
Microprocessors and Microsystems 39 (2015) 1215–1230
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
The evaluation platform for testing fault-tolerance methodologies
in electro-mechanical applications
http://dx.doi.org/10.1016/j.micpro.2015.05.011
0141-9331/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ipodivinsky@fit.vutbr.cz (J. Podivinsky), icekan@fit.vutbr.cz

(O. Cekan), isimkova@fit.vutbr.cz (M. Simkova), kotasek@fit.vutbr.cz (Z. Kotasek).
Jakub Podivinsky ⇑, Ondrej Cekan, Marcela Simkova, Zdenek Kotasek
Brno University of Technology, Faculty of Information Technology, Bozetechova 2, 612 66 Brno, Czech Republic
a r t i c l e i n f o

Article history:
Available online 30 May 2015

Keywords:
Fault-tolerance
Electro-mechanical systems
Fault injection
Single event upset
Functional verification
a b s t r a c t

The aim of this paper is to present a new platform for estimating the fault-tolerance quality of
electro-mechanical (EM) systems based on FPGAs. We demonstrate one working example of such an
EM system that was evaluated using our platform: the mechanical robot and its electronic controller
in an FPGA. Different building blocks of the electronic robot controller allow us to model different effects
of faults on the whole mission of the robot (searching a path in a maze). In the experiments, the mechan-
ical robot is simulated in a simulation environment, where the effects of faults artificially injected into its
controller can be seen. In this way, it is possible to differentiate between the fault that causes the failure
of the system and the fault that only decreases its performance. Further extensions of the platform focus
on the interconnection of the platform with the functional verification environment working directly in
FPGA that allows for the automation and speed-up for checking the correctness of the system after the
injection of faults.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

In several areas, such as aerospace and space applications or
automotive safety–critical applications, fault-tolerant electro-
mechanical (EM) systems are highly desirable. In these systems,
the mechanical part is controlled by its electronic controller.
Currently, the trend is to add even more electronics into EM sys-
tems. For example, in aerospace, extending of the electronic part
results in a lower weight that helps to reduce operating costs [1]
[2]. The situation is similar in other sectors, such as automotive
sg. [3].

It is obvious that the fault-tolerance methodologies are targeted
mainly to the electronic components because they perform the
actual computation. However, as the electronics can be realized
on different hardware platforms (ASICs, FPGAs, etc.), specific
fault-tolerance techniques dedicated for these platforms must be
developed.

The previous activities of the team at our department special-
ized on fault tolerant systems design are described in [4]. In that
paper, the fault tolerant methodology for the SRAM based FPGA
based on the use of Partial Dynamic Reconfiguration and the
Generic Partial Dynamic Reconfiguration Controller inside the
FPGA were presented.
The goal of our present research is to develop a platform for the
verification of EM systems resilience against faults which occur in
an electronic component controlling the system, the component is
designed as fault tolerant. Besides from this main activity, the use
of functional verification for the automated evaluation of fault
impacts is described. The goals are available in details in Section 3.

Our research is targeted to Field Programmable Gate Arrays
(FPGAs) [5] as they present many advantages from the industrial
point of view. They can compute many problems hundreds times
faster than modern microprocessors while their reconfigurability
allows the same flexibility as microprocessors. FPGAs can be either
programmed before their use or reconfigured during program run-
time of circuit. Partial dynamic reconfiguration can be also used
when programming is performed only on a part of the circuit,
while the rest of the circuit is working. The programmability of
FPGA differs from Application Specific Integrated Circuit (ASIC) to
which the required function was configured in its production cycle.
FPGAs are becoming increasingly popular and are used in many
applications, mainly due to their programmability, ease of design,
flexibility, decreasing power consumption and price. The robot
manipulator presented in [6], or the FPGA-based robot arm con-
troller presented in [7], can serve as an example. Moreover, the
National Instruments company presents their power train controls
which also use FPGAs on their web [8]. They are used mainly in the
applications where it is necessary to produce small series and
design of ASIC and solution with microprocessor is inappropriate.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.05.011&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.05.011
mailto:ipodivinsky@fit.vutbr.cz
mailto:icekan@fit.vutbr.cz
mailto:isimkova@fit.vutbr.cz
mailto:kotasek@fit.vutbr.cz
http://dx.doi.org/10.1016/j.micpro.2015.05.011
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

1216 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230
FPGAs can be used advantageously for prototyping complex cus-
tom devices. Programmability can also be used to change the
behavior of the circuit by a customer which allows to correct errors
in design or to add new features to circuit already in use.

FPGAs are composed of Configurable Logic Blocks (CLBs) that are
interconnected by a programmable interconnection net. Every CLB
consists of Look-Up Table (LUT) that realizes the logic function, a
multiplexer and a flip-flop. The structure of FPGA and CLB is shown
in Fig. 1. The configuration of CLBs and of the interconnection net is
stored in the SRAM memory. Except CLBs, FPGA contains advanced
circuits and other elements, such as Block Memory (BRAM), fast
multipliers or Digital Signal Processors (DSPs). Input/Output Blocks
(IOBs) can be used as the FPGA communication interface.

The problem from the reliability point of view is that FPGAs are
quite sensitive to faults caused by charged particles [9]. These par-
ticles can induce an inversion of a bit in the configuration SRAM
memory of an FPGA (or directly to its internal flip-flops) and this
may lead to a change in its behavior. Affecting SRAM or directly
the flip-flops can be seen as equivalent in possible consequences.
This event is called the Single Event Upset (SEU). That is the reason
why so many fault-tolerance methodologies inclined to FPGAs
have been developed and new ones are under investigation which
is mentioned in Section 2.

We decided to use FPGAs in our research mainly because of
their speed, re-configurability and because we aim to evaluate var-
ious fault-tolerant methodologies dedicated to FPGAs. Despite our
exemplary system is not so complex as typical FPGA applications
are, it serves for evaluating these methodologies connected to
the verification environment very well. All our previous research
in the area of fault tolerant systems design was oriented to
FPGAs and all our tools were developed for this platform.
Therefore, the system presented in this paper has been physically
also realized on FPGA mainly for our research purposes and not
because it cannot be realized on different platforms as well (for
instance, on an ASIC or on a microprocessor).

The paper is organized as follows. The basic concepts connected
to the FPGA reliability and verification of hardware systems are
summarized in Section 2. The goals of our research and the inter-
connection scheme of the platform for estimating the quality of
EM systems can be found in Section 3. The architecture of our
experimental design, the robot controller, is provided in
(a)

(b)

Fig. 1. Structure of (a) Field Programmable Gate Array (FPGA) and (b) Configurable
Logic Blocks (CLB).
Section 4. A detailed description of the fault injection process that
is used for artificial injection of faults into the robot controller is
described in Section 5.1. Results of the experiments with the robot
controller are available in Section 5.2. The future work that
includes using functional verification for automated evaluation of
impacts of faults and the stimuli generation process is presented
in Sections 6 and 7. Section 8 presents another use case – the pro-
cessor, the reliability of which will be checked in our future work.
Finally, the paper is concluded in Section 9.

The research was supported by the following European pro-
jects: EU COST Action IC1103 - MEDIAN – ‘‘Manufacturable and
Dependable Multicore Architectures at Nanoscale’’ and project
IT4Innovations Centre of Excellence (ED1.1.00/02.0070).
2. Related work

Our presented research is unique in a combination of
fault-tolerance methodologies and functional verification for
improving the reliability of digital systems. For a better under-
standing, the reader should be familiar with the basic concepts
and trends in these two areas. The basic overview is outlined in
this section.
2.1. Fault-tolerance methodologies for FPGAs-based systems

Fault-tolerance (FT) is an important feature for many systems,
especially for those that aim to be highly reliable. A
fault-tolerant system is also able to operate correctly in the pres-
ence of faults (SEUs, transient faults, etc.). There are several basic
FT architectures that use hardware redundancy such as
n-modular redundancy or duplex systems [10]. A special type of
n-modular redundancy is Triple Modular Redundancy (TMR) which
is able to mask a single fault in the system. TMR uses three identi-
cal copies of a functional unit (FU) and the unit called Voter. If
there is a fault in one FU, Voter chooses the output value using a
majority function applied on the primary outputs of the FUs. The
TMR architecture is shown in Fig. 2a.

The duplex architecture also provides fault security and is used
as the core of many advanced FT architectures. The duplex system
can be seen in Fig. 2b. It uses two identical copies of a FU and a
comparator (XOR). The output signal error informs us about a fault
occurrence in the system.

The other type of redundancy, which can be used for hardening
against faults, is time redundancy [11]. Time redundancy is based
on the repetitive result calculation using the same components but
at different time intervals. The obtained results are then compared
together. If there are differences, a fault is detected. The scheme of
time redundancy is shown in Fig. 3.

The presented hardware redundancy is able to mask a fault
occurrence in the FT system. However, the fault localization is
needed in order to repair the faulty modules. For these purposes,
techniques called Concurrent Error Detection (CED) were developed.
These techniques encapsulate on-line checkers, self-checking units
or parity checkers. A combination of the duplex system with CED
that is based on time redundancy is presented in [12]. The duplex
system is able to detect a fault occurrence. If a fault is detected,
recomputation in the next time slot is able to locate the faulty
module. In comparison to the presented TMR architecture, this
approach saves some resources. The use of time redundancy as
CED leads to less power consumption because the result is recom-
puted only if a fault is detected. Moreover, this technique reduces
the number of input and output pins of the combinational logic.

An important feature of FPGAs, which can be utilized for reliabil-
ity purposes after a fault (we consider SEUs) is detected, is called
Partial Dynamic Reconfiguration (PDR) [13]. PDR allows for modifying

(a) (b)

Fig. 2. Architectures with hardware redundancy: (a) TMR and (b) the duplex architecture.

Fig. 3. Time redundancy basic scheme for combinational logic.

J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230 1217
or reloading a specified part of the FPGA configuration memory
while the rest of the FPGA is working correctly. Prepared parts of
configuration memory can be stored in an external memory and
read when they are needed. For example, a part of the FPGA can oper-
ate as a multiplier after the initialization, but the reconfiguration
process can change the function of this part to an adder.

PDR can also reconfigure the affected part of the FPGA (a faulty
module) and restore the electronic system into the correct operation
without interrupting the other parts of the system. The recovery of a
faulty module in TMR by using reconfiguration is illustrated in Fig. 4.
If one of three FUs of TMR is faulty, TMR still provides correct output
values and the faulty module (FU3) can be repaired by PDR without
stopping the FPGA operation. Moreover, if another module (FU1) is
faulty, then TMR produces incorrect output values. Due to the recon-
figuration, these faulty modules can be repaired and TMR is able to
produce the correct output.

Sensitivity to faults (especially SEUs) and the possibility of
reconfiguration are the main reasons why so many
fault-tolerance methodologies inclined to FPGAs have been devel-
oped and new ones are under investigation [14,15]. Our plan is to
test the usability and quality of these methodologies (and also
their new alternatives) while hardening FPGA-based controllers
of mechanical systems against faults.
2.2. Testing fault-tolerant systems implemented on FPGAs

The weak point of FPGAs from the reliability point of view is
their configuration memory. The functionality of an FPGA chip is
Fig. 4. Recovery of the faulty
defined by the sequence of configuration bits (called bitstream)
which is loaded into the configuration memory. In our case, a
specific part of bitstream determines the functionality of the robot
controller. However, even the smallest change in the configuration
memory can lead to a different functionality. When a charged par-
ticle strikes a memory cell, the resulting effect is the inversion of
the stored value (SEU) [16].

During the testing of the resilience of systems against faults,
waiting for their natural appearance is not feasible. A typical rea-
son is the Mean Time Between Failures (MTBF) parameter that can
be in the order of years. Therefore, some special techniques were
developed in order to artificially accelerate the fault occurrence.

The accurate simulation method for the emulation of the effects
of SEUs in the configuration memory of FPGAs is presented in [17].
This approach combines simulation and topological analysis of the
design mapped on the FPGA. An analytical algorithm is presented
which is able to accurately identify the electrical effects induced
into the resources of the circuit affected by a SEU. This simulator
avoids designers to use an expensive FPGA board, but there is a
problem that the design is not evaluated on a real target platform
(FPGA).

An FPGA-based fault injection tool, which is presented in [18],
supports several synthetizable fault models of digital systems
and is implemented using VHDL. The authors present a real time
fault injection tool with good controllability and observability.
However, the fault injection requires an addition of some extra
gates and wires to the original design and thus modifying the orig-
inal VHDL. There are several types of faults that can be generated.
For example, the model of injecting SEU can be seen in Fig. 5. There
are additional signals Bit and FIS which are connected to the Fault
injection component (implemented on the same FPGA). A weak
point of this approach is the difference between the Device
Under Test (DUT) and the device which will be manufactured.

In [19,20], techniques which are based on the fault injection
into a real FPGA board without changing of the original design
were presented. These techniques are based on PDR which allows
us to read the configuration bitstream, inverse bits and write the
affected bitstream back to the FPGA. The prototype of the evalua-
tion board for the fault injection purposes was presented in [19].
There are two FPGAs, the first one is used as the DUT and the sec-
ond one is used as the fault injection controller. In [20] the authors
module in TMR by PDR.

Fig. 5. The synthetizable SEU model [18].

1218 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230
present FLIPPER. This fault injection platform is composed of two
boards with FPGAs – the main board and the DUT board. The fault
injection is controlled by the main board which is driven by the
software application running on a PC. It is able to use various types
of FPGAs as the DUT board, but only if there are enough input/out-
put pins on the main board. The authors in [21] focus on the speed
of the fault impact evaluation, where the fault injection is fully
controlled by a part of the design on the FPGA. Communication
with a PC is used only for the initial configuration of the fault injec-
tion process.

Our previous research also covered the artificial injection of
faults and we have developed an external SEU injector that is
described in more detail in [22]. This injector is based on the SEU
generation outside of the FPGA (in PC), so it is not targeted to a
specific FPGA board (testing was performed on the ML506 card
with the Virtex 5 FPGA technology). The original and the modified
bitstream is transported through the JTAG interface and the subse-
quent dynamic reconfiguration of the FPGA. The process of the SEU
generation is divided into four steps: (1) specifying location of the
fault injection, (2) reading the related part of the configuration bit-
stream, (3) the SEU generation = inversion of the specified bit of
the bitstream and (4) applying the bitstream using PDR without
stopping the FPGA. Our fault injector is implemented in TCL in
two basic layers, the structure of which is shown in Fig. 6. The first
layer (Bitstream Generation Layer) is responsible for
Fig. 6. An external SEU injector structure [22].
communication with the FPGA through the standard JTAG interface
and uses ChipScope libraries. The SEU injection layer is responsible
for the read and write bitstream according to the specified fault
location. The last block (Added Functions) makes it possible to
drive the SEU generation by external sources, such as an external
program or the UART interface.

2.3. Verification of hardware systems

Verification is the process of checking whether a model of the
hardware system satisfies a given correctness specification.
Verification is an important phase in the development of hardware
systems because, before the system is taped-out to the silicon, it is
desirable to detect all design and functional errors or the misinter-
pretations of the specification as early as possible. Moreover, as the
hardware complexity has grown rapidly in the last decade, verifi-
cation is even more important, but very time-consuming too.

Verification methods provide ideally yes/no answers, thus
informing about correctness or incorrectness of the system. There
are two basic types of verification – formal verification and func-
tional verification. Both aim at verifying the system functionality
according to the specification.

Formal verification [23] verifies the system by using mathemat-
ical methods in order to formally describe the system and on the
basis of logical formulas to prove the correctness of the system.
Functional verification [24] verifies the system by monitoring the
inputs and outputs in the simulation environment (usually RTL
simulators are used). For a thorough verification of the system, a
huge number of pseudo-random stimuli is needed in order to cover
all key properties of the system.

There is little space to thoroughly compare both of the above
mentioned verification approaches and to mention their pros and
cons. But in general, functional verification is easier to apply for
hardware engineers as they are familiar with simulation tools
and this approach does not require a deep knowledge of formal
specifications. Moreover, standard languages, methodologies and
libraries were defined for functional verification. The most com-
monly known are the SystemVerilog IEEE language standard,
Universal Verification Methodology (UVM) and the open-source
UVM library (with all the basic components of verification environ-
ments). On the other hand, formal verification is more precise. In
our work, we use functional verification. The main concepts of this
approach are mentioned in the following paragraphs.

At this point, it is important to mention the difference between
verification and testing the system against injected faults.
Verification is mostly the part of the pre-silicon development and
aims of design errors. Testing against faults is usually done after
verification and usually with real hardware representation of the
system (e.g. FPGA). The reason is that when we inject faults into
the system and the system does not behave correctly, we must
be sure that the failure is caused by the injected fault and not by
some design error still present in the system. Therefore, we will
distinguish design under verification (DUV) in the verification
phase and DUT in the testing phase.

In functional verification, the DUV outputs are compared to the
outputs of the reference model (sometimes also referred to as the
golden model) that is typically implemented by a verification engi-
neer or a designer who did not implement the DUV. This is very
important because the interpretation of the specification that is
done by two (or more) different people is actually compared. If a
discrepancy between the two models is detected, an error in the
system, or at least any suspicious behavior, can be discovered.
The basic principle of functional verification is demonstrated in
Fig. 7. An important prerequisite for functional verification is also
a good generator of stimuli for verifying all interesting scenarios
depicted by the specification.

J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230 1219
There are three basic methods on how stimuli are produced and
applied on the inputs of DUV.

The first method [25] (see Fig. 8) uses a random stimuli gener-
ator, which generates a set of stimuli without any control.
Uncovered key functions are covered by directed tests, which have
to be created manually by a verification engineer based on the cov-
erage analysis. The coverage analysis is an output from the simula-
tion environment (an RTL simulator supporting functional
verification) and contains information about the coverage of the
key functions and lines of code of DUV too. The main disadvantage
of this method is that it generates a large amount of invalid input
tests.

The second method is called constraint random stimuli genera-
tion (CRSG) [26] (see Fig. 9). Since we are interested in certain sce-
narios when we are verifying the system, by using CRSG we can
generate specific and always valid stimuli that satisfy predefined
constraints and target these scenarios. To be more specific, these
constraints represent inputs for the constraint solver. The con-
straint solver is a unit which solves defined constraints and gener-
ates valid stimuli. Some parts of the verified circuit may remain
uncovered, hence additional constraints or directed tests have to
be specified manually as in the previous method.

The last method is called coverage-directed stimuli generation
(CDSG) [27], also called coverage-driven verification (see Fig. 10)
and is characterized by some kind of automation. This method is
based on CRSG and moreover, it uses data from the coverage
Fig. 7. The main principle of functional verification.

Fig. 8. The method with ran

Fig. 9. The method with constrain
analysis in order to direct the next round of input stimuli genera-
tion and to cover unverified areas of the system.

2.4. Constrained-random test generation

As was mentioned above in the previous subsection, functional
verification works with constraints. A generator, which is based on
solving constraints, is also known as the constraint solver. Its task
is to search such an assignment of a value to each variable so that
all imposed constraints are simultaneously satisfied. Solving
constraint-random stimuli generation in functional verification is
equivalent to solving the NP-hard problem called Constraint
Satisfaction Problem (CSP).

Constraint Satisfaction Problem [28,29] is a general mathemat-
ical problem defined as a set of variables which can take values
from a finite and discrete domain and a set of constraints. The con-
straint is defined on a subset of variables and determines values
from the domain that a variable can take. The result is a solution
of one or all evaluations of variables so that the constraints are sat-
isfied. Among the typical examples of CSPs are N Queens problem,
Map-Coloring problem, Car sequencing problem, Magic Square,
Social Golfers, etc.

The implementation of constraint-random stimuli generator
that effectively manages CSP and its parameters can be set or mod-
ified in runtime is highly desirable. Therefore, a part of our
research is supposed to be targeted to this domain.
3. The goals of the research

We have identified two areas that we would like to focus on in
our research of fault-tolerant FPGA-based systems: the first one is
that methodologies are validated and demonstrated only on simple
electronic circuits implemented in FPGAs. For instance, method-
ologies focusing on the memory in [30] are validated on simple
memories without any additional logic around. In [31], the
fault-tolerance technique is presented only on a two-input
dom stimuli generator.

ed-random stimuli generator.

Fig. 10. The method coverage directed stimuli generation.

Fig. 11. The robot in a maze in player/stage simulation environment.

1220 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230
multiplexer, one simple adder and one counter. Other methodol-
ogy dedicated to harden finite state machines [32] is only applied
on a simple finite state machine. Of course, for demonstration pur-
poses, such circuits are satisfactory. However, in real systems dif-
ferent types of blocks must be protected against faults at the
same time and must communicate with each other. Therefore, a
general evaluation platform for testing, analysis and comparison
of alone-working or cooperating fault-tolerance methodologies is
needed.

As for the second area of research and the main contribution of
our work, we feel that it must be possible to check the reactions of
the mechanical part of the system if the functionality of its elec-
tronic controller is corrupted by faults. It is either done through
simulation or by a physical realization.

According to the identified problems we have formulated our
goals in the following way:

1. Developing an evaluation platform based on the FPGA technology
for checking the resilience of EM applications against faults.

2. Developing and verifying a new methodology for increasing
fault-tolerance qualities of EM applications using the proposed
platform.

Under the term EM system a mechanical device and its elec-
tronic controller implemented in an FPGA is understood. In our
experiments, these components are represented by a robot device
and its controller, which drives the movement of a robot in a maze.

At this point, we also wanted to target the issue of complexity.
The electronic part, the robot controller, is designed as a complex
system with specific components that will allow testing and vali-
dating individual or cooperating fault-tolerance methodologies
based on the FPGA.

As for the first goal of our research, we have already imple-
mented the evaluation platform that consists of three basic parts:

� the Virtex5 FPGA board, where the robot controller is situated
after the synthesis and the place and route process;
� the simulation environment Player/Stage [33] for checking

responses of the mechanical device to instructions from the
robot controller (see Fig. 11);
� the external fault injector (PC) which inserts faults into the

robot controller [22].

The second goal of our research is covered by the development
of a methodology on how to incrementally harden EM systems
against faults. We expect to clearly identify the situations when
the reconfigurable hardware correctly covers its functions (and
the robot works properly), but also the situations when the
mechanical functions are corrupted and the robot collapses.

Fig. 12 shows the overall interconnection of the PC and the
FPGA board in our platform. It should be noted that there are
two devices called FITkit [34] in both directions, from the PC to
the FPGA and vice versa. FITkit is a hardware platform that was
developed for student projects at the Faculty of Information
Technology, Brno University of Technology. In our platform,
FITkits represent a communication layer and serve as a debugging
point for communication between the PC and the FPGA board. The
SEU injector runs on the PC and is connected through the JTAG
interface directly to the main FPGA board where the robot con-
troller is situated. Via the connection between the SEU injector
and the simulation environment (as shown in Fig. 12), we are able
to control the SEU injection process into the robot controller for
every mission and to see the effects of faults directly in simulation.

In our opinion, it is important to find a relation between the
level of functional corruption of the electronic controller and the
corruption of the mechanical functionality in the EM systems (i.e.
between the robot controller and the simulated mechanical robot).
Therefore, it must be possible to introduce various levels of exter-
nal faults into the controller and check whether the mechanical
function: (a) was not corrupted, (b) was partially corrupted, or
(c) was completely corrupted.

Fig. 12. The platform for testing fault-tolerance methodologies.

J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230 1221
4. The robot controller – structure and principles

In Fig. 13, the block diagram of the implemented robot con-
troller is outlined. The control unit is connected to the PC (where
the simulation environment is located) via the Interface Block.
Through this block, data from the simulation is received (informa-
tion about barriers, distances from control points, target positions)
and in the opposite direction, instructions about the movement of
the robot are sent (direction and speed).

The robot controller is composed of various blocks, their func-
tion is described in [35]. Only the main characteristics of every
Fig. 13. The block diagram
component are summarized here. The central block of the robot
controller is a bus through which the communication between
each block is accomplished. Each of the component, without the
Engine Control Module is connected to the bus. The Position
Evaluation Unit acquires its distance from the control points,
which are located in the fixed positions in the maze. From these,
the position of the robot in the maze is calculated and provided
to other units as coordinates x and y. The Barrier Detection Unit
(BDU) uses four sensors; each located on one side of the robot
(cubical robot) and provides information about the distance to
the surrounding barriers. The output is a four-bit vector that repre-
sents the four-neighborhood of the robot and informs us about bar-
riers in this area. Map updating is provided by the Map Unit (MU)
and is based on information about the position of the robot
obtained from the Position Evaluation Unit and information about
the occurrence of barriers in a four-neighborhood provided by the
Barrier Detection Unit. The Map Memory Unit (MMU) stores infor-
mation about the up-to-date map. The memory is realized by the
block memory (BRAM) available in the FPGA. The most important
block that manages the activity of other blocks in the robot con-
troller is the Path Finding Unit (PFU). It implements the simple iter-
ation algorithm for finding a path through the maze according to
the information about the current and the desired target position.
The mechanical parts of the robot are driven by the setting of the
speed in the required direction of the movement by the Engine
Control Module (ECM).

The robot controller is designed as a complex system with
specific components that will allow for testing and validating var-
ious types of fault-tolerant methodologies focused on FPGAs:

� Combinational circuits
Combinational circuits are the basic types of digital circuits and
their output is dependent just on the current input. In the robot
controller, the Barrier Detection Unit represents a pure combi-
national circuit.
of the robot controller.

Fault Injec�on

Maze
Ini�aliza�on

Start Posi�on

End Posi�on

Robot Controller
Ini�aliza�on

Monitoring of
Impact of Faults

Fig. 14. The flow of one experiment.

1222 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230
� Sequential circuits
The output of the sequential circuit, unlike the combinational
circuit, is not only dependent on the current input but also on
the actual state. These circuits also contain memory for storing
a state. Sequential circuits can be explicitly controlled by the
finite state machine. Sequential circuits without an explicit con-
trol are represented by the Map Unit and the Position
Evaluation Unit in the robot controller.
� Finite state machines

Finite state machines also represent sequential circuits, their
computational process is modeled by states and transitions
between them. In the robot controller, the Path Finding Unit
and the Engine Control Module, together with units that pro-
vide the bus communication, are implemented as finite state
machines.
� Buses

The bus is a central element of our controller. We decided to use
a freely available Wishbone bus [36] that is configured as a
shared bus. It means that the communication on the bus can
be driven only by one master device and the other units must
wait for releasing the bus. All function blocks are connected
to the bus via their wrapper.
� Memories

In the robot controller, we can find two occurrences of different
types of memory. The first, the Map Memory Unit, is realized as
the Block Memory (BRAM) which is available on the FPGA. The
second memory is a queue in the Engine Control Module that
stores a continuously calculated path to the destination.

5. Experiments with the robot controller

5.1. Evaluation of reliability by fault injection

In order to simulate the effects of faults in the FPGA, it could be
done by a direct change of the configuration bitstream which is
loaded into the configuration memory. For this purpose we imple-
mented a fault injector [22] which allows us to prepare the bit-
stream for our FPGA and also to modify single or multiple bits of
the bitstream in order to simulate single and multiple faults. As a
consequence, the design placed in the FPGA (determined by the
configuration data) is similarly influenced by a real fault which
strikes the hardware architecture of the FPGA in a real
environment.

For effective testing of fault effects on a system composed of
several blocks, we need to determine the block in which the fault
will be injected. In the case of injecting faults into the whole
FPGA we are not sure which block is affected, or if the useful part
of the bitstream is hit. The implemented injector is able to inject
faults only to the specified bits of the configuration memory and
a specification list of these bits is an input parameter.

The list of bits representing each component is obtained
through several steps. First, we perform synthesis using Xilinx syn-
thesis tools [37]. The result of synthesis is a netlist, which serves as
an input for the next step. Next, we use the PlanAhead [38] tool for
the layout of the components on the FPGA. Thanks to this, we know
where each component is placed. The bitstream is generated in this
step and the FPGA can be programmed. The knowledge about the
component layout allows us to use the RapidSmith [39] tool for
analysing the design. This tool is able to generate a list of the bit-
stream bits that correspond to the identified areas of the FPGA,
while we know which components are in each area. The disadvan-
tage is that this process only provides a list of bitstream bits that
correspond to Lookup Tables (LUTs). Our goal in the future will be
to find a method which allows us to also localize bits of the bit-
stream corresponding to the interconnection network.
5.2. Experimental results

The aim of the experiment is to identify which parts of the robot
controller are vulnerable to faults. The flow of the experiment is
displayed in Fig. 14. At first, the environment of the robot in sim-
ulation was initiated. We generated a maze together with the start
and the end position for the mission of the robot. As the first sce-
nario, we chose a small maze with 8 � 8 fields. The start position
was in the upper left corner and the end position in the lower right
corner. Subsequently, the robot controller is initiated. In particular,
the bistream for the Virtex5 FPGA board is generated. When
loaded, the robot starts to search a path to the end position. It
moves quite slowly, one robot mission takes about one minute.
At this point, the fault injection takes place. We generate randomly
a LUT of every unit of the robot controller into which the fault will
be injected. Thanks to the Rapidsmith, only corresponding bits of
the bistream are inverted. We want to point out that only bits of
the bitstream belonging to the robot controller design are targeted.
Other bits of the bitstream belonging to the unused parts of the
FPGA or to the interconnection network are not affected. Faults
are injected one after another (MTBF = 2 s) until the robot starts
to behave incorrectly or fails. We were monitoring (1) the number
of faults that led to the malfunction of the robot and (2) how the
behavior of the robot was changed.

The results of the experiments are shown in Table 1. In the first
column, the list of components of the robot controller is provided.
In the second column, the total number of bits of the bitstream that
belong to the LUTs of corresponding components is shown. The fol-
lowing three columns represent the number of injected faults into
particular components which caused the incorrect behavior of the
robot. The first number is minimum, the second number is median
and the last number is maximum of faults that led to failure.
Injecting faults into all bits of the bitstream would be very
time-consuming. Therefore, we utilized the statistic evaluation.
Twenty experimental runs were performed for each component
(320 experimental runs in total). The last column of the table con-
tains the state of the robot that was evaluated as the wrong behav-
ior. These states are described in more detail later in the text.

The statistical data from the measures are also demonstrated in
Fig. 15. It is a quartile chart that for each component shows the
minimum, the first quartile (25%), median, the second quartile
(75%) and maximum of the measured number of injected faults
that led to its failure. One interesting conclusion arises from the
graph. The incorrect behavior did not appear immediately after
the first injection of a fault. We can conclude that some bits of
the bitstream, despite the fact that they are identified as related
to the robot controller, are not used to store a useful information.
This can be seen particularly in components PEU_FSM and
PEU_WB, the numbers of injected faults were so high that they
did not fit into the graph. There are several explanations for this
(for example not all inputs of LUTs are employed or not all states
of FSMs are visited during the computation). On the other hand,
the components MU, MU_FS or MU_WB were corrupted by a

Table 1
The experimental results.

Components # Bits Number of injected faults Consequence

Min Med Max

PEU 21,632 2 6 12 Freezing
PEU_FSM 2112 >80 – >80 –
PEU_WB 2112 41 – >80 Freezing
BDU 320 2 6 21 Freezing
BDU_FSM 2752 3 6 34 Freezing
BDU_WB 2176 3 9 28 Freezing
SEPC_INF 1216 2 3 7 Freezing
SEPC_WB 9088 2 3 7 Freezing
ECM 25,664 1 2 7 Freezing
PFU 7488 3 6 12 Deadlock
PFU_WB 7424 2 3 9 Freezing
MU 11,840 1 2 3 Crashing
MU_FSM 1280 1 3 5 Freezing
MU_WB 7680 1 3 6 Freezing
MMU 3008 1 3 6 Freezing
WB_BUS 5056 1 3 6 Freezing Fig. 16. The chart of typical consequences of injected faults on the mission of the

robot.

J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230 1223
relatively small number of faults. It means, that many bitstream
bits store useful information. Therefore, we realized that some
components contain more critical bits than others and thus they
should be preferred while hardening against faults by some
fault-tolerance methods.

The most common consequences of the injected faults are:

� Freezing on place
Freezing on one spot means that the robot suddenly stopped
after the fault injection and did not continue in its mission.
� Deadlock

After the injection of a certain number of faults the robot began
to walk around in a cycle.
� Crashing into a wall

In some cases, the robot did not recognize the occurrence of
walls in the maze and repeatedly crashed into the wall.
� Other

In the experiments, we observed a small number of other inter-
esting consequences of faults. An example might be freezing of
the robot in one place, then a re-freezing or walking in a cycle.
We also noted a wrong turn of the robot in the maze, which was
followed by freezing.

The proportional representation of these consequences is dis-
played in Fig. 16. As can be deduced from the chart, the most com-
mon consequence of injected faults is Freezing on place. We can also
conclude that the stopping of the robot is not so critical as for
example, a collision with the wall. This conclusion can be very crit-
ical and useful for different kinds of EM systems.
Fig. 15. The quartile graph of t
6. The use of functional verification for automated evaluation of
fault impacts

For extensive checking of the behavior of the robot or any other
EM system placed into our evaluation platform, we need to exam-
ine various scenarios. After the application of proper stimuli, we
can prove the correctness and accuracy of the behavior of the sys-
tem with respect to the specification. The manual check of these
stimuli is difficult as it requires full control from the user. The user
is responsible for running the testbench, generating stimuli and
also analysing the outputs of the system. All these activities are
time-demanding and, therefore, it is not possible to examine the
system thoroughly in a reasonable time. It is necessary to apply
some kind of automation. An extended technique for automated
checking of the correctness of the system is called functional veri-
fication and was described in Section 2.

In order to be able to inject faults into the FPGA while perform-
ing functional verification, we must carry out verification directly
in the FPGA (not just in the simulation as usual). We can advanta-
geously use and modify hardware accelerated verification that uses
an FPGA as the acceleration board. An example of such an acceler-
ator is the open-source framework HAVEN [40]. The extension of
our evaluation platform with the support of functional verification
is shown in Fig. 17. The DUT (in our case the robot controller) is
placed on the FPGA. The outputs from the FPGA are compared to
the outputs of the reference model and they also represent the
inputs that are propagated to the simulation of the mechanical
part. Thus, the output of the DUT stimulates the movement of
the mechanical part of the robot in the simulated maze. The inputs
he results of experiments.

Fig. 17. The functional verification involvement in our platform with the fault
injection.

1224 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230
for the FPGA and the reference model are data from the sensors of
the mechanical part of the robot.

As the reference model, a second implementation of the control
unit, for example in SystemVerilog, C, SystemC, or the same VHDL
implementation that is used as the DUT but without injected faults,
can be considered. The Fault Injector is a unit that differentiates the
current proposal from the regular functional verification environ-
ment. By adding this feature we can verify that the
fault-tolerance techniques used in the robot controller are working
properly and the robot also behaves correctly in the presence of
faults injected into its controller.

The verification process aiming at evaluating the quality of
fault-tolerance methodologies in fault-tolerant EM systems that
utilizes the fault injection is shown in Fig. 18. This process is
divided into three main phases that are described below.
YES

Functional Verification of
the Original Design

Verification
Environment

Reference
Model

List of
Perspective
Scenarios

Functional
Error?

Repair

Functional Verification of Electronic .
Part with Fault Injection

 List of Faults with an Impact
on the Electronic Part

Monitoring Impact of the Critical Faults
on the Mechanical Part

NO

1.phase
2.phase

3.phase

Fig. 18. The flow of phases in the FT systems verification.
At first, the verification environment and the reference model for
the electronic control unit (the robot controller) must be created. In
our case, we decided to use the reference model implemented in the
C/C++ language. In the first phase, we use the regular
simulation-based functional verification where the VHDL descrip-
tion of the electronic robot controller is used as the DUT. It is also
important to connect the environment, where the mechanical parts
of the robot are simulated, to the verification environment. For clar-
ification, there are two simulation environments: functional verifi-
cation is running in the RTL simulation environment and the
mechanical robot is simulated in the separate simulation environ-
ment (the Player/Stage robot simulation). When the robot moves
through the maze, information from sensors about the position
and barriers is provided from the robot simulation to the verification
environment. You can see in Fig. 17 that the whole system consisting
of two simulation environments works in the loop. The main output
of the first phase is a claim whether the electronic controller (the
robot controller) works correctly as specified or not. It is important
because we have to be sure that the robot controller does not contain
functional errors in the implementation. It is also important to point
out that in this phase we acquire a set of verification scenarios (dif-
ferent mazes with different start and end positions for robot move-
ments) that will also be used in the next phase. One verification run
is represented by the robot moving through the maze from the start
position to the end position.

The second phase consists of the verification using an FPGA
with the verification scenarios obtained from the previous phase.
It is guaranteed for these scenarios that if no artificial faults are
injected into the system, the electronic part always behaves cor-
rectly. After a fault is injected, each of these scenarios is repeated
(according to the number of injected faults). The result of this
phase is a list of faults which causes a discrepancy on the output
of the electronic controller for these specific verification scenarios.
These faults will be examined in detail in the next phase where
three possible outcomes can arise: (1) The output from the DUT
and from the reference model is the same and an error did not
appear. (2) The output is not identical but despite this, the robot
has completed the mission (the robot reached the end position in
the maze). (3) The output is not identical and at the same time,
the mission was not accomplished. The last outcome is the most
serious one and it will require a thorough analysis of the problem.

The analysis of the faults which affected badly the mechanical
part is the task for the third phase. In this phase, we will examine
the faults that caused the failure of the mission of the robot. This
activity will be carried out manually, since it is necessary to run
the required experiments repeatedly and to monitor the behavior
of the mechanical part in the robot simulation as was described
in the experimental part of this paper.

The generation of stimuli is a very important element in the
proposed platform. In order to be able to check all working scenar-
ios in functional verification and to achieve the highest possible
coverage of all key functions in the verified circuit, a high-quality
generator of inputs is needed. In our case, the generation aims at
different mazes and a different starting and end positions of the
movements of the robot. We also plan to use the generator for con-
trolling the injection of faults (because now it is configured manu-
ally). We will generate signals that will drive the generation of
faults and determine when and into which place a fault should
be injected. The process of generating stimuli is described in the
next Section 7.
7. Stimuli generation for the robot controller

We wanted to make the process of generating stimuli as univer-
sal as possible. Therefore, this approach is not limited only to the

Fig. 19. The architecture of the stimuli generation.

Fig. 20. The parts of the problem description model.

J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230 1225
robot controller, but it can be used also in other kinds of systems
(the use case presented later in this paper demonstrates generating
assembly programs for the processor). The architecture of the uni-
versal stimuli generator consists of two formal models (see
Fig. 19): description of the problem and constraints defined for the
problem. Each of these formal models is represented by one file
with a specific purpose and a proprietary format.

The Problem Description model contains information about what
has to be generated.

The second model Constraints contains restrictions and limita-
tions for the problem described in the Problem Description model.
This model defines valid combinations, the ordering and conditions
for stimuli that are composed according to the constraints.

The core of the generation is the stimuli generator which takes
these two formal models (files) as inputs and generates stimuli by
their combined use. Theoretically, with this architecture, we are
able to cover many areas. An important prerequisite is the creation
of a set of general constraints that can be used directly or com-
bined together when solving a variety of target generation
problems.
7.1. The Problem Description model

The Problem Description model contains three basic parts for
the problem definition (see Fig. 20): the substitute part, the vari-
able part and the syntax part. Both of these models are defined
by their own proprietary language.

The Syntax part defines the syntactic strings, one after another,
which are needed to generate pseudo-random stimuli. In each syn-
tactic string, a variable or a substitute can appear, but it must be
defined in the Variable part or in the Substitute part. Variables
and substitutes will be replaced in syntactic strings. If they are
not somewhere in the Syntax part, these variables and substitutes
are ignored. The Syntax part represents static values, while the two
remaining parts represent dynamic or changing values in the syn-
tactic strings.
This part always starts with the keyword syntax followed by the
‘‘{’’ character, then contains n-lines of syntaxes and ends with the
‘‘}’’ character. The syntaxes can be easily grouped together for bet-
ter clarity. The syntax of the Syntax part is the following:

syntax {
synname1, synname2, . . . {‘‘generated
word"}

. . .

}

The words synname1, synname2, etc. represent the name for
each generated word. If it is needed to have some generated word
with the same syntax, but with a different syntax name, it is pos-
sible to advantageously use the keyword this in the generated word.

The Substitute part defines all possible substitutes which will be
pseudo-randomly replaced in any syntactic string defined in the
Syntax part. The Substitute part is similar to the enumeration data
type. In every new cycle of the generation process some replace-
ment is taken pseudo-randomly for a given substitution. The
Substitute part is widely used in places where generating some
specific words or phrases into the syntax is needed.

This part starts with the keyword substitute followed by the ‘‘{’’
character, then contains n-lines of substitutes and ends with the
‘‘}’’ character. The substitutes can be grouped together for better
clarity. The syntax of the substitute part is the following:

substitute {
repl1, repl2, . . .{subs1|subs2|. . .}
. . .

}

The words repl1, repl2, etc. represent words that will be
replaced in the generated word. The words subs1, subs2, etc. repre-
sent words that will be placed instead of words repl1, repl2, etc.

The Variable part defines the variables in a general sense. For
each of them a value is assigned pseudo-randomly based on its
data type. In every cycle of the generation process, new values
are assigned.

This part starts with the keyword variable followed by the ‘‘{’’
character, then contains n-lines of variables and ends with the
‘‘}’’ character. The syntax of the Variable part is:

Fig. 21. An idea of generating a maze for the robot controller.

1226 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230
variable {
data_type varname

. . .

}

The data type can take one value from Table 2.

7.2. The constraints model

As mentioned earlier, constraints represent conditions and lim-
itations for the generated stimuli. Constraints also ensure valid
stimuli generation. This is essentially a limitation for data values,
such as a variable cannot take certain values from the range of
the data type, or restriction of dependency, such as some combina-
tion of variables cannot occur after the currently generated combi-
nation. The constraints model is unique for each system as well as
the Problem Description model, therefore, various restrictions are
applied to different systems.

Constraints are defined using a proprietary language and their
syntax is like calling a function with parameters without the return
value. The number of parameters is one or two because there was
no need for complicated relationships between items in the
Problem Description model. The syntax of a constraint is as
follows:

constraintNameðp1;p2; . . . ; pnÞ

where n is the number of parameters (n > 0).

7.3. Stimuli Generator

The stimuli generator explores combinations of syntaxes, sub-
stitutes, and variables so that all constraints are satisfied. The gen-
erator must be able to understand constraints which are applied to
the constraints model. The output from the generator is a set of
lines that is valid for a defined problem.

The generation process starts with a random selection of one
syntax from the syntax part. Based on the chosen syntax, the valid-
ity of all constraints that are defined for this syntax is tested
sequentially. If all constraints are fulfilled, the syntax is sent to
the output. If some of the constraints are not fulfilled, the genera-
tion process backtracks and a new substitute is chosen or a new
value of a variable is generated. If some constraint is still not ful-
filled, a new syntax is chosen and the process is repeated.

7.4. Maze generation

A maze represents one verification stimulus for the robot con-
troller. Fig. 21 illustrates an idea of generating the mazes for the
robot controller. This is an example that shows the function of
the above-mentioned approach. The second example provided
later in this paper is the generation of the assembly code for a pro-
cessor. This use case is described in Section 8.3. The problem of
generating the maze is defined as the generation of lines that are
represented by the boolean array of a specific size. The constraints
restrict the minimal width of the corridor of the maze, while the
Table 2
Data types for variables.

Data type keyword Min value Max value Note

BOOL 0 1 Boolean number
VAR8 0 255 8-bit unsigned integer
VAR16 0 65,535 16-bit unsigned integer
STR STR0 STR29999 4–8 character long string
walls of the maze can be only rectangular and a room that has
no path cannot appear in the maze. The result obtained by the gen-
erator is a sequence of rows that consists of zeroes or ones. Zeroes
represent the corridors, ones represent the walls. This generated
output may be further processed. In our case, this output is regen-
erated into a bitmap image representing the desired maze for the
robot.

We analyzed this problem. There are a lot of approaches and
algorithms for mazes generation [41], but none of them is suitable
for the proposed universal process of generation. Therefore, maze
generation is still in the design process and we are trying to find
a suitable solution for our problem.
8. Use case – evaluation of processor

In our future work, we intend to concentrate on more complex
mechanical systems controlled by their electronic controllers (not
only just a robot in a maze). It is a well known fact that such elec-
tronic controllers are usually based on the use of processors to
cover all the necessary functions (e. g. aerospace applications).
Thus, in our research we decided to create the use case, where
the electronic control unit is represented by a processor. Such an
approach is described in this section. There already exist tech-
niques for hardening processors against faults on the software
level. This approach is called Software Implemented Fault
Tolerance. An overview of these techniques is summarized in
[42], a novel technique is also presented in [43]. Our idea is to eval-
uate the applicability of these techniques in the selected processor
that will be placed into the FPGA and faults will be artificially
injected into its architecture.

Fig. 23. The architecture of the FPGA-based verification environment for the
processor.

J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230 1227
We decided to use the Codix RISC processor [44] of the Codasip
company [45] as our test-case. Codix RISC is a 32-bit RISC proces-
sor with 7 stages of pipeline, 32 general purpose registers, 512 kB
of the memory and 59 instructions. The architecture of the
UVM-based verification environment is presented in the following
subsection. For achieving a high level of coverage in functional ver-
ification, it is necessary to be able to generate a set of assembly
programs for this processor. Generation of these programs by our
universal generator is also described in the following subsections.
The current state of our research is that we are able to generate
the assembly programs and run functional verification for all these
programs with correct results. The next step in our work will be
applying the software fault tolerance to this processor and inject-
ing faults.

8.1. Verification environment for processor

When referring to the first phase of our evaluation process pre-
sented in Fig. 18, we must create the functional verification envi-
ronment for the processor and run the verification without
injecting faults. The UVM-based verification environment is shown
in Fig. 22 (implemented in SystemVerilog).

8.2. FPGA-based verification environment for processor

The second phase of the evaluation process (Fig. 18) is func-
tional verification of the design implemented in the FPGA. Also,
the fault injection into the FPGA takes place in this phase. For this
purposes, the FPGA-based verification environment that is dis-
played in Fig. 23 is derived from the version created in the first
phase. It should be noted that almost all UVM components are
moved into the FPGA, except for the reference model and
Scoreboard. Nevertheless, we aim at designing a consistent verifi-
cation architecture in the FPGA too. Therefore, UVM Agents and
their inbuilt components are just replaced by the HW Agents. We
believe that consistent FPGA verification architecture is then easily
understandable for verification engineers. The communication
between the software and the hardware part of the verification
environment is accomplished using a proprietary interface. More
details about the components of both parts are provided in the
subsequent subsections.

8.2.1. The software part of the verification environment
The main components of the software part are the Reference

Model and Scoreboard. The Reference Model is in this specific case
generated automatically from the high-level specification of the
processor in the Codasip Studio [45], but of course, it can be
Fig. 22. The UVM-based verification environment for the processor.
implemented manually. Scoreboard compares results of the
Reference Model to the results of DUT (received from the hardware
part through the Output Wrapper component). In particular, we
compare the content of memories and register fields when the
specific assembly program is processed, and we continuously
check data from the output ports. The Input Wrapper serves for
sending programs (they are loaded to the processor and define
its functionality) and input data.
8.2.2. The hardware part of the verification environment
Hardware Agents are similar to UVM Agents and their main

components are Drivers and Monitors. Drivers drive the input
ports of DUT and Monitors collect data from the output ports. In
Fig. 23 you can see the Hardware Memory Agent, Hardware
Register Agent and the Hardware Platform Agent. The hardware
Memory Agent is connected to the main memory. It contains the
Driver called the Application Loader that drives the loading of
applications into the program part of the memory at the beginning
of computation. The second component is the Monitor that takes
an image of the memory at the end of the computation and sends
it to the software Scoreboard for the comparison to the reference
results. The Hardware Register Agent contains only the Monitor
that takes an image of register fields at the end of the computation
and sends it to the software Scoreboard. The Hardware Platform
Agent is active during the whole computation; it contains the
Driver that during the computation stimulates input ports of the
processor with data and Monitor that sends the valid output data
of the processor to the software Scoreboard.
8.3. Assembler stimuli generation for processor

Generation of the assembly code for a processor is one example
of the use of the universal generation concept presented in the pre-
vious section. We designed the Problem Description model and the
constraints model specifically for this test-case.
8.3.1. The Problem Description model for processor
The syntax part defines strings that we want to generate. We

want to generate assembly code, so this part contains all instruc-
tions of the processor. Each defined instruction consists of an iden-
tifier and an instruction syntax. The identifier is used for links
between the constraints. The instruction syntax is the body, where
replacement will be carried out and then the modified instruction
syntax will be printed. The example of one instruction is the
following:

Fig. 24. The set of the constraints for generating the assembly code.

Table 3
The constraints for assembly code generation.

Constraint Description Used for

*start()/
*end()

Generates an instruction as the
first/last one

Regs initialization, halt
generation

pb() Sets probability of an instruction
generation

Limits for instr

beforeinsert() Inserts instruction before a
specific instruction

Latency maintain

nocare() Sets that a substitute cannot carry
the value

Conditional instr

output() Sets a substitute of any instruction
as an output

Regs initialization

nouse() A variable cannot be used in the
next instruction

Latency maintain

contain() A variable assigns a previously
generated value

Jump instr., label

different() A variable must be different from
any variable

Jump instr.

div() A value of variable must be
divisible by a number

Mem aligned access

unique() A value must be unique in whole
program

Jump instr., label

afterinsert() Inserts an instruction after the
specific instruction

Latency maintain

*outall() At the end, prints instruction in
the contain() link

Label of instr.

(a)

(b)

Fig. 25. Achieved (a) instruction coverage and (b) statement coverage in functional
verification.

1228 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230
ori {‘‘dst = or src1, imm"}

where ori is the identifier, the string between curly braces is the
instruction syntax, dst and src1 are substitutes, and imm is a
variable.

The substitute part defines the set of strings to be replaced in the
instruction syntax. This part is typical for the register definition.
Here it is specified which substitutes will be replaced by a specific
string. The example of one substitute is the following:

dstf r0jr1jr2 g

where dst is a substitute string; r0, r1, and r2 are the replacements.
The variable part defines the variables in a general sense. It is

usually used for assigning a number into an immediate operand
in the instruction syntax or for assigning a string into a label in
the jump instructions. The example of one variable is:

VAR16 imm

where VAR16 is the 16-bit integer number and imm is the name of
the variable.

8.3.2. The constraints model for processor
We have developed several constraints which solve typical

problems of the assembly code generation. The set of constraints
for the processors is shown in Fig. 24. The successive application
of the constraints is also demonstrated. The constraints with star
mark are evaluated only once during the generation, other con-
straints are evaluated for each instruction. The description of the
constraints and their typical application in the assembly code gen-
eration is shown in Table 3.

8.3.3. Experimental results
As was already mentioned, the experiments were performed on

the processor Codix RISC. For this processor, we have automatically
generated the UVM-based functional verification environment and
the verification process was running in the ModelSim simulator
from Mentor Graphics [46].

The aim of the experiments is to achieve the maximum cover-
age of key system functions, because it guarantees the correctness
of the system with respect to its specification. In the event that we
will inject faults into the verified system, we can almost say with
certainty that faulty system behavior is caused solely by these
faults.

In our experiments, we examined the instruction and the state-
ment coverage for our programs in functional verification.
Coverage is expressed in percentages. We have generated 1980

J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230 1229
programs with 100 and 1000 instructions using the universal gen-
erator described before and we compared the results with the
MiBench test program suite [47] that was used in the company
as the main test suite. The MiBench suite is composed of 1980 pro-
grams with approximately 100–1000 instructions. We have inves-
tigated the maximal coverage and the number of programs that are
included in the test suite. The results of our experiments are
demonstrated in Fig. 25. X-axes of the graph are plotted in a loga-
rithmic scale.

The maximal coverage of our experiments was 88.09% for the
instruction coverage and 85.65% for the statement coverage.
These values were achieved for programs which were generated
by the proposed universal generator of test vectors. For 100
instructions, more programs were necessary than for 1000 instruc-
tions. In comparison with to the MiBench, higher coverage was
achieved, namely +14.29% for the instruction coverage and
+1.97% for the statement coverage. Moreover, the overall coverage
for our generator was achieved more quickly and it was higher for
any number of programs than the coverage achieved by the
MiBench test suite.
9. Conclusion and future work

In this paper, we introduced the evaluation platform for esti-
mating the reliability of FPGA designs. As our research focuses on
testing EM systems, we presented the experimental design which
is composed of the mechanical robot and its electronic controller
situated in the FPGA. The robot controller contains a variety of
components. During the experiments, random faults were artifi-
cially injected into these components and we monitored the
impact of these faults on the behavior of the robot in the simula-
tion environment. These experiments showed that some faults
have an impact on the behavior of the robot, and others do not.
According to these results we were able to identify the parts/com-
ponents of the robot controller that need to be hardened by some
fault-tolerance techniques.

Two main goals were mentioned in Section 3, the first goal is to
develop evaluation platform based on FPGA technology for check-
ing the resilience of EM systems against faults. The presented work
is the first step to achieve this goal, we performed preliminary
experiments with EM system. The conclusions from these experi-
ments are shown in Section 5.2 where the impact of faults in elec-
tronic controller of mechanical part was discussed. As for the
second goal which aims at developing and verifying a new
methodology for increasing fault-tolerance qualities of EM sys-
tems, the main idea how to achieve it was presented in
Section 6. The foundations for the proposed methodology are also
presented as the conclusions of the performed experiments.

In addition, we recognized from the experiments that some
kind of automation is unavoidable in our future experiments, espe-
cially in the early phases of testing. The reason is that monitoring
the behavior of the system in simulation is very time-demanding.
Therefore, we have already prepared an innovative extension of
our platform – interconnection of fault injection and functional
verification environment with an advanced stimuli generation.
Using this approach we will be able to automatically verify an
EM system during the fault injection. Automation is achieved by
comparing the outputs of the verified system to the reference
model that is in our case represented by the same design but with-
out injected faults.
Acknowledgments

The research was supported by the following European projects.
This work was supported by the following projects: EU COST
Action IC1103 – MEDIAN – ‘‘Manufacturable and Dependable
Multicore Architectures at Nanoscale’’, project IT4Innovations
Centre of Excellence (ED1.1.00/02.0070), National COST LD12036
– ‘‘Methodologies for Fault Tolerant Systems Design
Development, Implementation and Verification’’ and BUT project
FIT-S-14-2297.
References

[1] S. Cutts, A collaborative approach to the more electric aircraft, in: International
Conference on Power Electronics, Machines and Drives, 2002 (Conf. Publ. No.
487), 2002, pp. 223–228, http://dx.doi.org/10.1049/cp:20020118.

[2] J. Bennett, A. Jack, B. Mecrow, D. Atkinson, C. Sewell, G. Mason, Fault-tolerant
control architecture for an electrical actuator, in: 35th Annual Power
Electronics Specialists Conference, 2004, PESC 04, 2004, vol. 6, IEEE, 2004,
pp. 4371–4377, http://dx.doi.org/10.1109/PESC.2004.1354773.

[3] G. Leen, D. Heffernan, Expanding automotive electronic systems, Computer 35
(1) (2002) 88–93, http://dx.doi.org/10.1109/2.976923.

[4] M. Straka, J. Kastil, Z. Kotasek, L. Miulka, Fault tolerant system design and SEU
injection based testing, Microprocess. Microsyst. 2013 (37) (2013) 155–173.

[5] XILINX, FPGA, November 2014 <http://www.xilinx.com/fpga/index.htm>.
[6] F. Piltan, N. Sulaiman, M. Marhaban, A. Nowzary, M. Tohidian, Design of FPGA-

based sliding mode controller for robot manipulator, Int. J. Robot. Autom.
(IJRA) 2 (3) (2011) 173–194.

[7] U.D. Meshram, R. Harkare, FPGA based five axis robot arm controller, in: IEEE
Conference, 2005, pp. 3520–3525.

[8] N. Instruments, Powertrain Controls (May 2015) <http://sine.ni.com/ind-app/
app/app/p/id/app-71/lang/cs>.

[9] M. Ceschia, M. Violante, M. Reorda, A. Paccagnella, P. Bernardi, M. Rebaudengo,
D. Bortolato, M. Bellato, P. Zambolin, A. Candelori, Identification and
classification of single-event upsets in the configuration memory of SRAM-
based FPGAs, IEEE Trans. Nucl. Sci. 50 (6) (2003) 2088–2094.

[10] J.A. Cheatham, J.M. Emmert, S. Baumgart, A Survey of Fault Tolerant
Methodologies for FPGAs, vol. 11, ACM, New York, NY, USA, 2006. pp. 501–533.

[11] F.L. Kastensmidt, R. Reis, Fault-Tolerance Techniques for SRAM-Based FPGAs,
vol. 32, Springer, 2007.

[12] F.L. Kastensmidt, G. Neuberger, L. Carro, R. Reis, Designing and testing fault-
tolerant techniques for SRAM-based FPGAs, in: Proceedings of the 1st
conference on Computing frontiers, ACM, 2004, pp. 419–432.

[13] XILINX, Partial Reconfiguration User Guide.
[14] C. Bolchini, A. Miele, M.D. Santambrogio, TMR and partial dynamic

reconfiguration to mitigate SEU faults in FPGAs, in: DFT ’07: Proceedings of
the 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems, IEEE Computer Society, Washington, DC, USA, 2007, pp. 87–95.

[15] L. Sterpone, M. Aguirre, J. Tombs, H. Guzmán-Miranda, On the design of
tunable fault tolerant circuits on SRAM-based FPGAs for safety critical
applications, in: DATE ’08: Proceedings of the Conference on Design,
Automation and Test in Europe, ACM, New York, NY, USA, 2008, pp. 336–341.

[16] R. Oliveira, A. Jagirdar, T.J. Chakraborty, A TMR scheme for SEU mitigation in
scan flip-flops, in: ISQED ’07: Proceedings of the 8th International Symposium
on Quality Electronic Design, IEEE Computer Society, Washington, DC, USA,
2007, pp. 905–910.

[17] C. Bernardeschi, L. Cassano, A. Domenici, L. Sterpone, Accurate simulation of
SEUs in the configuration memory of SRAM-based FPGAs, in: IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2012, IEEE, 2012, pp. 115–120.

[18] S. Rudrakshi, V. Midasala, S. Bhavanam, Implementation of FPGA based fault
injection tool (FITO) for testing fault tolerant designs, IACSIT Int. J. Eng.
Technol. 4 (5) (2012) 522–526.

[19] M. Alderighi, S. D’Angelo, M. Mancini, G.R. Sechi, A fault injection tool for
SRAM-based FPGAs, in: 9th On-Line Testing Symposium, 2003, IOLTS 2003,
IEEE, IEEE, 2003, pp. 129–133.

[20] M. Alderighi, F. Casini, S. d’Angelo, M. Mancini, S. Pastore, G.R. Sechi,
Evaluation of single event upset mitigation schemes for SRAM based FPGAs
using the flipper fault injection platform, in: 22nd IEEE International
Symposium on Defect and Fault-Tolerance in VLSI Systems, 2007, DFT’07,
IEEE, 2007, pp. 105–113.

[21] C. López-Ongil, M. Garcia-Valderas, M. Portela-Garća, L. Entrena, Autonomous
fault emulation: a new FPGA-based acceleration system for hardness
evaluation, IEEE Trans. Nucl. Sci. 54 (1) (2007) 252–261.

[22] M. Straka, J. Kastil, Z. Kotasek, SEU simulation framework for xilinx fpga: First
step towards testing fault tolerant systems, in: 14th EUROMICRO Conference
on Digital System Design, IEEE Computer Society, 2011, pp. 223–230.

[23] T. Kropf, Introduction to Formal Hardware Verification, Springer, 1999
<http://books.google.cz/books?id=p3xSw3AIlToC>.

[24] A. Meyer, Principles of Functional Verification, Elsevier Science, 2003
<http://books.google.cz/books?id=qaIiX3hYWL4C>.

[25] M. George, O. Ait Mohamed, Performance analysis of constraint solvers for
coverage directed test generation, in: 2011 International Conference on
Microelectronics (ICM), 2011, pp. 1–5, http://dx.doi.org/10.1109/ICM.2011.
6177404.

[26] D. Gohel, Pure SV verification environment methodology for asic verification 5
(2014) 770–775.

http://dx.doi.org/10.1049/cp:20020118
http://dx.doi.org/10.1109/PESC.2004.1354773
http://dx.doi.org/10.1109/2.976923
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0020
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0020
http://www.xilinx.com/fpga/index.htm
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0030
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0030
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0030
http://sine.ni.com/ind-app/app/app/p/id/app-71/lang/cs
http://sine.ni.com/ind-app/app/app/p/id/app-71/lang/cs
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0045
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0045
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0045
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0045
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0050
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0050
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0050
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0090
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0090
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0090
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0105
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0105
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0105
http://books.google.cz/books?id=p3xSw3AIlToC
http://books.google.cz/books?id=qaIiX3hYWL4C
http://dx.doi.org/10.1109/ICM.2011.6177404
http://dx.doi.org/10.1109/ICM.2011.6177404

1230 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230
[27] S. Fine, A. Ziv, Coverage directed test generation for functional verification
using bayesian networks, in: Proceedings of the Design Automation
Conference, 2003, 2003, pp. 286–291, http://dx.doi.org/10.1109/DAC.2003.
1219010.

[28] L. Kotthoff, Constraint Solvers: An Empirical Evaluation of Design Decisions,
ArXiv e-printsarXiv:1002.0134.

[29] V. Kumar, Algorithms for constraint satisfaction problems: a survey, AI Magaz.
13 (1) (1992) 32–44.

[30] N. Rollins, M. Fuller, M. Wirthlin, A comparison of fault-tolerant memories in
SRAM-based FPGAs, in: 2010 IEEE Aerospace Conference, 2010, pp. 1–12,
http://dx.doi.org/10.1109/AERO.2010.5446661.

[31] M. Naseer, P. Sharma, R. Kshirsagar, Fault tolerance in FPGA architecture using
hardware controller – a design approach, in: International Conference on
Advances in Recent Technologies in Communication and Computing, 2009,
ARTCom ’09, 2009, pp. 906–908, 2009, http://dx.doi.org/10.1109/ARTCom.236.

[32] L. Frigerio, F. Salice, Ram-based fault tolerant state machines for FPGAs, in:
22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems, 2007, DFT ’07, 2007, pp. 312–320, http://dx.doi.org/10.1109/DFT.
2007.33.

[33] B. Gerkey, R.T. Vaughan, A. Howard, The player/stage project: tools for multi-
robot and distributed sensor systems, in: Proceedings of the 11th International
Conference on Advanced Robotics, vol. 1, 2003, pp. 317–323.

[34] Z. Vasicek, FITkit, April 2014 <http://www.fit.vutbr.cz/FITkit>.
[35] J. Podivinsky, M. Simkova, Z. Kotasek, Complex control system for testing fault-

tolerance methodologies, in: Proceedings of The Third Workshop on
Manufacturable and Dependable Multicore Architectures at Nanoscale
(MEDIAN 2014), COST, European Cooperation in Science and Technology,
2014, pp. 24–27.

[36] OPENCORES, Wishbone B4: WISHBONE System-on-Chip (SoC) Interconnection
Architecture Portable IP Cores, April 2014 <http://cdn.opencores.
org/downloads/wbspecb4.pdf>.

[37] XILINX, Xst User Guide.
[38] N. Dorairaj, E. Shiflet, M. Goosman, Planahead software as a platform for

partial reconfiguration, Xcell J. 55 (68–71) (2005) 84.
[39] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, B. Hutchings, Rapid prototyping

tools for FPGA designs: Rapidsmith, in: 2010 International Conference on
Field-Programmable Technology (FPT), 2010, pp. 353–356, http://dx.doi.org/
10.1109/FPT.2010.5681429.

[40] M. Simkova, O. Lengal, M. Kajan, Haven: An Open Framework For FPGA-
Accelerated Functional Verification of Hardware, Tech. rep., 2011 <http://
www.fit.vutbr.cz/research/viewpub.php.en?id=9739>.

[41] P.W., Maze Algorithms, 1996 <http://www.astrolog.org/labyrnth/algrithm.
htm>.

[42] O. Goloubeva, M. Rebaudengo, M.S. Reorda, M. Violante, Software-
Implemented Hardware Fault Tolerance, Springer Science+Business Media,
LLC, New York, 2006. p. 224.

[43] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, D.I. August, Swift: software
implemented fault tolerance, in: Proceedings of the International Symposium
on Code Generation and Optimization, IEEE Computer Society, 2005, pp. 243–
254.

[44] Codasip, Codix RISC, November 2014 <https://www.codasip.com/
products/codix-risc/>.

[45] Codasip, Codasip Framework, November 2014 <http://www.codasip.com>.
[46] U. Hatnik, S. Altmann, Using modelsim, matlab/simulink and ns for simulation

of distributed systems, in: International Conference on Parallel Computing in
Electrical Engineering, 2004, PARELEC 2004, 2004, pp. 114–119, http://dx.doi.
org/10.1109/PCEE.2004.74.

[47] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown,
Mibench: a free, commercially representative embedded benchmark suite, in:
2001 IEEE International Workshop Proceedings of the Workload
Characterization, 2001, WWC-4, WWC ’01, IEEE Computer Society,
Washington, DC, USA, 2001, pp. 3–14, http://dx.doi.org/10.1109/WWC.2001.
15.
Jakub Podivinsky was born in 1989. In 2013 he grad-
uated (M.Sc.) at the Department of Computers Systems
of the Faculty of Information Technology, Brno
University of Technology. In 2013 he started his Ph.D.
studies at the Department of Computers Systems. His
scientific research is focused on evaluation quality of
fault tolerant systems and FPGA-based functional veri-
fication of digital systems.
Ondrej Cekan was born in 1989. In 2013 he graduated
(M.Sc.) at the Department of Computers Systems of the
Faculty of Information Technology, Brno University of
Technology. In 2013 he started his Ph.D. studies at the
Department of Computers Systems. His scientific
research is focused on functional verification and stim-
uli generation.
Marcela Simkova was born in 1987. In 2011 she grad-
uated (M.Sc.) at the Department of Computers Systems
of the Faculty of Information Technology, Brno
University of Technology. In 2011 she started her Ph.D.
studies at the same university. Her scientific research is
focused on optimization of UVM-based functional veri-
fication, automated verification of processors and
fault-tolerant system design.
Zdenek Kotasek was born in 1947. He received his
M.Sc. and Ph.D. degrees (in 1969 and 1991) from Brno
University of Technology (BUT), both in computer sci-
ence. Between 1969 and 2001, he worked at
Department of Computer Science of the Faculty of
Electrical Engineering and Computer Science, since
2002 at the Department of Computer Systems (DCSY) of
the Faculty of Information Technology, both at BUT. He
is an Associate Professor at BUT since 2000 and the head
of the DCSY (since 2005). His research interests include
digital circuit diagnostics and testing, testability analy-
sis and design and synthesis for testability and relia-

bility, fault tolerant system design. He is an IEEE member (since 2003).

http://dx.doi.org/10.1109/DAC.2003.1219010
http://dx.doi.org/10.1109/DAC.2003.1219010
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0145
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0145
http://dx.doi.org/10.1109/AERO.2010.5446661
http://dx.doi.org/10.1109/ARTCom.236
http://dx.doi.org/10.1109/DFT.2007.33
http://dx.doi.org/10.1109/DFT.2007.33
http://www.fit.vutbr.cz/FITkit
http://cdn.opencores.org/downloads/wbspecb4.pdf
http://cdn.opencores.org/downloads/wbspecb4.pdf
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0190
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0190
http://dx.doi.org/10.1109/FPT.2010.5681429
http://dx.doi.org/10.1109/FPT.2010.5681429
http://www.fit.vutbr.cz/research/viewpub.php.en?id=9739
http://www.fit.vutbr.cz/research/viewpub.php.en?id=9739
http://www.astrolog.org/labyrnth/algrithm.htm
http://www.astrolog.org/labyrnth/algrithm.htm
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0210
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0210
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0210
http://refhub.elsevier.com/S0141-9331(15)00063-0/h0210
http://https://www.codasip.com/products/codix-risc/
http://https://www.codasip.com/products/codix-risc/
http://www.codasip.com
http://dx.doi.org/10.1109/PCEE.2004.74
http://dx.doi.org/10.1109/PCEE.2004.74
http://dx.doi.org/10.1109/WWC.2001.15
http://dx.doi.org/10.1109/WWC.2001.15

	The evaluation platform for testing fault-tolerance methodologies in electro-mechanical applications
	1 Introduction
	2 Related work
	2.1 Fault-tolerance methodologies for FPGAs-based systems
	2.2 Testing fault-tolerant systems implemented on FPGAs
	2.3 Verification of hardware systems
	2.4 Constrained-random test generation

	3 The goals of the research
	4 The robot controller – structure and principles
	5 Experiments with the robot controller
	5.1 Evaluation of reliability by fault injection
	5.2 Experimental results

	6 The use of functional verification for automated evaluation of fault impacts
	7 Stimuli generation for the robot controller
	7.1 The Problem Description model
	7.2 The constraints model
	7.3 Stimuli Generator
	7.4 Maze generation

	8 Use case – evaluation of processor
	8.1 Verification environment for processor
	8.2 FPGA-based verification environment for processor
	8.2.1 The software part of the verification environment
	8.2.2 The hardware part of the verification environment

	8.3 Assembler stimuli generation for processor
	8.3.1 The Problem Description model for processor
	8.3.2 The constraints model for processor
	8.3.3 Experimental results

	9 Conclusion and future work
	Acknowledgments
	References

