
 

 

1 INTRODUCTION 
 
Given the current increase in information technology 
and the gradual expansion of electronic documents 
and data, rises the need for sharing between different 
platforms and backup of the data. Data backup is a 
process which creates a copy of the data, in order to 
avoid the risk of loss. It is possible to return to back-
up data at any time. Synchronization and sharing of 
data is needed, where we work with different tech-
nologies, and even different platforms. Furthermore, 
it is needed when working in groups and in places 
where it is frequent to share data together. In both 
cases, you can automate these activities for the con-
venience of the user, which can also save much of 
the time. 
This work aims to propose an approach (Martak, 
2013) that should promote the general protocol for 
exchanging data, so that you can synchronize and 
backup data between different platforms. Nowadays, 
it is certainly the need to deal with the security of 
transmitted data, in order to prevent getting this data 
to unauthorized users. Therefore, when designing 
this tool, we put the emphasis on security and data 
retention. Another important factor for the design of 
this tool was the effectiveness. This would result in 
reduce demands on resources, such as bandwidth us-
age, network used and reduce the disk space required 
for backup data. (Tridgell, 2008; Martak, 2013) 

2 SYNCHRONIZATION 
 
Data synchronization should ideally bring the shar-
ing of data between different places (Cohen, 2008). 
This process does not ensure data backup, since it 

does not provide the possibility of data recovery, but 
only duplication. The benefit of such sharing is that 
on all the places anyone can work with this data in-
dependently of each other. 
When synchronizing with must ensure that out-of-
date data was synchronized with the amended form 
of the same data from another location. This brings 
the issue of the conflict, so there will be the same da-
ta in other places. These conflicts can be solved in 
different ways and it just depends on the user and the 
tool, which is used for synchronization and what op-
tions for conflict resolution he offers. 
These systems allow us to cooperate between the dif-
ferent participants and shall keep the status of the 
file system (most often in the form of a tree) as de-
veloped in time (Cougias et al., 2008). Users have 
the option at any time to return to previous states of 
the file system. An important feature is the file shar-
ing solution and their conflicts between users (Pilato, 
2008). The basis of such systems is a repository, 
which contains just mentioned various versions of 
files, and other information depending on the partic-
ular system. 
One of the options, how can a user store different 
versions of his files is a local version control 
(Cougias et al., 2008). This form is applicable only 
to one user. Therefore, there is another form, called 
centralized version control system (Cougias et al., 
2008; Pilato, 2008). This allows multiple users to 
work simultaneously. Centralization allows us to 
have the entire work in one place, and users down-
load only the current version of the files. If we have 
to restore an older version of the file, we download 
the required version from the server. The disad-
vantage may be that the system is now in one place. 

Effective Synchronization of Data in Distributed Systems 

P. Ocenasek 
Brno University of Technology, Brno, Czech Republic 

 

 
 

 
 

 

 

 
 
ABSTRACT: This paper proposes an approach for effective synchronization of data in distributed information 

systems. The first part of the paper deals with the synchronization. The second part presents the system that 

realizes the proposed approach. This approach supports its own protocol for exchanging data between nodes. 

The system is designed as platform independent. 

KEYWORD: Synchronization, data, distributed system, backup, snapshot. 



 

 

In the case of failure, the user does not have the op-
portunity to work with the remote system. 
Another type of management systems represent dis-
tributed version control systems (Cougias et al., 
2008). These systems keep the contents of the entire 
repository on the user’s storage place. The user does 
not need to face problems like with the centralized 
systems and can still operate with the repository. If a 
repository contains large number of files and ver-
sions of files, it can be difficult to store at local me-
dium. 

3 ARCHITECTURE 
 

We decided for peer-to-peer design of the concept. 
(Martak, 2013) Each node holds the entire history, 
including the current version, each node can use this 
data even in the event that the another node on the 
network is not available. The distributed system also 
provides duplicate data in case of damage. Thanks to 
peer-to-peer architecture, it appears similar topology 
to the mesh topology. On Figure 1 (Martak, 2013) 
we can see the example of such a topology. Node A 
synchronizes with node B. Both nodes C and D syn-
chronize through node B. Both the nodes synchro-
nize indirectly with the node A. 
 

 
 

Figure 1. Possible synchronization topology. 

 
For communication between two nodes, we need 

to determine their order. If the first node connects to 
another, we consider the first node as the client. This 
is due to that the BSD sockets are designed for a cli-
ent - server architecture. During the whole commu-
nications, the nodes are equal. The system supports 
both IP versions due to the gradual expansion of 
IPv6. (McCabe, 2010; Martak, 2013) 

4 COMMUNICATION PROTOCOL 

For a description of the protocol we have used 
Protocol Buffers. It is ensured that the communica-
tion between tools supporting this protocol is plat-
form independent. Anyone can start communication. 
Since both the peers (communication subjects) are 
equal, they can communicate with each other at 
once. (Martak, 2013) 

Each message is created in the Protocol Buffers 
and is encapsulated in length-value structure like 
BER TLV 2 structure. Since the message types are 
contained in the structure of the Protocol Buffers, it 
is not necessary to indicate the type of message. We 
will create a simple length-value structure. The first 
four bytes of length-value structures represent the 
size of messages in the Protocol Buffers and are fol-
lowed by the contents of the serialized message. 
(Tridgell, 2008) 

Communication is divided into the following 
types: notification, request and response. Each type 
of request or response message contains a transac-
tion identifier. At the beginning of communication 
both devices exchanged a message about extensions 
of the Protocol and introduce its own identifier and 
name, followed by exchange of information about 
volumes. After the initial exchange of information, 
there starts the request-reply communication. One 
request may have more answers. The request may be 
followed by the next request, if this is specified in 
the previous request. If the tool detects the presence 
of any of the volumes, the remote user can start syn-
chronization. First, other party is requested the iden-
tifier of the last known snapshot. If the remote user 
does not have any snapshot for any volume, there 
will be no identifier in the message. This synchroni-
zation will end, since there is nothing to synchro-
nize. (Martak, 2013) 

Finally, the tool receives the last snapshot, it 
checks its own database if that snapshot already con-
tains. If the snapshot has been found, the database al-
ready contains all of the changes to the other party. If 
the snapshot has not been found, the tool continues 
with the request on the next snapshot. After the re-
ceipt of this request, it has to find out whether a 
snapshot of parents. If the parent exists, and does it 
in a local database, the tool must continue polling for 
so long, until it finds the last synchronized snapshot 
or until it finds one that does not already have par-
ents. 

After finding the last of the new snapshot, which 
is no longer in a local database, the tool can begin 
querying metadata objects and data themselves. If 
the tool downloads all the objects bound to this 
snapshot, it can save it to our database as the last 
snapshot with the same identifier and continues on 
the next new snapshot, which does not yet have. This 
continues until all remote snapshots are synchro-
nized. After synchronization is complete, the tool 
sends notification that it is synchronized. 

When saving the snapshot to the database, it is 
important to maintain the snapshot identifier. This is 
because the tool, which originally belonged to, could 
detect its own snapshots in the foreign database pro-
files and does not need to download them again. 
Otherwise this could cause a recurrence of down-
loading own data. 



 

 

When posting a pull message, the party can speci-
fy whether the remote node has to send changes that 
gradually appear while working with the working di-
rectory of the volume. Another message can stop 
sending these changes at any time. 

If there is an error in the determination of the re-
sponse, the tool has an option to send an error mes-
sage together with a description of the error. 

For efficient data transfer between the nodes, we 
have used the rsync delta algorithm. This can be 
used in cases where one party requests data for a par-
ticular file, has also available an earlier version of 
the file. In other cases, it is necessary to always send 
the entire file. The use of this algorithm is not man-
datory, even in cases where this would be appropri-
ate. Some of the parties may not have this extension 
implemented. (Martak, 2013) 

5 STATUS AND DATA RETENTION 

Files and directories of the current working direc-
tory are synchronized according to the defined vol-
ume. Each volume has a fixed path on the system 
and an optional name. The version history of files 
may be kept according to the user settings. 

Next, it is needed to store all the information for 
the current status, all metadata for files and the file 
data itself. Each node (peer), the object and the vol-
ume will be identified using the UUID3, which 
should guarantee that none of the listed entities will 
have the same identification number. Object is data, 
metadata, and snapshot (snapshot). The snapshot 
represent a new version of the changes and can con-
tain one or more items of metadata. (Tridgell, 2008; 
Martak, 2013) 

 

 
 

Figure 2. Object hierarchy. 

 
We can see an example of the possible object hi-

erarchy on the Figure 2 (Martak, 2013). There is a 
single volume named volume. In this volume, there 
were gradually made three changes, which represent 
the three snapshots. Snapshots are dependent on 
each other to make it possible to determine the se-
quence of changes. Snapshot 1 has no parents, so it 
is the first change. Snapshot 1 shows the object type 
metadata directory called test. The metadata of the 
test does not have any direct ancestor; this means 

that the directory was created. Since the directory it-
self cannot contain data, it cannot refer to a data ob-
ject. The second snapshot indicates the type of 
metadata file named example. This metadata belongs 
to the directories test, this is expressed in the blue ar-
row. The metadata of the type file can contain data, 
which in our example is the arrow on the object data 
1. There is also a snapshot 3, which shows the 
metadata for a type of file that is named example. 
This metadata have an ancestor, which expresses the 
green arrow and also contains custom data, which 
expresses the arrow on the data object 2. 

Another option is to identify objects by using the 
SHA-1 thumbprint as it makes Git. This could be 
difficult and inefficient on the platforms with limited 
resources. For simple detection of whether the data 
in the file has changed, it would be possible to use 
SHA-1 fingerprint file. This could simply detect 
whether file data has changed or not. If the data has 
not changed, new metadata object with the original 
data is created. (Tridgell, 2008; Martak, 2013) 

If we want to save binary data in any of the data-
bases, we have to count with their limits. All the 
considered database systems can save a maximum of 
1 GB of binary data into one record. If files are larg-
er than 1 GB, the data must be split into multiple 
records. 

The stored data is always full. The tool will al-
ways make a full back up of the data. For the effi-
cient storage of data, it would have been able to save 
only the changes between the two objects of data. It 
might be challenging, so the implementation will 
always save the data in the full form. 

6 IMPLEMENTATION 

The application is designed as a multi-threaded, as is 
the need to react asynchronously at a networking 
event and the events in the file system. Furthermore, 
it is necessary to use a blocking operation for user 
input. Overall, at least three threads together with 
main thread are needed. (Tridgell, 2008; Martak, 
2013) 
The main thread manages volumes and should con-
tain the logic for the management of the entire appli-
cation. The main loop in the main thread also en-
sures collecting requirements of class FSMonitor 
and larger clusters are added through the class 
VolumeController to the individual volumes. This 
ensures that if there will be more changes at once, all 
added with only one snapshot. If they were added 
gradually changes one at a time, for each such 
amendment would be needed to create a new snap-
shot. 
After starting the tool, the initialization of the user 
comes, and the tool generates a certificate with the 
private key. If the user owns some volumes, their 
checking follows. Then, the three threads are creat-



 

 

ed. One thread is for network communication and 
processing of remote requests, the other thread is for 
user input and the last thread is waiting on an event 
from the file system. For synchronization between 
threads, we have used mutexes and in some cases, a 
shared queues. The program has been used for the 
design on an object-oriented paradigm. (Tridgell, 
2008; Martak, 2013) 

7 SUMMARY 

The aim of this work was the development of ef-
fective synchronization and backup system. The sys-
tem was tested on a random generated sample data to 
test its functionality for backing up and synchroniz-
ing the data and to test its performance. The im-
provement of the transmitted data efficiency has 
been achieved using the rsync algorithm, delta. 
When using this algorithm, during the synchroniza-
tion only the changed data is transmitted. This saves 
the synchronization time bandwidth. 
 
Acknowledgements. This project has been carried 
out with a financial support from the Czech Republic 
through the project no. MSM0021630528: Security-
Oriented Research in Information Technology and 
by the project no. ED1.1.00/02.0070: The 
IT4Innovations Centre of Excellence; the part of the 
research has been also supported by the Brno Uni-
versity of Technology, Faculty of Information Tech-
nology through the specific research grant no. FIT-S-
14-2299: Research and application of advanced 
methods in ICT. 

REFERENCES 

Cohen, M. 2009. Take Control of Syncing Data in Snow Leop-
ard, 1st Edition. Take control, TidBITS Publishing, Incor-
porated. ISBN 9781615420032. 

Cougias, D., Heiberger, E., Koop, K. 2003. The Backup Book: 
Disaster Recovery from Desktop to Data Center. Network 
Frontiers Field Manual Series, Schaser-Vartan Books. 
ISBN 9780972903905. 

Dubuisson, O. 2000. ASN. 1: Communication Between Heter-
ogeneous Systems. ISBN 0-12-6333361-0. 

Georgiev, M., Iyengar, S., Jana, S. 2013. The most dangerous 
code in the world: validating SSL certificates in non-
browser software. In ACM Conference on Computer and 
Communications Security. URL 
<https://crypto.stanford.edu/~dabo/pubs/abstracts/ssl-client-
bugs.html> 

Martak, A. 2013. Synchronization and Backup of Data under 
OS Linux. FIT Brno University of Technology. 

McCabe, J. 2010. Network Analysis, Architecture, and Design. 
The Morgan Kaufmann Series in Networking, Elsevier Sci-
ence. ISBN 9780080548753. 

Pilato, M., Collins-Sussman, B., Fitzpatrick, B. 2008. Version 
Control with Subversion. Holley Series, O'Reilly Media. 
ISBN 9780596510336. 

Tridgell, A. 1999. Efficient Algorithms for Sorting and Syn-
chronization, The Australian National University. 


