tuple M = (Q,Σ, Γ,#, R, s, S, F), where Q is a finite set of
states, Σ is an input alphabet, Γ is a pushdown alphabet, Γ ∩ Q = ∅, Σ ⊂ Γ ,
∈ Γ − Σ is the special symbol called bottom marker, R ⊆ Q × (Γ − (Σ ∪
{#})) × Q × (Γ − {#})∗ ∪ Q × {#} × Q × (Γ − {#})∗{#} is a finite relation
called the set of rules, s ∈ Q is the initial state, S ∈ Γ is the initial pushdown
symbol, and F ⊆ Q is the set of final states. Instead of (p,A, q, x) ∈ R, we write
pA → qx ∈ R. Set χ = Q×Σ∗ × (Γ − {#})∗{#}. A configuration of M is any
element of χ.

Let ap` be a relation on χ such that (q, cw, cz) ap`(q, w, z), where q ∈ Q, c ∈ Σ,
w ∈ Σ∗, and z ∈ Γ ∗. Then, we say that M pops its pushdown from (q, cw, cz) to
(q, w, z). Similarly, let a

e` be a relation on χ such that (p, w, uAv) ae`(q, w, uxv)
iff pA → qx ∈ R, where p, q ∈ Q, w ∈ Σ∗, u, x, v ∈ Γ ∗, A ∈ Γ − Σ, A /∈
alph(u) and for every A′ ∈ alph(u) − Σ, pA′ → q′x′ /∈ R, where q′ ∈ Q and
x′ ∈ Γ ∗. By (p, w, uAv) ae`(q, w, uxv) [pA→ qx], we express that M expands its
pushdown with absolutely unlimited deep pushdown expansion from (p, w, uAv)
to (q, w, uxv) according to pA → qx. A direct move relation on χ, denoted a`,
is defined as a` = a

p` ∪
a
e`.

In the standard manner, extend a
p`, a

e`, and a` to a
p`m, a

e`m, and a`m,
respectively, for m ≥ 0; then, based on a

p`m, ae`m, and a`m, define a
p`+, ap`∗,

a
e`+, ae`∗,

a`+, and a`∗.
The language accepted by M , denoted as L(M), is defined as

L(M) = {w ∈ Σ∗ | (s, w, S#) a`∗(f, ε,#), f ∈ F}.

In addition, we define the language that M acceps by empty pushdown, L(M)ε,
as

L(M)ε = {w ∈ Σ∗ | (s, w, S#) a`∗(q, ε,#), q ∈ Q}.

An AUDPDA M is called propagating (pAUDPDA for short), if for every rule
pA→ qx ∈ R, x 6= ε. �

Let AUDPD and pAUDPD denote the family of all absolutely unlimited
deep pushdown automata languages and the family of all propagating absolutely
unlimited deep pushdown automata languages, respectively.

Example 1. Consider the absolutely unlimited deep pushdown automaton

M = (Q, {a}, {S,A,X,A′, X ′,#, a},#, R, 〈s〉, S, {〈f〉})

with Q = {〈s〉, 〈c〉, 〈1〉, 〈2〉, 〈1′〉, 〈2′〉, 〈f〉} and R containing rules

〈s〉S → 〈c〉aSAX, 〈c〉S → 〈c〉aSA,
〈c〉S → 〈1〉, 〈1〉A→ 〈2〉,
〈1〉X → 〈1′〉X ′, 〈2〉A→ 〈1〉A′,
〈2〉X → 〈f〉, 〈1′〉A′ → 〈2′〉,
〈1′〉X ′ → 〈1〉X, 〈2′〉A′ → 〈1′〉A,
〈2′〉X ′ → 〈f〉.

On aaaa, M makes

(〈s〉, aaaa, S#) ae` (〈c〉, aaaa, aSAX#) [〈s〉S → 〈c〉aSAX]
a
p` (〈c〉, aaa, SAX#)
a
e` (〈c〉, aaa, aSAAX#) [〈c〉S → 〈c〉aSA]
a
p` (〈c〉, aa, SAAX#)
a
e` (〈c〉, aa, aSAAAX#) [〈c〉S → 〈c〉aSA]
a
p` (〈c〉, a, SAAAX#)
a
e` (〈c〉, a, aSAAAAX#) [〈c〉S → 〈c〉aSA]
a
p` (〈c〉, ε, SAAAAX#)
a
e` (〈1〉, ε, AAAAX#) [〈c〉S → 〈1〉]
a
e` (〈2〉, ε, AAAX#) [〈1〉A→ 〈2〉]
a
e` (〈1〉, ε, A′AAX#) [〈2〉A→ 〈1〉A′]
a
e` (〈2〉, ε, A′AX#) [〈1〉A→ 〈2〉]
a
e` (〈1〉, ε, A′A′X#) [〈2〉A→ 〈1〉A′]
a
e` (〈1′〉, ε, A′A′X ′#) [〈1〉X → 〈1′〉X ′]
a
e` (〈2′〉, ε, A′X ′#) [〈1′〉A′ → 〈2′〉]
a
e` (〈1′〉, ε, AX ′#) [〈2′〉A′ → 〈1′〉A]
a
e` (〈1〉, ε, AX#) [〈1′〉X ′ → 〈1〉X]
a
e` (〈2〉, ε,X#) [〈1〉A→ 〈2〉]
a
e` (〈f〉, ε,#) [〈2〉X → 〈f〉]

In brief, (〈s〉, aaaa, S#) a`∗(〈f〉, ε,#). Observe that L(M) = L(M)ε = {a2n |
n ≥ 0}, which belongs to CS−CF. �

4 Results

In this section, we prove that AUDPD = ST = RE and pAUDPD = pST =
CS.

Lemma 1. For every state grammar, G, there exists an absolutely unlimited
deep pushdown automaton, M , such that L(G) = L(M).

Proof. Let G = (K,V, T, P, S, s) be a state grammar. Set N = V −T . Introduce
the AUDPDA, M = (K∪{f̄}, T, V ∪{#},#, R, s, S, {f̄}), where R is constructed
by performing the following steps:

(i) for every (p,A) → (q, x) ∈ P , where p, q ∈ K, A ∈ N , and x ∈ V ∗, add
pA→ qx to R;

(ii) for every p ∈ K, add p#→ f̄# to R.

Claim 2. Let (p, S) ⇒m (q, wy) in G, where p, q ∈ K, w ∈ T ∗, y ∈ (NT ∗)∗,
and m ≥ 0. Then, (p, w, S#) a`∗(q, ε, y#) in M .

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0, so (p, S)⇒0 (p, S) in G, w = ε and y = S. Then,

(p, ε, S#) a`0(p, ε, S#)

in M , so the basis holds.

Induction Hypothesis. Assume that the claim holds for all 0 ≤ m ≤ k, where k
is a non-negative integer.

Induction Step. Let (p, S) ⇒k+1 (q, wy) in G, where p, q ∈ K, w ∈ T ∗, and y ∈
(NT ∗)∗. Since k+ 1 ≥ 1, express (p, S)⇒k+1 (q, wy) as (p, S)⇒k (t, w′uAv)⇒
(q, w′uxv) [(t, A) → (q, x)], where t ∈ K, w′ ∈ T ∗, u ∈ (NT ∗)∗, A ∈ N ,
x, v ∈ V ∗, (t, A) → (q, x) ∈ P , w = w′ŵ, and ŵy = uxv with ŵ ∈ T ∗. By
the induction hypothesis, there exists a move (p, w′, S#) a`∗(t, ε, uAv#) in M
which implies that there also exists a move (p, w′ŵ, S#) a`∗(t, ŵ, uAv#) in M .
By the definition of a derivation step in G, there are no other rules with the
(t, A′) left-hand side in P , for all A′ ∈ alph(u) − T . From the first step of
the construction of R follows that there must be a rule tA → qx in R. Thus,
(t, ŵ, uAv#) ae`(q, ŵ, uxv#) in M according to tA→ qx and there are no other
rules with the tA′ left-hand side in R, for all A′ ∈ alph(u)− T . Since ŵy = uxv,
we have (q, ŵ, ŵy#) ap`|ŵ|(q, ε, y#) in M , which completes the induction step.

ut

By the previous claim for y = ε, if (s, S) ⇒∗ (q, w), where q ∈ K and
w ∈ T ∗, then (s, w, S#) a`∗(q, ε,#) in M . Since q# → f̄# ∈ R, we also have
(s, w, S#) a`∗(f̄ , ε,#) in M . Thus, w ∈ L(G) implies w ∈ L(M), so L(G) ⊆
L(M).

Claim 3. Let (p, w, S#) a`m(q, ε, ŵy#) in M , where p, q ∈ K, w, ŵ ∈ T ∗,
y ∈ (NT ∗)∗, and m ≥ 0. Then, (p, S)⇒∗ (q, wŵy) in G.

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0. Then, w = ŵ = ε, y = S, and

(p, ε, S#) a`0(p, ε, S#)

in M . As (p, S)⇒0 (p, S) in G, the basis holds.

Induction Hypothesis. Assume that the claim holds for all 0 ≤ m ≤ k, where k
is a non-negative integer.

Induction Step. Let (p, w, S#) a`k+1(q, ε, ŵy#) in M , where p, q ∈ K, w, ŵ ∈
T ∗, and y ∈ (NT ∗)∗. Since k+1 ≥ 1, we can express (p, w, S#) a`k+1(q, ε, ŵy#)
as

(p, w, S#) a`kχ a`(q, ε, ŵy#),

where χ is a configuration of M whose form depend on whether the last move
is a popping move or an expansion.

(I) Assume that χ ap`(q, ε, ŵy#) in M . In the greater detail, let

χ = (q, a, aŵy#)

with a ∈ T such that w = w′a, where w′ ∈ T ∗. Thus,

(p, w, S#) a`k(q, a, aŵy#) ap`(q, ε, ŵy#).

Since (p, w, S#) a`k(q, a, aŵy#), we have

(p, w′, S#) a`k(q, ε, aŵy#).

By the induction hypothesis, (p, S) ⇒∗ (q, w′aŵy) in G. As w = w′a,
(p, S)⇒∗ (q, wŵy) in G.

(II) Assume that χ ae`(q, ε, ŵy#) in M . If this expansion is made by the rule
introduced in step (ii), then q = f̄ , ŵ = ε, y = ε, and the induction step
follows from the induction hypothesis. Therefore, suppose that this ex-
pansion is made by a rule introduced in step (i). In greater detail, suppose
that χ = (t, ε, uAv#) and

(t, ε, uAv#) ae`(q, ε, uxv#)

by using tA → qx ∈ R, where t ∈ K, A ∈ N , u ∈ (NT ∗)∗, v, x ∈ V ∗,
and ŵy = uxv. By the induction hypothesis, (p, w, S#) a`k(t, ε, uAv#)
implies (p, S) ⇒∗ (t, wuAv) in G. As tA → qx ∈ R, (t, A) → (q, x) ∈ P
and for every A′ ∈ alph(u) − T , there is no other rule in P with its left-
hand side in the form of (t, A′). Thus, (p, S) ⇒∗ (t, wuAv) ⇒ (q, wuxv)
in G. Thus, (p, S)⇒∗ (q, wŵy) in G since ŵy = uxv.

ut

Consider the previous claim for ŵ = y = ε to see that

(s, w, S#) a`∗(q, ε,#)

in M implies (s, S)⇒∗ (q, w) in G. Let w ∈ L(M). Then,

(S,w, S#) a`∗(f̄ , ε,#),

which can be expressed as (s, w, S#) a`∗(q, ε,#) ae`(f̄ , ε,#). Observe that the
last move is made by a rule introduced in step (ii). By the previous claim,
(s, S) ⇒∗ (q, w), so w ∈ L(G). Thus, w ∈ L(M) implies w ∈ L(G), so L(M) ⊆
L(G).

As L(M) ⊆ L(G) and L(G) ⊆ L(M), L(G) = L(M). Thus, Lemma 1 holds.
ut

Lemma 4. For every absolutely unlimited deep pushdown automaton, M , there
exists a state grammar, G, such that L(M){[} = L(G), where [is a new symbol
such that [/∈

⋃
x∈L(M) alph(x).

Proof. Let M = (Q,Σ, Γ,#, R, s, S, F) be an absolutely unlimited deep push-
down automaton. Set N = Γ − Σ. Introduce the state grammar, G = (K,Γ ∪
{Z, [}, Σ ∪ {[}, P, s̄, Z), where

K = Q ∪ {s̄, f̄}

and P is constructed by performing the following steps:

(i) add (s̄, Z)→ (s, S#) to P ;
(ii) for every pA → qx ∈ R, where p, q ∈ Q, A ∈ N , and x ∈ Γ ∗, add

(p,A)→ (q, x) to P ;
(iii) for every p ∈ Q, add (p,#)→ (f̄ , [) to P .

Claim 5. Let (p, S#) ⇒m (q, wy#) in G, where p, q ∈ Q, w ∈ Σ∗, y ∈ ((N −
{#})Σ∗)∗, and m ≥ 0. Then, (p, w, S#) a`∗(q, ε, y#) in M .

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0, so (p, S#) ⇒0 (p, S#) in G, w = ε and y = S. Then,
(p, ε, S#) a`0(p, ε, S#) in M , so the basis holds.

Induction Hypothesis. Assume that the claim holds for all 0 ≤ m ≤ k, where k
is a non-negative integer.

Induction Step. Let (p, S#) ⇒k+1 (q, wy#) in G, where p, q ∈ Q, w ∈ Σ∗, and
y ∈ ((N −{#})Σ∗)∗. Observe that rules introduced in steps (i) and (iii) are not
used.

Since k + 1 ≥ 1, express (p, S#)⇒k+1 (q, wy#) as

(p, S#)⇒k (t, w′uAv)⇒ (q, w′uxv) [(t, A)→ (q, x)]

where t ∈ Q, w′ ∈ Σ∗, u ∈ ((N −{#})Σ∗)∗, A ∈ N , x, v ∈ Γ ∗, (t, A)→ (q, x) ∈
P , and wy# = w′uxv. Express w as w = w′ŵ with ŵ ∈ Σ∗, so ŵy# = uxv. By
the induction hypothesis, (p, S#)⇒k (t, w′uAv) implies

(p, w′, S#) a`∗(t, ε, uAv)

in M , which implies (p, w′ŵ, S#) a`∗(t, ŵ, uAv) in M . As (t, A) → (q, x) ∈ P
and there are no other rules with the (t, A′) left-hand side in P , for all A′ ∈
alph(u) − Σ, tA → qx ∈ R must be the only applicable rule on (t, ŵ, uAv).
Thus, (t, ŵ, uAv) ae`(q, ŵ, uxv) in M . Since ŵy# = uxv, we have

(q, ŵ, ŵy#) ap`|ŵ|(q, ε, y#)

in M , which completes the induction step. ut

Consider any w ∈ L(G). Observe that w = w′[, where w′ ∈ Σ∗. Next, observe
that G generates w as

(s̄, Z)⇒ (s, S#) [(s̄, Z)→ (s, S#)]
⇒∗ (q, w′#) (Claim 5 with y = ε)
⇒ (f̄ , w′[) [(q,#)→ (f̄ , [)]

where q ∈ Q, and (s̄, Z) → (s, S#) ∈ P and (q,#) → (f̄ , [) ∈ P are rules
introduced in steps (i) and (iii) of the construction of P , respectively. Thus,
(s, w′, S#) a`∗(q, ε,#) in M . Thus, w′[∈ L(G) implies w′ ∈ L(M), so L(G) ⊆
L(M){[}.

Claim 6. Let (p, w, S#) a`m(q, ε, ŵy#), where p, q ∈ Q, w, ŵ ∈ Σ∗, y ∈ ((N −
{#})Σ∗)∗, and m ≥ 0. Then, (p, S#)⇒∗ (q, wŵy#) in G.

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0. Then, w = ŵ = ε, y = S, and (p, ε, S#) a`0(p, ε, S#) in M .
As (p, S#)⇒0 (p, S#) in G, the basis holds.

Induction Hypothesis. Assume that the claim holds for all 0 ≤ m ≤ k, where k
is a non-negative integer.

Induction Step. Let (p, w, S#) a`k+1(q, ε, ŵy#), where p, q ∈ Q, w, ŵ ∈ Σ∗, and
y ∈ ((N−{#})Σ∗)∗. Since k+1 ≥ 1, we can express (p, w, S#) a`k+1(q, ε, ŵy#)
as (p, w, S#) a`kχ a`(q, ε, ŵy#), where χ is a configuration of M whose form
depend on whether the last move is a popping move or an expansion.

(I) Assume that χ ap`(q, ε, ŵy#) in M . In a greater detail, let

χ = (q, a, aŵy#)

with a ∈ Σ such that w = w′a, where w′ ∈ Σ∗. Thus,

(p, w, S#) a`k(q, a, aŵy#) ap`(q, ε, ŵy#).

Since (p, w, S#) a`k(q, a, aŵy#), we have (p, w′, S#) a`k(q, ε, aŵy#). By
the induction hypothesis, (p, S#) ⇒∗ (q, w′aŵy#) in G. As w = w′a,
(p, S#)⇒∗ (q, wŵy#) in G.

(II) Assume that χ ae`(q, ε, ŵy#) in M . In a greater detail, let χ = (t, ε, uAv),
where t ∈ Q, A ∈ N , u ∈ ((N − {#})Σ∗)∗, and v ∈ Γ ∗. By the induction
hypothesis, (p, w, S#) a`k(t, ε, uAv) implies (p, S#) ⇒∗ (t, wuAv) in G.
Consider that (t, ε, uAv) ae`(q, ε, uxv) according to tA → qx ∈ R in M
with ŵy# = uxv. Following the construction of P , there must be a rule
(t, A)→ (q, x) in P introduced in step (ii). As there are no other rules with
the tA′ left-hand side in P , there are also no other rules with the (t, A′)
left-hand side in R, for all A′ ∈ alph(u)−Σ. Thus, (t, wuAv)⇒ (q, wuxv)
in G. Thus, putting the previous sequences of derivations together, we
obtain (p, S#)⇒∗ (q, wŵy#) in G since ŵy# = uxv.

ut

By the previous claim for y = ŵ = ε, if (s, w, S#) a`∗(q, ε,#) in M , where
q ∈ Q and w ∈ Σ∗, then (s, S#)⇒∗ (q, w#) inG. As P contains rules introduced
in steps (i) and (iii), we also have (s̄, Z)⇒ (s, S#)⇒∗ (q, w#)⇒ (f̄ , w[) in G.
Thus, w ∈ L(M) implies w[∈ L(G), so L(M){[} ⊆ L(G).

As L(M){[} ⊆ L(G) and L(G) ⊆ L(M){[}, L(M){[} = L(G). Thus, Lemma 4
holds. ut

Theorem 7. AUDPD = RE.

Proof. In [1] ST = RE was proved. From Lemma 1 and 4, AUDPD = ST,
which completes the proof. ut

Theorem 8. pAUDPD = CS.

Proof. Following the construction of R in Lemma 1 and a proof of that lemma,
it is clear that every context-sensitive language can be accepted by some prop-
agating AUDPDA. Thus, CS ⊆ pAUDPD.

Conversely, following the construction of P in Lemma 4 and its proof, we have
that for every propagating AUDPDA, M , there exists a propagating state gram-
mar, G, such that L(M){[} = L(G), where [is a symbol defined in Lemma 4.
Let Σ be an alphabet such that [/∈ Σ. Since the family of context-sensitive
languages is closed under linear erasing (see [4]), for every L ∈ 2Σ

∗
, L{[} ∈ CS

implies L ∈ CS. Thus, for every propagating AUDPDA M , L(M){[} ∈ CS
implies L(M) ∈ CS, and then pAUDPD ⊆ CS. ut

Acknowledgments

This work was supported by the TAČR grant TE01020415, the European Re-
gional Development Fund in the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070), and the BUT grant FIT-S-14-2299.

References

1. Horváth, G., Meduna, A.: On state grammars. Acta Cybernetica 8, 237–245 (1988)
2. Kasai, T.: An hierarchy between context-free and context-sensitive languages. Jour-

nal of Computer and System Science 4, 492–508 (1970)
3. Meduna, A.: Deep pushdown automata. Acta Informatica (98), 114–124 (2006),

ISSN: 0001-5903
4. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, Vol. 1: Word, Lan-

guage, Grammar. Springer, New York (1997)
5. Salomaa, A.: Formal Languages. Academic Press, London (1973)

